Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian Lamparter | 2668 | 70.28% | 22 | 70.97% |
James Hsiao | 1087 | 28.64% | 1 | 3.23% |
Ard Biesheuvel | 21 | 0.55% | 1 | 3.23% |
Herbert Xu | 7 | 0.18% | 1 | 3.23% |
Aditya Srivastava | 6 | 0.16% | 1 | 3.23% |
Eric Biggers | 3 | 0.08% | 2 | 6.45% |
Jingoo Han | 2 | 0.05% | 1 | 3.23% |
Julia Lawall | 1 | 0.03% | 1 | 3.23% |
Thomas Gleixner | 1 | 0.03% | 1 | 3.23% |
Total | 3796 | 31 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * AMCC SoC PPC4xx Crypto Driver * * Copyright (c) 2008 Applied Micro Circuits Corporation. * All rights reserved. James Hsiao <jhsiao@amcc.com> * * This file implements the Linux crypto algorithms. */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/spinlock_types.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <linux/hash.h> #include <crypto/internal/hash.h> #include <linux/dma-mapping.h> #include <crypto/algapi.h> #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/gcm.h> #include <crypto/sha1.h> #include <crypto/ctr.h> #include <crypto/skcipher.h> #include "crypto4xx_reg_def.h" #include "crypto4xx_core.h" #include "crypto4xx_sa.h" static void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h, u32 save_iv, u32 ld_h, u32 ld_iv, u32 hdr_proc, u32 h, u32 c, u32 pad_type, u32 op_grp, u32 op, u32 dir) { sa->sa_command_0.w = 0; sa->sa_command_0.bf.save_hash_state = save_h; sa->sa_command_0.bf.save_iv = save_iv; sa->sa_command_0.bf.load_hash_state = ld_h; sa->sa_command_0.bf.load_iv = ld_iv; sa->sa_command_0.bf.hdr_proc = hdr_proc; sa->sa_command_0.bf.hash_alg = h; sa->sa_command_0.bf.cipher_alg = c; sa->sa_command_0.bf.pad_type = pad_type & 3; sa->sa_command_0.bf.extend_pad = pad_type >> 2; sa->sa_command_0.bf.op_group = op_grp; sa->sa_command_0.bf.opcode = op; sa->sa_command_0.bf.dir = dir; } static void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm, u32 hmac_mc, u32 cfb, u32 esn, u32 sn_mask, u32 mute, u32 cp_pad, u32 cp_pay, u32 cp_hdr) { sa->sa_command_1.w = 0; sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2; sa->sa_command_1.bf.crypto_mode9_8 = cm & 3; sa->sa_command_1.bf.feedback_mode = cfb; sa->sa_command_1.bf.sa_rev = 1; sa->sa_command_1.bf.hmac_muting = hmac_mc; sa->sa_command_1.bf.extended_seq_num = esn; sa->sa_command_1.bf.seq_num_mask = sn_mask; sa->sa_command_1.bf.mutable_bit_proc = mute; sa->sa_command_1.bf.copy_pad = cp_pad; sa->sa_command_1.bf.copy_payload = cp_pay; sa->sa_command_1.bf.copy_hdr = cp_hdr; } static inline int crypto4xx_crypt(struct skcipher_request *req, const unsigned int ivlen, bool decrypt, bool check_blocksize) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); __le32 iv[AES_IV_SIZE]; if (check_blocksize && !IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE)) return -EINVAL; if (ivlen) crypto4xx_memcpy_to_le32(iv, req->iv, ivlen); return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, req->cryptlen, iv, ivlen, decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len, 0, NULL); } int crypto4xx_encrypt_noiv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, 0, false, true); } int crypto4xx_encrypt_iv_stream(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, false, false); } int crypto4xx_decrypt_noiv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, 0, true, true); } int crypto4xx_decrypt_iv_stream(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, true, false); } int crypto4xx_encrypt_iv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, false, true); } int crypto4xx_decrypt_iv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, true, true); } /* * AES Functions */ static int crypto4xx_setkey_aes(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen, unsigned char cm, u8 fb) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); struct dynamic_sa_ctl *sa; int rc; if (keylen != AES_KEYSIZE_256 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_128) return -EINVAL; /* Create SA */ if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, SA_AES128_LEN + (keylen-16) / 4); if (rc) return rc; /* Setup SA */ sa = ctx->sa_in; set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, (cm == CRYPTO_MODE_ECB ? SA_NOT_SAVE_IV : SA_SAVE_IV), SA_NOT_LOAD_HASH, (cm == CRYPTO_MODE_ECB ? SA_LOAD_IV_FROM_SA : SA_LOAD_IV_FROM_STATE), SA_NO_HEADER_PROC, SA_HASH_ALG_NULL, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_DECRYPT, DIR_INBOUND); set_dynamic_sa_command_1(sa, cm, SA_HASH_MODE_HASH, fb, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, SA_NOT_COPY_HDR); crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); sa->sa_contents.w = SA_AES_CONTENTS | (keylen << 2); sa->sa_command_1.bf.key_len = keylen >> 3; memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); sa = ctx->sa_out; sa->sa_command_0.bf.dir = DIR_OUTBOUND; /* * SA_OPCODE_ENCRYPT is the same value as SA_OPCODE_DECRYPT. * it's the DIR_(IN|OUT)BOUND that matters */ sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT; return 0; } int crypto4xx_setkey_aes_cbc(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CBC, CRYPTO_FEEDBACK_MODE_NO_FB); } int crypto4xx_setkey_aes_cfb(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CFB, CRYPTO_FEEDBACK_MODE_128BIT_CFB); } int crypto4xx_setkey_aes_ecb(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_ECB, CRYPTO_FEEDBACK_MODE_NO_FB); } int crypto4xx_setkey_aes_ofb(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_OFB, CRYPTO_FEEDBACK_MODE_64BIT_OFB); } int crypto4xx_setkey_rfc3686(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); int rc; rc = crypto4xx_setkey_aes(cipher, key, keylen - CTR_RFC3686_NONCE_SIZE, CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); if (rc) return rc; ctx->iv_nonce = cpu_to_le32p((u32 *)&key[keylen - CTR_RFC3686_NONCE_SIZE]); return 0; } int crypto4xx_rfc3686_encrypt(struct skcipher_request *req) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); __le32 iv[AES_IV_SIZE / 4] = { ctx->iv_nonce, cpu_to_le32p((u32 *) req->iv), cpu_to_le32p((u32 *) (req->iv + 4)), cpu_to_le32(1) }; return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, req->cryptlen, iv, AES_IV_SIZE, ctx->sa_out, ctx->sa_len, 0, NULL); } int crypto4xx_rfc3686_decrypt(struct skcipher_request *req) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); __le32 iv[AES_IV_SIZE / 4] = { ctx->iv_nonce, cpu_to_le32p((u32 *) req->iv), cpu_to_le32p((u32 *) (req->iv + 4)), cpu_to_le32(1) }; return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, req->cryptlen, iv, AES_IV_SIZE, ctx->sa_out, ctx->sa_len, 0, NULL); } static int crypto4xx_ctr_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); size_t iv_len = crypto_skcipher_ivsize(cipher); unsigned int counter = be32_to_cpup((__be32 *)(req->iv + iv_len - 4)); unsigned int nblks = ALIGN(req->cryptlen, AES_BLOCK_SIZE) / AES_BLOCK_SIZE; /* * The hardware uses only the last 32-bits as the counter while the * kernel tests (aes_ctr_enc_tv_template[4] for example) expect that * the whole IV is a counter. So fallback if the counter is going to * overlow. */ if (counter + nblks < counter) { SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->sw_cipher.cipher); int ret; skcipher_request_set_sync_tfm(subreq, ctx->sw_cipher.cipher); skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); ret = encrypt ? crypto_skcipher_encrypt(subreq) : crypto_skcipher_decrypt(subreq); skcipher_request_zero(subreq); return ret; } return encrypt ? crypto4xx_encrypt_iv_stream(req) : crypto4xx_decrypt_iv_stream(req); } static int crypto4xx_sk_setup_fallback(struct crypto4xx_ctx *ctx, struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { crypto_sync_skcipher_clear_flags(ctx->sw_cipher.cipher, CRYPTO_TFM_REQ_MASK); crypto_sync_skcipher_set_flags(ctx->sw_cipher.cipher, crypto_skcipher_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); return crypto_sync_skcipher_setkey(ctx->sw_cipher.cipher, key, keylen); } int crypto4xx_setkey_aes_ctr(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); int rc; rc = crypto4xx_sk_setup_fallback(ctx, cipher, key, keylen); if (rc) return rc; return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); } int crypto4xx_encrypt_ctr(struct skcipher_request *req) { return crypto4xx_ctr_crypt(req, true); } int crypto4xx_decrypt_ctr(struct skcipher_request *req) { return crypto4xx_ctr_crypt(req, false); } static inline bool crypto4xx_aead_need_fallback(struct aead_request *req, unsigned int len, bool is_ccm, bool decrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); /* authsize has to be a multiple of 4 */ if (aead->authsize & 3) return true; /* * hardware does not handle cases where plaintext * is less than a block. */ if (len < AES_BLOCK_SIZE) return true; /* assoc len needs to be a multiple of 4 and <= 1020 */ if (req->assoclen & 0x3 || req->assoclen > 1020) return true; /* CCM supports only counter field length of 2 and 4 bytes */ if (is_ccm && !(req->iv[0] == 1 || req->iv[0] == 3)) return true; return false; } static int crypto4xx_aead_fallback(struct aead_request *req, struct crypto4xx_ctx *ctx, bool do_decrypt) { struct aead_request *subreq = aead_request_ctx(req); aead_request_set_tfm(subreq, ctx->sw_cipher.aead); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); return do_decrypt ? crypto_aead_decrypt(subreq) : crypto_aead_encrypt(subreq); } static int crypto4xx_aead_setup_fallback(struct crypto4xx_ctx *ctx, struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { crypto_aead_clear_flags(ctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(ctx->sw_cipher.aead, crypto_aead_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); return crypto_aead_setkey(ctx->sw_cipher.aead, key, keylen); } /* * AES-CCM Functions */ int crypto4xx_setkey_aes_ccm(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_aead_tfm(cipher); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); struct dynamic_sa_ctl *sa; int rc = 0; rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); if (rc) return rc; if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, SA_AES128_CCM_LEN + (keylen - 16) / 4); if (rc) return rc; /* Setup SA */ sa = (struct dynamic_sa_ctl *) ctx->sa_in; sa->sa_contents.w = SA_AES_CCM_CONTENTS | (keylen << 2); set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT, DIR_INBOUND); set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, SA_NOT_COPY_HDR); sa->sa_command_1.bf.key_len = keylen >> 3; crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); sa = (struct dynamic_sa_ctl *) ctx->sa_out; set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_ENCRYPT_HASH, DIR_OUTBOUND); set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_COPY_PAD, SA_COPY_PAYLOAD, SA_NOT_COPY_HDR); sa->sa_command_1.bf.key_len = keylen >> 3; return 0; } static int crypto4xx_crypt_aes_ccm(struct aead_request *req, bool decrypt) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); __le32 iv[16]; u32 tmp_sa[SA_AES128_CCM_LEN + 4]; struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *)tmp_sa; unsigned int len = req->cryptlen; if (decrypt) len -= crypto_aead_authsize(aead); if (crypto4xx_aead_need_fallback(req, len, true, decrypt)) return crypto4xx_aead_fallback(req, ctx, decrypt); memcpy(tmp_sa, decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len * 4); sa->sa_command_0.bf.digest_len = crypto_aead_authsize(aead) >> 2; if (req->iv[0] == 1) { /* CRYPTO_MODE_AES_ICM */ sa->sa_command_1.bf.crypto_mode9_8 = 1; } iv[3] = cpu_to_le32(0); crypto4xx_memcpy_to_le32(iv, req->iv, 16 - (req->iv[0] + 1)); return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, len, iv, sizeof(iv), sa, ctx->sa_len, req->assoclen, rctx->dst); } int crypto4xx_encrypt_aes_ccm(struct aead_request *req) { return crypto4xx_crypt_aes_ccm(req, false); } int crypto4xx_decrypt_aes_ccm(struct aead_request *req) { return crypto4xx_crypt_aes_ccm(req, true); } int crypto4xx_setauthsize_aead(struct crypto_aead *cipher, unsigned int authsize) { struct crypto_tfm *tfm = crypto_aead_tfm(cipher); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); return crypto_aead_setauthsize(ctx->sw_cipher.aead, authsize); } /* * AES-GCM Functions */ static int crypto4xx_aes_gcm_validate_keylen(unsigned int keylen) { switch (keylen) { case 16: case 24: case 32: return 0; default: return -EINVAL; } } static int crypto4xx_compute_gcm_hash_key_sw(__le32 *hash_start, const u8 *key, unsigned int keylen) { struct crypto_aes_ctx ctx; uint8_t src[16] = { 0 }; int rc; rc = aes_expandkey(&ctx, key, keylen); if (rc) { pr_err("aes_expandkey() failed: %d\n", rc); return rc; } aes_encrypt(&ctx, src, src); crypto4xx_memcpy_to_le32(hash_start, src, 16); memzero_explicit(&ctx, sizeof(ctx)); return 0; } int crypto4xx_setkey_aes_gcm(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_aead_tfm(cipher); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); struct dynamic_sa_ctl *sa; int rc = 0; if (crypto4xx_aes_gcm_validate_keylen(keylen) != 0) return -EINVAL; rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); if (rc) return rc; if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, SA_AES128_GCM_LEN + (keylen - 16) / 4); if (rc) return rc; sa = (struct dynamic_sa_ctl *) ctx->sa_in; sa->sa_contents.w = SA_AES_GCM_CONTENTS | (keylen << 2); set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, SA_NO_HEADER_PROC, SA_HASH_ALG_GHASH, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT, DIR_INBOUND); set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_ON, SA_MC_DISABLE, SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, SA_NOT_COPY_HDR); sa->sa_command_1.bf.key_len = keylen >> 3; crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); rc = crypto4xx_compute_gcm_hash_key_sw(get_dynamic_sa_inner_digest(sa), key, keylen); if (rc) { pr_err("GCM hash key setting failed = %d\n", rc); goto err; } memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); sa = (struct dynamic_sa_ctl *) ctx->sa_out; sa->sa_command_0.bf.dir = DIR_OUTBOUND; sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT_HASH; return 0; err: crypto4xx_free_sa(ctx); return rc; } static inline int crypto4xx_crypt_aes_gcm(struct aead_request *req, bool decrypt) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); __le32 iv[4]; unsigned int len = req->cryptlen; if (decrypt) len -= crypto_aead_authsize(crypto_aead_reqtfm(req)); if (crypto4xx_aead_need_fallback(req, len, false, decrypt)) return crypto4xx_aead_fallback(req, ctx, decrypt); crypto4xx_memcpy_to_le32(iv, req->iv, GCM_AES_IV_SIZE); iv[3] = cpu_to_le32(1); return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, len, iv, sizeof(iv), decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len, req->assoclen, rctx->dst); } int crypto4xx_encrypt_aes_gcm(struct aead_request *req) { return crypto4xx_crypt_aes_gcm(req, false); } int crypto4xx_decrypt_aes_gcm(struct aead_request *req) { return crypto4xx_crypt_aes_gcm(req, true); } /* * HASH SHA1 Functions */ static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, unsigned int sa_len, unsigned char ha, unsigned char hm) { struct crypto_alg *alg = tfm->__crt_alg; struct crypto4xx_alg *my_alg; struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); struct dynamic_sa_hash160 *sa; int rc; my_alg = container_of(__crypto_ahash_alg(alg), struct crypto4xx_alg, alg.u.hash); ctx->dev = my_alg->dev; /* Create SA */ if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, sa_len); if (rc) return rc; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct crypto4xx_ctx)); sa = (struct dynamic_sa_hash160 *)ctx->sa_in; set_dynamic_sa_command_0(&sa->ctrl, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, SA_NO_HEADER_PROC, ha, SA_CIPHER_ALG_NULL, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_HASH, DIR_INBOUND); set_dynamic_sa_command_1(&sa->ctrl, 0, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, SA_NOT_COPY_HDR); /* Need to zero hash digest in SA */ memset(sa->inner_digest, 0, sizeof(sa->inner_digest)); memset(sa->outer_digest, 0, sizeof(sa->outer_digest)); return 0; } int crypto4xx_hash_init(struct ahash_request *req) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); int ds; struct dynamic_sa_ctl *sa; sa = ctx->sa_in; ds = crypto_ahash_digestsize( __crypto_ahash_cast(req->base.tfm)); sa->sa_command_0.bf.digest_len = ds >> 2; sa->sa_command_0.bf.load_hash_state = SA_LOAD_HASH_FROM_SA; return 0; } int crypto4xx_hash_update(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct scatterlist dst; unsigned int ds = crypto_ahash_digestsize(ahash); sg_init_one(&dst, req->result, ds); return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, req->nbytes, NULL, 0, ctx->sa_in, ctx->sa_len, 0, NULL); } int crypto4xx_hash_final(struct ahash_request *req) { return 0; } int crypto4xx_hash_digest(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct scatterlist dst; unsigned int ds = crypto_ahash_digestsize(ahash); sg_init_one(&dst, req->result, ds); return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, req->nbytes, NULL, 0, ctx->sa_in, ctx->sa_len, 0, NULL); } /* * SHA1 Algorithm */ int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm) { return crypto4xx_hash_alg_init(tfm, SA_HASH160_LEN, SA_HASH_ALG_SHA1, SA_HASH_MODE_HASH); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1