Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Lindgren | 3484 | 99.83% | 8 | 72.73% |
Drew Fustini | 4 | 0.11% | 1 | 9.09% |
Colin Ian King | 1 | 0.03% | 1 | 9.09% |
Ingo Molnar | 1 | 0.03% | 1 | 9.09% |
Total | 3490 | 11 |
// SPDX-License-Identifier: GPL-2.0+ #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpuhotplug.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/clk/clk-conf.h> #include <clocksource/timer-ti-dm.h> #include <dt-bindings/bus/ti-sysc.h> /* For type1, set SYSC_OMAP2_CLOCKACTIVITY for fck off on idle, l4 clock on */ #define DMTIMER_TYPE1_ENABLE ((1 << 9) | (SYSC_IDLE_SMART << 3) | \ SYSC_OMAP2_ENAWAKEUP | SYSC_OMAP2_AUTOIDLE) #define DMTIMER_TYPE1_DISABLE (SYSC_OMAP2_SOFTRESET | SYSC_OMAP2_AUTOIDLE) #define DMTIMER_TYPE2_ENABLE (SYSC_IDLE_SMART_WKUP << 2) #define DMTIMER_RESET_WAIT 100000 #define DMTIMER_INST_DONT_CARE ~0U static int counter_32k; static u32 clocksource; static u32 clockevent; /* * Subset of the timer registers we use. Note that the register offsets * depend on the timer revision detected. */ struct dmtimer_systimer { void __iomem *base; u8 sysc; u8 irq_stat; u8 irq_ena; u8 pend; u8 load; u8 counter; u8 ctrl; u8 wakeup; u8 ifctrl; struct clk *fck; struct clk *ick; unsigned long rate; }; struct dmtimer_clockevent { struct clock_event_device dev; struct dmtimer_systimer t; u32 period; }; struct dmtimer_clocksource { struct clocksource dev; struct dmtimer_systimer t; unsigned int loadval; }; /* Assumes v1 ip if bits [31:16] are zero */ static bool dmtimer_systimer_revision1(struct dmtimer_systimer *t) { u32 tidr = readl_relaxed(t->base); return !(tidr >> 16); } static void dmtimer_systimer_enable(struct dmtimer_systimer *t) { u32 val; if (dmtimer_systimer_revision1(t)) val = DMTIMER_TYPE1_ENABLE; else val = DMTIMER_TYPE2_ENABLE; writel_relaxed(val, t->base + t->sysc); } static void dmtimer_systimer_disable(struct dmtimer_systimer *t) { if (!dmtimer_systimer_revision1(t)) return; writel_relaxed(DMTIMER_TYPE1_DISABLE, t->base + t->sysc); } static int __init dmtimer_systimer_type1_reset(struct dmtimer_systimer *t) { void __iomem *syss = t->base + OMAP_TIMER_V1_SYS_STAT_OFFSET; int ret; u32 l; dmtimer_systimer_enable(t); writel_relaxed(BIT(1) | BIT(2), t->base + t->ifctrl); ret = readl_poll_timeout_atomic(syss, l, l & BIT(0), 100, DMTIMER_RESET_WAIT); return ret; } /* Note we must use io_base instead of func_base for type2 OCP regs */ static int __init dmtimer_systimer_type2_reset(struct dmtimer_systimer *t) { void __iomem *sysc = t->base + t->sysc; u32 l; dmtimer_systimer_enable(t); l = readl_relaxed(sysc); l |= BIT(0); writel_relaxed(l, sysc); return readl_poll_timeout_atomic(sysc, l, !(l & BIT(0)), 100, DMTIMER_RESET_WAIT); } static int __init dmtimer_systimer_reset(struct dmtimer_systimer *t) { int ret; if (dmtimer_systimer_revision1(t)) ret = dmtimer_systimer_type1_reset(t); else ret = dmtimer_systimer_type2_reset(t); if (ret < 0) { pr_err("%s failed with %i\n", __func__, ret); return ret; } return 0; } static const struct of_device_id counter_match_table[] = { { .compatible = "ti,omap-counter32k" }, { /* Sentinel */ }, }; /* * Check if the SoC als has a usable working 32 KiHz counter. The 32 KiHz * counter is handled by timer-ti-32k, but we need to detect it as it * affects the preferred dmtimer system timer configuration. There is * typically no use for a dmtimer clocksource if the 32 KiHz counter is * present, except on am437x as described below. */ static void __init dmtimer_systimer_check_counter32k(void) { struct device_node *np; if (counter_32k) return; np = of_find_matching_node(NULL, counter_match_table); if (!np) { counter_32k = -ENODEV; return; } if (of_device_is_available(np)) counter_32k = 1; else counter_32k = -ENODEV; of_node_put(np); } static const struct of_device_id dmtimer_match_table[] = { { .compatible = "ti,omap2420-timer", }, { .compatible = "ti,omap3430-timer", }, { .compatible = "ti,omap4430-timer", }, { .compatible = "ti,omap5430-timer", }, { .compatible = "ti,am335x-timer", }, { .compatible = "ti,am335x-timer-1ms", }, { .compatible = "ti,dm814-timer", }, { .compatible = "ti,dm816-timer", }, { /* Sentinel */ }, }; /* * Checks that system timers are configured to not reset and idle during * the generic timer-ti-dm device driver probe. And that the system timer * source clocks are properly configured. Also, let's not hog any DSP and * PWM capable timers unnecessarily as system timers. */ static bool __init dmtimer_is_preferred(struct device_node *np) { if (!of_device_is_available(np)) return false; if (!of_property_read_bool(np->parent, "ti,no-reset-on-init")) return false; if (!of_property_read_bool(np->parent, "ti,no-idle")) return false; /* Secure gptimer12 is always clocked with a fixed source */ if (!of_property_read_bool(np, "ti,timer-secure")) { if (!of_property_read_bool(np, "assigned-clocks")) return false; if (!of_property_read_bool(np, "assigned-clock-parents")) return false; } if (of_property_read_bool(np, "ti,timer-dsp")) return false; if (of_property_read_bool(np, "ti,timer-pwm")) return false; return true; } /* * Finds the first available usable always-on timer, and assigns it to either * clockevent or clocksource depending if the counter_32k is available on the * SoC or not. * * Some omap3 boards with unreliable oscillator must not use the counter_32k * or dmtimer1 with 32 KiHz source. Additionally, the boards with unreliable * oscillator should really set counter_32k as disabled, and delete dmtimer1 * ti,always-on property, but let's not count on it. For these quirky cases, * we prefer using the always-on secure dmtimer12 with the internal 32 KiHz * clock as the clocksource, and any available dmtimer as clockevent. * * For am437x, we are using am335x style dmtimer clocksource. It is unclear * if this quirk handling is really needed, but let's change it separately * based on testing as it might cause side effects. */ static void __init dmtimer_systimer_assign_alwon(void) { struct device_node *np; u32 pa = 0; bool quirk_unreliable_oscillator = false; /* Quirk unreliable 32 KiHz oscillator with incomplete dts */ if (of_machine_is_compatible("ti,omap3-beagle-ab4")) { quirk_unreliable_oscillator = true; counter_32k = -ENODEV; } /* Quirk am437x using am335x style dmtimer clocksource */ if (of_machine_is_compatible("ti,am43")) counter_32k = -ENODEV; for_each_matching_node(np, dmtimer_match_table) { if (!dmtimer_is_preferred(np)) continue; if (of_property_read_bool(np, "ti,timer-alwon")) { const __be32 *addr; addr = of_get_address(np, 0, NULL, NULL); pa = of_translate_address(np, addr); if (pa) { /* Quirky omap3 boards must use dmtimer12 */ if (quirk_unreliable_oscillator && pa == 0x48318000) continue; of_node_put(np); break; } } } /* Usually no need for dmtimer clocksource if we have counter32 */ if (counter_32k >= 0) { clockevent = pa; clocksource = 0; } else { clocksource = pa; clockevent = DMTIMER_INST_DONT_CARE; } } /* Finds the first usable dmtimer, used for the don't care case */ static u32 __init dmtimer_systimer_find_first_available(void) { struct device_node *np; const __be32 *addr; u32 pa = 0; for_each_matching_node(np, dmtimer_match_table) { if (!dmtimer_is_preferred(np)) continue; addr = of_get_address(np, 0, NULL, NULL); pa = of_translate_address(np, addr); if (pa) { if (pa == clocksource || pa == clockevent) { pa = 0; continue; } of_node_put(np); break; } } return pa; } /* Selects the best clocksource and clockevent to use */ static void __init dmtimer_systimer_select_best(void) { dmtimer_systimer_check_counter32k(); dmtimer_systimer_assign_alwon(); if (clockevent == DMTIMER_INST_DONT_CARE) clockevent = dmtimer_systimer_find_first_available(); pr_debug("%s: counter_32k: %i clocksource: %08x clockevent: %08x\n", __func__, counter_32k, clocksource, clockevent); } /* Interface clocks are only available on some SoCs variants */ static int __init dmtimer_systimer_init_clock(struct dmtimer_systimer *t, struct device_node *np, const char *name, unsigned long *rate) { struct clk *clock; unsigned long r; bool is_ick = false; int error; is_ick = !strncmp(name, "ick", 3); clock = of_clk_get_by_name(np, name); if ((PTR_ERR(clock) == -EINVAL) && is_ick) return 0; else if (IS_ERR(clock)) return PTR_ERR(clock); error = clk_prepare_enable(clock); if (error) return error; r = clk_get_rate(clock); if (!r) return -ENODEV; if (is_ick) t->ick = clock; else t->fck = clock; *rate = r; return 0; } static int __init dmtimer_systimer_setup(struct device_node *np, struct dmtimer_systimer *t) { unsigned long rate; u8 regbase; int error; if (!of_device_is_compatible(np->parent, "ti,sysc")) return -EINVAL; t->base = of_iomap(np, 0); if (!t->base) return -ENXIO; /* * Enable optional assigned-clock-parents configured at the timer * node level. For regular device drivers, this is done automatically * by bus related code such as platform_drv_probe(). */ error = of_clk_set_defaults(np, false); if (error < 0) pr_err("%s: clock source init failed: %i\n", __func__, error); /* For ti-sysc, we have timer clocks at the parent module level */ error = dmtimer_systimer_init_clock(t, np->parent, "fck", &rate); if (error) goto err_unmap; t->rate = rate; error = dmtimer_systimer_init_clock(t, np->parent, "ick", &rate); if (error) goto err_unmap; if (dmtimer_systimer_revision1(t)) { t->irq_stat = OMAP_TIMER_V1_STAT_OFFSET; t->irq_ena = OMAP_TIMER_V1_INT_EN_OFFSET; t->pend = _OMAP_TIMER_WRITE_PEND_OFFSET; regbase = 0; } else { t->irq_stat = OMAP_TIMER_V2_IRQSTATUS; t->irq_ena = OMAP_TIMER_V2_IRQENABLE_SET; regbase = OMAP_TIMER_V2_FUNC_OFFSET; t->pend = regbase + _OMAP_TIMER_WRITE_PEND_OFFSET; } t->sysc = OMAP_TIMER_OCP_CFG_OFFSET; t->load = regbase + _OMAP_TIMER_LOAD_OFFSET; t->counter = regbase + _OMAP_TIMER_COUNTER_OFFSET; t->ctrl = regbase + _OMAP_TIMER_CTRL_OFFSET; t->wakeup = regbase + _OMAP_TIMER_WAKEUP_EN_OFFSET; t->ifctrl = regbase + _OMAP_TIMER_IF_CTRL_OFFSET; dmtimer_systimer_reset(t); dmtimer_systimer_enable(t); pr_debug("dmtimer rev %08x sysc %08x\n", readl_relaxed(t->base), readl_relaxed(t->base + t->sysc)); return 0; err_unmap: iounmap(t->base); return error; } /* Clockevent */ static struct dmtimer_clockevent * to_dmtimer_clockevent(struct clock_event_device *clockevent) { return container_of(clockevent, struct dmtimer_clockevent, dev); } static irqreturn_t dmtimer_clockevent_interrupt(int irq, void *data) { struct dmtimer_clockevent *clkevt = data; struct dmtimer_systimer *t = &clkevt->t; writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_stat); clkevt->dev.event_handler(&clkevt->dev); return IRQ_HANDLED; } static int dmtimer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; void __iomem *pend = t->base + t->pend; while (readl_relaxed(pend) & WP_TCRR) cpu_relax(); writel_relaxed(0xffffffff - cycles, t->base + t->counter); while (readl_relaxed(pend) & WP_TCLR) cpu_relax(); writel_relaxed(OMAP_TIMER_CTRL_ST, t->base + t->ctrl); return 0; } static int dmtimer_clockevent_shutdown(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; void __iomem *ctrl = t->base + t->ctrl; u32 l; l = readl_relaxed(ctrl); if (l & OMAP_TIMER_CTRL_ST) { l &= ~BIT(0); writel_relaxed(l, ctrl); /* Flush posted write */ l = readl_relaxed(ctrl); /* Wait for functional clock period x 3.5 */ udelay(3500000 / t->rate + 1); } writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_stat); return 0; } static int dmtimer_set_periodic(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; void __iomem *pend = t->base + t->pend; dmtimer_clockevent_shutdown(evt); /* Looks like we need to first set the load value separately */ while (readl_relaxed(pend) & WP_TLDR) cpu_relax(); writel_relaxed(clkevt->period, t->base + t->load); while (readl_relaxed(pend) & WP_TCRR) cpu_relax(); writel_relaxed(clkevt->period, t->base + t->counter); while (readl_relaxed(pend) & WP_TCLR) cpu_relax(); writel_relaxed(OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, t->base + t->ctrl); return 0; } static void omap_clockevent_idle(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; dmtimer_systimer_disable(t); clk_disable(t->fck); } static void omap_clockevent_unidle(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; int error; error = clk_enable(t->fck); if (error) pr_err("could not enable timer fck on resume: %i\n", error); dmtimer_systimer_enable(t); writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_ena); writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->wakeup); } static int __init dmtimer_clkevt_init_common(struct dmtimer_clockevent *clkevt, struct device_node *np, unsigned int features, const struct cpumask *cpumask, const char *name, int rating) { struct clock_event_device *dev; struct dmtimer_systimer *t; int error; t = &clkevt->t; dev = &clkevt->dev; /* * We mostly use cpuidle_coupled with ARM local timers for runtime, * so there's probably no use for CLOCK_EVT_FEAT_DYNIRQ here. */ dev->features = features; dev->rating = rating; dev->set_next_event = dmtimer_set_next_event; dev->set_state_shutdown = dmtimer_clockevent_shutdown; dev->set_state_periodic = dmtimer_set_periodic; dev->set_state_oneshot = dmtimer_clockevent_shutdown; dev->set_state_oneshot_stopped = dmtimer_clockevent_shutdown; dev->tick_resume = dmtimer_clockevent_shutdown; dev->cpumask = cpumask; dev->irq = irq_of_parse_and_map(np, 0); if (!dev->irq) return -ENXIO; error = dmtimer_systimer_setup(np, &clkevt->t); if (error) return error; clkevt->period = 0xffffffff - DIV_ROUND_CLOSEST(t->rate, HZ); /* * For clock-event timers we never read the timer counter and * so we are not impacted by errata i103 and i767. Therefore, * we can safely ignore this errata for clock-event timers. */ writel_relaxed(OMAP_TIMER_CTRL_POSTED, t->base + t->ifctrl); error = request_irq(dev->irq, dmtimer_clockevent_interrupt, IRQF_TIMER, name, clkevt); if (error) goto err_out_unmap; writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_ena); writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->wakeup); pr_info("TI gptimer %s: %s%lu Hz at %pOF\n", name, of_find_property(np, "ti,timer-alwon", NULL) ? "always-on " : "", t->rate, np->parent); return 0; err_out_unmap: iounmap(t->base); return error; } static int __init dmtimer_clockevent_init(struct device_node *np) { struct dmtimer_clockevent *clkevt; int error; clkevt = kzalloc(sizeof(*clkevt), GFP_KERNEL); if (!clkevt) return -ENOMEM; error = dmtimer_clkevt_init_common(clkevt, np, CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, cpu_possible_mask, "clockevent", 300); if (error) goto err_out_free; clockevents_config_and_register(&clkevt->dev, clkevt->t.rate, 3, /* Timer internal resync latency */ 0xffffffff); if (of_machine_is_compatible("ti,am33xx") || of_machine_is_compatible("ti,am43")) { clkevt->dev.suspend = omap_clockevent_idle; clkevt->dev.resume = omap_clockevent_unidle; } return 0; err_out_free: kfree(clkevt); return error; } /* Dmtimer as percpu timer. See dra7 ARM architected timer wrap erratum i940 */ static DEFINE_PER_CPU(struct dmtimer_clockevent, dmtimer_percpu_timer); static int __init dmtimer_percpu_timer_init(struct device_node *np, int cpu) { struct dmtimer_clockevent *clkevt; int error; if (!cpu_possible(cpu)) return -EINVAL; if (!of_property_read_bool(np->parent, "ti,no-reset-on-init") || !of_property_read_bool(np->parent, "ti,no-idle")) pr_warn("Incomplete dtb for percpu dmtimer %pOF\n", np->parent); clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); error = dmtimer_clkevt_init_common(clkevt, np, CLOCK_EVT_FEAT_ONESHOT, cpumask_of(cpu), "percpu-dmtimer", 500); if (error) return error; return 0; } /* See TRM for timer internal resynch latency */ static int omap_dmtimer_starting_cpu(unsigned int cpu) { struct dmtimer_clockevent *clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); struct clock_event_device *dev = &clkevt->dev; struct dmtimer_systimer *t = &clkevt->t; clockevents_config_and_register(dev, t->rate, 3, ULONG_MAX); irq_force_affinity(dev->irq, cpumask_of(cpu)); return 0; } static int __init dmtimer_percpu_timer_startup(void) { struct dmtimer_clockevent *clkevt = per_cpu_ptr(&dmtimer_percpu_timer, 0); struct dmtimer_systimer *t = &clkevt->t; if (t->sysc) { cpuhp_setup_state(CPUHP_AP_TI_GP_TIMER_STARTING, "clockevents/omap/gptimer:starting", omap_dmtimer_starting_cpu, NULL); } return 0; } subsys_initcall(dmtimer_percpu_timer_startup); static int __init dmtimer_percpu_quirk_init(struct device_node *np, u32 pa) { struct device_node *arm_timer; arm_timer = of_find_compatible_node(NULL, NULL, "arm,armv7-timer"); if (of_device_is_available(arm_timer)) { pr_warn_once("ARM architected timer wrap issue i940 detected\n"); return 0; } if (pa == 0x4882c000) /* dra7 dmtimer15 */ return dmtimer_percpu_timer_init(np, 0); else if (pa == 0x4882e000) /* dra7 dmtimer16 */ return dmtimer_percpu_timer_init(np, 1); return 0; } /* Clocksource */ static struct dmtimer_clocksource * to_dmtimer_clocksource(struct clocksource *cs) { return container_of(cs, struct dmtimer_clocksource, dev); } static u64 dmtimer_clocksource_read_cycles(struct clocksource *cs) { struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); struct dmtimer_systimer *t = &clksrc->t; return (u64)readl_relaxed(t->base + t->counter); } static void __iomem *dmtimer_sched_clock_counter; static u64 notrace dmtimer_read_sched_clock(void) { return readl_relaxed(dmtimer_sched_clock_counter); } static void dmtimer_clocksource_suspend(struct clocksource *cs) { struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); struct dmtimer_systimer *t = &clksrc->t; clksrc->loadval = readl_relaxed(t->base + t->counter); dmtimer_systimer_disable(t); clk_disable(t->fck); } static void dmtimer_clocksource_resume(struct clocksource *cs) { struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); struct dmtimer_systimer *t = &clksrc->t; int error; error = clk_enable(t->fck); if (error) pr_err("could not enable timer fck on resume: %i\n", error); dmtimer_systimer_enable(t); writel_relaxed(clksrc->loadval, t->base + t->counter); writel_relaxed(OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, t->base + t->ctrl); } static int __init dmtimer_clocksource_init(struct device_node *np) { struct dmtimer_clocksource *clksrc; struct dmtimer_systimer *t; struct clocksource *dev; int error; clksrc = kzalloc(sizeof(*clksrc), GFP_KERNEL); if (!clksrc) return -ENOMEM; dev = &clksrc->dev; t = &clksrc->t; error = dmtimer_systimer_setup(np, t); if (error) goto err_out_free; dev->name = "dmtimer"; dev->rating = 300; dev->read = dmtimer_clocksource_read_cycles; dev->mask = CLOCKSOURCE_MASK(32); dev->flags = CLOCK_SOURCE_IS_CONTINUOUS; /* Unlike for clockevent, legacy code sets suspend only for am4 */ if (of_machine_is_compatible("ti,am43")) { dev->suspend = dmtimer_clocksource_suspend; dev->resume = dmtimer_clocksource_resume; } writel_relaxed(0, t->base + t->counter); writel_relaxed(OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, t->base + t->ctrl); pr_info("TI gptimer clocksource: %s%pOF\n", of_find_property(np, "ti,timer-alwon", NULL) ? "always-on " : "", np->parent); if (!dmtimer_sched_clock_counter) { dmtimer_sched_clock_counter = t->base + t->counter; sched_clock_register(dmtimer_read_sched_clock, 32, t->rate); } if (clocksource_register_hz(dev, t->rate)) pr_err("Could not register clocksource %pOF\n", np); return 0; err_out_free: kfree(clksrc); return -ENODEV; } /* * To detect between a clocksource and clockevent, we assume the device tree * has no interrupts configured for a clocksource timer. */ static int __init dmtimer_systimer_init(struct device_node *np) { const __be32 *addr; u32 pa; /* One time init for the preferred timer configuration */ if (!clocksource && !clockevent) dmtimer_systimer_select_best(); if (!clocksource && !clockevent) { pr_err("%s: unable to detect system timers, update dtb?\n", __func__); return -EINVAL; } addr = of_get_address(np, 0, NULL, NULL); pa = of_translate_address(np, addr); if (!pa) return -EINVAL; if (counter_32k <= 0 && clocksource == pa) return dmtimer_clocksource_init(np); if (clockevent == pa) return dmtimer_clockevent_init(np); if (of_machine_is_compatible("ti,dra7")) return dmtimer_percpu_quirk_init(np, pa); return 0; } TIMER_OF_DECLARE(systimer_omap2, "ti,omap2420-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_omap3, "ti,omap3430-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_omap4, "ti,omap4430-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_omap5, "ti,omap5430-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_am33x, "ti,am335x-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_am3ms, "ti,am335x-timer-1ms", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_dm814, "ti,dm814-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_dm816, "ti,dm816-timer", dmtimer_systimer_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1