Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Lindgren | 2738 | 98.07% | 5 | 35.71% |
Qilong Zhang | 34 | 1.22% | 1 | 7.14% |
Stephen Boyd | 9 | 0.32% | 3 | 21.43% |
Rob Herring | 4 | 0.14% | 1 | 7.14% |
Bhumika Goyal | 2 | 0.07% | 1 | 7.14% |
Dinh Nguyen | 2 | 0.07% | 1 | 7.14% |
Nico Pitre | 2 | 0.07% | 1 | 7.14% |
Thomas Gleixner | 1 | 0.04% | 1 | 7.14% |
Total | 2792 | 14 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/math64.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/clk/ti.h> #include "clock.h" /* FAPLL Control Register PLL_CTRL */ #define FAPLL_MAIN_MULT_N_SHIFT 16 #define FAPLL_MAIN_DIV_P_SHIFT 8 #define FAPLL_MAIN_LOCK BIT(7) #define FAPLL_MAIN_PLLEN BIT(3) #define FAPLL_MAIN_BP BIT(2) #define FAPLL_MAIN_LOC_CTL BIT(0) #define FAPLL_MAIN_MAX_MULT_N 0xffff #define FAPLL_MAIN_MAX_DIV_P 0xff #define FAPLL_MAIN_CLEAR_MASK \ ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \ (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \ FAPLL_MAIN_LOC_CTL) /* FAPLL powerdown register PWD */ #define FAPLL_PWD_OFFSET 4 #define MAX_FAPLL_OUTPUTS 7 #define FAPLL_MAX_RETRIES 1000 #define to_fapll(_hw) container_of(_hw, struct fapll_data, hw) #define to_synth(_hw) container_of(_hw, struct fapll_synth, hw) /* The bypass bit is inverted on the ddr_pll.. */ #define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440) /* * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock, * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output. */ #define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c) #define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8) /* Synthesizer divider register */ #define SYNTH_LDMDIV1 BIT(8) /* Synthesizer frequency register */ #define SYNTH_LDFREQ BIT(31) #define SYNTH_PHASE_K 8 #define SYNTH_MAX_INT_DIV 0xf #define SYNTH_MAX_DIV_M 0xff struct fapll_data { struct clk_hw hw; void __iomem *base; const char *name; struct clk *clk_ref; struct clk *clk_bypass; struct clk_onecell_data outputs; bool bypass_bit_inverted; }; struct fapll_synth { struct clk_hw hw; struct fapll_data *fd; int index; void __iomem *freq; void __iomem *div; const char *name; struct clk *clk_pll; }; static bool ti_fapll_clock_is_bypass(struct fapll_data *fd) { u32 v = readl_relaxed(fd->base); if (fd->bypass_bit_inverted) return !(v & FAPLL_MAIN_BP); else return !!(v & FAPLL_MAIN_BP); } static void ti_fapll_set_bypass(struct fapll_data *fd) { u32 v = readl_relaxed(fd->base); if (fd->bypass_bit_inverted) v &= ~FAPLL_MAIN_BP; else v |= FAPLL_MAIN_BP; writel_relaxed(v, fd->base); } static void ti_fapll_clear_bypass(struct fapll_data *fd) { u32 v = readl_relaxed(fd->base); if (fd->bypass_bit_inverted) v |= FAPLL_MAIN_BP; else v &= ~FAPLL_MAIN_BP; writel_relaxed(v, fd->base); } static int ti_fapll_wait_lock(struct fapll_data *fd) { int retries = FAPLL_MAX_RETRIES; u32 v; while ((v = readl_relaxed(fd->base))) { if (v & FAPLL_MAIN_LOCK) return 0; if (retries-- <= 0) break; udelay(1); } pr_err("%s failed to lock\n", fd->name); return -ETIMEDOUT; } static int ti_fapll_enable(struct clk_hw *hw) { struct fapll_data *fd = to_fapll(hw); u32 v = readl_relaxed(fd->base); v |= FAPLL_MAIN_PLLEN; writel_relaxed(v, fd->base); ti_fapll_wait_lock(fd); return 0; } static void ti_fapll_disable(struct clk_hw *hw) { struct fapll_data *fd = to_fapll(hw); u32 v = readl_relaxed(fd->base); v &= ~FAPLL_MAIN_PLLEN; writel_relaxed(v, fd->base); } static int ti_fapll_is_enabled(struct clk_hw *hw) { struct fapll_data *fd = to_fapll(hw); u32 v = readl_relaxed(fd->base); return v & FAPLL_MAIN_PLLEN; } static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct fapll_data *fd = to_fapll(hw); u32 fapll_n, fapll_p, v; u64 rate; if (ti_fapll_clock_is_bypass(fd)) return parent_rate; rate = parent_rate; /* PLL pre-divider is P and multiplier is N */ v = readl_relaxed(fd->base); fapll_p = (v >> 8) & 0xff; if (fapll_p) do_div(rate, fapll_p); fapll_n = v >> 16; if (fapll_n) rate *= fapll_n; return rate; } static u8 ti_fapll_get_parent(struct clk_hw *hw) { struct fapll_data *fd = to_fapll(hw); if (ti_fapll_clock_is_bypass(fd)) return 1; return 0; } static int ti_fapll_set_div_mult(unsigned long rate, unsigned long parent_rate, u32 *pre_div_p, u32 *mult_n) { /* * So far no luck getting decent clock with PLL divider, * PLL does not seem to lock and the signal does not look * right. It seems the divider can only be used together * with the multiplier? */ if (rate < parent_rate) { pr_warn("FAPLL main divider rates unsupported\n"); return -EINVAL; } *mult_n = rate / parent_rate; if (*mult_n > FAPLL_MAIN_MAX_MULT_N) return -EINVAL; *pre_div_p = 1; return 0; } static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { u32 pre_div_p, mult_n; int error; if (!rate) return -EINVAL; error = ti_fapll_set_div_mult(rate, *parent_rate, &pre_div_p, &mult_n); if (error) return error; rate = *parent_rate / pre_div_p; rate *= mult_n; return rate; } static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct fapll_data *fd = to_fapll(hw); u32 pre_div_p, mult_n, v; int error; if (!rate) return -EINVAL; error = ti_fapll_set_div_mult(rate, parent_rate, &pre_div_p, &mult_n); if (error) return error; ti_fapll_set_bypass(fd); v = readl_relaxed(fd->base); v &= ~FAPLL_MAIN_CLEAR_MASK; v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT; v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT; writel_relaxed(v, fd->base); if (ti_fapll_is_enabled(hw)) ti_fapll_wait_lock(fd); ti_fapll_clear_bypass(fd); return 0; } static const struct clk_ops ti_fapll_ops = { .enable = ti_fapll_enable, .disable = ti_fapll_disable, .is_enabled = ti_fapll_is_enabled, .recalc_rate = ti_fapll_recalc_rate, .get_parent = ti_fapll_get_parent, .round_rate = ti_fapll_round_rate, .set_rate = ti_fapll_set_rate, }; static int ti_fapll_synth_enable(struct clk_hw *hw) { struct fapll_synth *synth = to_synth(hw); u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); v &= ~(1 << synth->index); writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET); return 0; } static void ti_fapll_synth_disable(struct clk_hw *hw) { struct fapll_synth *synth = to_synth(hw); u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); v |= 1 << synth->index; writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET); } static int ti_fapll_synth_is_enabled(struct clk_hw *hw) { struct fapll_synth *synth = to_synth(hw); u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); return !(v & (1 << synth->index)); } /* * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info */ static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct fapll_synth *synth = to_synth(hw); u32 synth_div_m; u64 rate; /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */ if (!synth->div) return 32768; /* * PLL in bypass sets the synths in bypass mode too. The PLL rate * can be also be set to 27MHz, so we can't use parent_rate to * check for bypass mode. */ if (ti_fapll_clock_is_bypass(synth->fd)) return parent_rate; rate = parent_rate; /* * Synth frequency integer and fractional divider. * Note that the phase output K is 8, so the result needs * to be multiplied by SYNTH_PHASE_K. */ if (synth->freq) { u32 v, synth_int_div, synth_frac_div, synth_div_freq; v = readl_relaxed(synth->freq); synth_int_div = (v >> 24) & 0xf; synth_frac_div = v & 0xffffff; synth_div_freq = (synth_int_div * 10000000) + synth_frac_div; rate *= 10000000; do_div(rate, synth_div_freq); rate *= SYNTH_PHASE_K; } /* Synth post-divider M */ synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M; return DIV_ROUND_UP_ULL(rate, synth_div_m); } static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw, unsigned long parent_rate) { struct fapll_synth *synth = to_synth(hw); unsigned long current_rate, frac_rate; u32 post_div_m; current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate); post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M; frac_rate = current_rate * post_div_m; return frac_rate; } static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth, unsigned long rate, unsigned long parent_rate) { u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v; post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate); post_div_m = post_div_m / SYNTH_MAX_INT_DIV; if (post_div_m > SYNTH_MAX_DIV_M) return -EINVAL; if (!post_div_m) post_div_m = 1; for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) { synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K * 10000000, rate * post_div_m); synth_frac_div = synth_int_div % 10000000; synth_int_div /= 10000000; if (synth_int_div <= SYNTH_MAX_INT_DIV) break; } if (synth_int_div > SYNTH_MAX_INT_DIV) return -EINVAL; v = readl_relaxed(synth->freq); v &= ~0x1fffffff; v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24; v |= (synth_frac_div & 0xffffff); v |= SYNTH_LDFREQ; writel_relaxed(v, synth->freq); return post_div_m; } static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct fapll_synth *synth = to_synth(hw); struct fapll_data *fd = synth->fd; unsigned long r; if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate) return -EINVAL; /* Only post divider m available with no fractional divider? */ if (!synth->freq) { unsigned long frac_rate; u32 synth_post_div_m; frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate); synth_post_div_m = DIV_ROUND_UP(frac_rate, rate); r = DIV_ROUND_UP(frac_rate, synth_post_div_m); goto out; } r = *parent_rate * SYNTH_PHASE_K; if (rate > r) goto out; r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M); if (rate < r) goto out; r = rate; out: return r; } static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct fapll_synth *synth = to_synth(hw); struct fapll_data *fd = synth->fd; unsigned long frac_rate, post_rate = 0; u32 post_div_m = 0, v; if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate) return -EINVAL; /* Produce the rate with just post divider M? */ frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate); if (frac_rate < rate) { if (!synth->freq) return -EINVAL; } else { post_div_m = DIV_ROUND_UP(frac_rate, rate); if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M)) post_rate = DIV_ROUND_UP(frac_rate, post_div_m); if (!synth->freq && !post_rate) return -EINVAL; } /* Need to recalculate the fractional divider? */ if ((post_rate != rate) && synth->freq) post_div_m = ti_fapll_synth_set_frac_rate(synth, rate, parent_rate); v = readl_relaxed(synth->div); v &= ~SYNTH_MAX_DIV_M; v |= post_div_m; v |= SYNTH_LDMDIV1; writel_relaxed(v, synth->div); return 0; } static const struct clk_ops ti_fapll_synt_ops = { .enable = ti_fapll_synth_enable, .disable = ti_fapll_synth_disable, .is_enabled = ti_fapll_synth_is_enabled, .recalc_rate = ti_fapll_synth_recalc_rate, .round_rate = ti_fapll_synth_round_rate, .set_rate = ti_fapll_synth_set_rate, }; static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd, void __iomem *freq, void __iomem *div, int index, const char *name, const char *parent, struct clk *pll_clk) { struct clk_init_data *init; struct fapll_synth *synth; struct clk *clk = ERR_PTR(-ENOMEM); init = kzalloc(sizeof(*init), GFP_KERNEL); if (!init) return ERR_PTR(-ENOMEM); init->ops = &ti_fapll_synt_ops; init->name = name; init->parent_names = &parent; init->num_parents = 1; synth = kzalloc(sizeof(*synth), GFP_KERNEL); if (!synth) goto free; synth->fd = fd; synth->index = index; synth->freq = freq; synth->div = div; synth->name = name; synth->hw.init = init; synth->clk_pll = pll_clk; clk = clk_register(NULL, &synth->hw); if (IS_ERR(clk)) { pr_err("failed to register clock\n"); goto free; } return clk; free: kfree(synth); kfree(init); return clk; } static void __init ti_fapll_setup(struct device_node *node) { struct fapll_data *fd; struct clk_init_data *init = NULL; const char *parent_name[2]; struct clk *pll_clk; const char *name; int i; fd = kzalloc(sizeof(*fd), GFP_KERNEL); if (!fd) return; fd->outputs.clks = kzalloc(sizeof(struct clk *) * MAX_FAPLL_OUTPUTS + 1, GFP_KERNEL); if (!fd->outputs.clks) goto free; init = kzalloc(sizeof(*init), GFP_KERNEL); if (!init) goto free; init->ops = &ti_fapll_ops; name = ti_dt_clk_name(node); init->name = name; init->num_parents = of_clk_get_parent_count(node); if (init->num_parents != 2) { pr_err("%pOFn must have two parents\n", node); goto free; } of_clk_parent_fill(node, parent_name, 2); init->parent_names = parent_name; fd->clk_ref = of_clk_get(node, 0); if (IS_ERR(fd->clk_ref)) { pr_err("%pOFn could not get clk_ref\n", node); goto free; } fd->clk_bypass = of_clk_get(node, 1); if (IS_ERR(fd->clk_bypass)) { pr_err("%pOFn could not get clk_bypass\n", node); goto free; } fd->base = of_iomap(node, 0); if (!fd->base) { pr_err("%pOFn could not get IO base\n", node); goto free; } if (fapll_is_ddr_pll(fd->base)) fd->bypass_bit_inverted = true; fd->name = name; fd->hw.init = init; /* Register the parent PLL */ pll_clk = clk_register(NULL, &fd->hw); if (IS_ERR(pll_clk)) goto unmap; fd->outputs.clks[0] = pll_clk; fd->outputs.clk_num++; /* * Set up the child synthesizers starting at index 1 as the * PLL output is at index 0. We need to check the clock-indices * for numbering in case there are holes in the synth mapping, * and then probe the synth register to see if it has a FREQ * register available. */ for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) { const char *output_name; void __iomem *freq, *div; struct clk *synth_clk; int output_instance; u32 v; if (of_property_read_string_index(node, "clock-output-names", i, &output_name)) continue; if (of_property_read_u32_index(node, "clock-indices", i, &output_instance)) output_instance = i; freq = fd->base + (output_instance * 8); div = freq + 4; /* Check for hardwired audio_pll_clk1 */ if (is_audio_pll_clk1(freq)) { freq = NULL; div = NULL; } else { /* Does the synthesizer have a FREQ register? */ v = readl_relaxed(freq); if (!v) freq = NULL; } synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance, output_name, name, pll_clk); if (IS_ERR(synth_clk)) continue; fd->outputs.clks[output_instance] = synth_clk; fd->outputs.clk_num++; clk_register_clkdev(synth_clk, output_name, NULL); } /* Register the child synthesizers as the FAPLL outputs */ of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs); /* Add clock alias for the outputs */ kfree(init); return; unmap: iounmap(fd->base); free: if (fd->clk_bypass) clk_put(fd->clk_bypass); if (fd->clk_ref) clk_put(fd->clk_ref); kfree(fd->outputs.clks); kfree(fd); kfree(init); } CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1