Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
George Cherian | 3772 | 93.53% | 3 | 27.27% |
Christoph Hellwig | 235 | 5.83% | 1 | 9.09% |
Gustavo A. R. Silva | 10 | 0.25% | 1 | 9.09% |
Colin Ian King | 5 | 0.12% | 1 | 9.09% |
Christophe Jaillet | 4 | 0.10% | 1 | 9.09% |
Waiman Long | 3 | 0.07% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.05% | 1 | 9.09% |
Yue haibing | 1 | 0.02% | 1 | 9.09% |
Luis R. Rodriguez | 1 | 0.02% | 1 | 9.09% |
Total | 4033 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Cavium, Inc. */ #include <linux/interrupt.h> #include <linux/module.h> #include "cptvf.h" #define DRV_NAME "thunder-cptvf" #define DRV_VERSION "1.0" struct cptvf_wqe { struct tasklet_struct twork; void *cptvf; u32 qno; }; struct cptvf_wqe_info { struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF]; }; static void vq_work_handler(unsigned long data) { struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data; struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0]; vq_post_process(cwqe->cptvf, cwqe->qno); } static int init_worker_threads(struct cpt_vf *cptvf) { struct pci_dev *pdev = cptvf->pdev; struct cptvf_wqe_info *cwqe_info; int i; cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL); if (!cwqe_info) return -ENOMEM; if (cptvf->nr_queues) { dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n", cptvf->nr_queues); } for (i = 0; i < cptvf->nr_queues; i++) { tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler, (u64)cwqe_info); cwqe_info->vq_wqe[i].qno = i; cwqe_info->vq_wqe[i].cptvf = cptvf; } cptvf->wqe_info = cwqe_info; return 0; } static void cleanup_worker_threads(struct cpt_vf *cptvf) { struct cptvf_wqe_info *cwqe_info; struct pci_dev *pdev = cptvf->pdev; int i; cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info; if (!cwqe_info) return; if (cptvf->nr_queues) { dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n", cptvf->nr_queues); } for (i = 0; i < cptvf->nr_queues; i++) tasklet_kill(&cwqe_info->vq_wqe[i].twork); kfree_sensitive(cwqe_info); cptvf->wqe_info = NULL; } static void free_pending_queues(struct pending_qinfo *pqinfo) { int i; struct pending_queue *queue; for_each_pending_queue(pqinfo, queue, i) { if (!queue->head) continue; /* free single queue */ kfree_sensitive((queue->head)); queue->front = 0; queue->rear = 0; return; } pqinfo->qlen = 0; pqinfo->nr_queues = 0; } static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen, u32 nr_queues) { u32 i; int ret; struct pending_queue *queue = NULL; pqinfo->nr_queues = nr_queues; pqinfo->qlen = qlen; for_each_pending_queue(pqinfo, queue, i) { queue->head = kcalloc(qlen, sizeof(*queue->head), GFP_KERNEL); if (!queue->head) { ret = -ENOMEM; goto pending_qfail; } queue->front = 0; queue->rear = 0; atomic64_set((&queue->pending_count), (0)); /* init queue spin lock */ spin_lock_init(&queue->lock); } return 0; pending_qfail: free_pending_queues(pqinfo); return ret; } static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues) { struct pci_dev *pdev = cptvf->pdev; int ret; if (!nr_queues) return 0; ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues); if (ret) { dev_err(&pdev->dev, "failed to setup pending queues (%u)\n", nr_queues); return ret; } return 0; } static void cleanup_pending_queues(struct cpt_vf *cptvf) { struct pci_dev *pdev = cptvf->pdev; if (!cptvf->nr_queues) return; dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n", cptvf->nr_queues); free_pending_queues(&cptvf->pqinfo); } static void free_command_queues(struct cpt_vf *cptvf, struct command_qinfo *cqinfo) { int i; struct command_queue *queue = NULL; struct command_chunk *chunk = NULL; struct pci_dev *pdev = cptvf->pdev; struct hlist_node *node; /* clean up for each queue */ for (i = 0; i < cptvf->nr_queues; i++) { queue = &cqinfo->queue[i]; if (hlist_empty(&cqinfo->queue[i].chead)) continue; hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead, nextchunk) { dma_free_coherent(&pdev->dev, chunk->size, chunk->head, chunk->dma_addr); chunk->head = NULL; chunk->dma_addr = 0; hlist_del(&chunk->nextchunk); kfree_sensitive(chunk); } queue->nchunks = 0; queue->idx = 0; } /* common cleanup */ cqinfo->cmd_size = 0; } static int alloc_command_queues(struct cpt_vf *cptvf, struct command_qinfo *cqinfo, size_t cmd_size, u32 qlen) { int i; size_t q_size; struct command_queue *queue = NULL; struct pci_dev *pdev = cptvf->pdev; /* common init */ cqinfo->cmd_size = cmd_size; /* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */ cptvf->qsize = min(qlen, cqinfo->qchunksize) * CPT_NEXT_CHUNK_PTR_SIZE + 1; /* Qsize in bytes to create space for alignment */ q_size = qlen * cqinfo->cmd_size; /* per queue initialization */ for (i = 0; i < cptvf->nr_queues; i++) { size_t c_size = 0; size_t rem_q_size = q_size; struct command_chunk *curr = NULL, *first = NULL, *last = NULL; u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size; queue = &cqinfo->queue[i]; INIT_HLIST_HEAD(&cqinfo->queue[i].chead); do { curr = kzalloc(sizeof(*curr), GFP_KERNEL); if (!curr) goto cmd_qfail; c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes : rem_q_size; curr->head = dma_alloc_coherent(&pdev->dev, c_size + CPT_NEXT_CHUNK_PTR_SIZE, &curr->dma_addr, GFP_KERNEL); if (!curr->head) { dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n", i, queue->nchunks); kfree(curr); goto cmd_qfail; } curr->size = c_size; if (queue->nchunks == 0) { hlist_add_head(&curr->nextchunk, &cqinfo->queue[i].chead); first = curr; } else { hlist_add_behind(&curr->nextchunk, &last->nextchunk); } queue->nchunks++; rem_q_size -= c_size; if (last) *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; last = curr; } while (rem_q_size); /* Make the queue circular */ /* Tie back last chunk entry to head */ curr = first; *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; queue->qhead = curr; spin_lock_init(&queue->lock); } return 0; cmd_qfail: free_command_queues(cptvf, cqinfo); return -ENOMEM; } static int init_command_queues(struct cpt_vf *cptvf, u32 qlen) { struct pci_dev *pdev = cptvf->pdev; int ret; /* setup AE command queues */ ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE, qlen); if (ret) { dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n", cptvf->nr_queues); return ret; } return ret; } static void cleanup_command_queues(struct cpt_vf *cptvf) { struct pci_dev *pdev = cptvf->pdev; if (!cptvf->nr_queues) return; dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n", cptvf->nr_queues); free_command_queues(cptvf, &cptvf->cqinfo); } static void cptvf_sw_cleanup(struct cpt_vf *cptvf) { cleanup_worker_threads(cptvf); cleanup_pending_queues(cptvf); cleanup_command_queues(cptvf); } static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues) { struct pci_dev *pdev = cptvf->pdev; int ret = 0; u32 max_dev_queues = 0; max_dev_queues = CPT_NUM_QS_PER_VF; /* possible cpus */ nr_queues = min_t(u32, nr_queues, max_dev_queues); cptvf->nr_queues = nr_queues; ret = init_command_queues(cptvf, qlen); if (ret) { dev_err(&pdev->dev, "Failed to setup command queues (%u)\n", nr_queues); return ret; } ret = init_pending_queues(cptvf, qlen, nr_queues); if (ret) { dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", nr_queues); goto setup_pqfail; } /* Create worker threads for BH processing */ ret = init_worker_threads(cptvf); if (ret) { dev_err(&pdev->dev, "Failed to setup worker threads\n"); goto init_work_fail; } return 0; init_work_fail: cleanup_worker_threads(cptvf); cleanup_pending_queues(cptvf); setup_pqfail: cleanup_command_queues(cptvf); return ret; } static void cptvf_free_irq_affinity(struct cpt_vf *cptvf, int vec) { irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL); free_cpumask_var(cptvf->affinity_mask[vec]); } static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val) { union cptx_vqx_ctl vqx_ctl; vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0)); vqx_ctl.s.ena = val; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u); } void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val) { union cptx_vqx_doorbell vqx_dbell; vqx_dbell.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0)); vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */ cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0), vqx_dbell.u); } static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val) { union cptx_vqx_inprog vqx_inprg; vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0)); vqx_inprg.s.inflight = val; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u); } static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val) { union cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0)); vqx_dwait.s.num_wait = val; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u); } static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time) { union cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0)); vqx_dwait.s.time_wait = time; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u); } static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf) { union cptx_vqx_misc_ena_w1s vqx_misc_ena; vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0)); /* Set mbox(0) interupts for the requested vf */ vqx_misc_ena.s.swerr = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0), vqx_misc_ena.u); } static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf) { union cptx_vqx_misc_ena_w1s vqx_misc_ena; vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0)); /* Set mbox(0) interupts for the requested vf */ vqx_misc_ena.s.mbox = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0), vqx_misc_ena.u); } static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf) { union cptx_vqx_done_ena_w1s vqx_done_ena; vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0)); /* Set DONE interrupt for the requested vf */ vqx_done_ena.s.done = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0), vqx_done_ena.u); } static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf) { union cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.dovf = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } static void cptvf_clear_irde_intr(struct cpt_vf *cptvf) { union cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.irde = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf) { union cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.nwrp = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf) { union cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.mbox = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf) { union cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0)); /* W1C for the VF */ vqx_misc_int.s.swerr = 1; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); } static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf) { return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0)); } static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq) { struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq; struct pci_dev *pdev = cptvf->pdev; u64 intr; intr = cptvf_read_vf_misc_intr_status(cptvf); /*Check for MISC interrupt types*/ if (likely(intr & CPT_VF_INTR_MBOX_MASK)) { dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); cptvf_handle_mbox_intr(cptvf); cptvf_clear_mbox_intr(cptvf); } else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) { cptvf_clear_dovf_intr(cptvf); /*Clear doorbell count*/ cptvf_write_vq_doorbell(cptvf, 0); dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) { cptvf_clear_irde_intr(cptvf); dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) { cptvf_clear_nwrp_intr(cptvf); dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) { cptvf_clear_swerr_intr(cptvf); dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else { dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n", cptvf->vfid); } return IRQ_HANDLED; } static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf, int qno) { struct cptvf_wqe_info *nwqe_info; if (unlikely(qno >= cptvf->nr_queues)) return NULL; nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info; return &nwqe_info->vq_wqe[qno]; } static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf) { union cptx_vqx_done vqx_done; vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0)); return vqx_done.s.done; } static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf, u32 ackcnt) { union cptx_vqx_done_ack vqx_dack_cnt; vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0)); vqx_dack_cnt.s.done_ack = ackcnt; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0), vqx_dack_cnt.u); } static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq) { struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq; struct pci_dev *pdev = cptvf->pdev; /* Read the number of completions */ u32 intr = cptvf_read_vq_done_count(cptvf); if (intr) { struct cptvf_wqe *wqe; /* Acknowledge the number of * scheduled completions for processing */ cptvf_write_vq_done_ack(cptvf, intr); wqe = get_cptvf_vq_wqe(cptvf, 0); if (unlikely(!wqe)) { dev_err(&pdev->dev, "No work to schedule for VF (%d)", cptvf->vfid); return IRQ_NONE; } tasklet_hi_schedule(&wqe->twork); } return IRQ_HANDLED; } static void cptvf_set_irq_affinity(struct cpt_vf *cptvf, int vec) { struct pci_dev *pdev = cptvf->pdev; int cpu; if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec], GFP_KERNEL)) { dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d", cptvf->vfid); return; } cpu = cptvf->vfid % num_online_cpus(); cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node), cptvf->affinity_mask[vec]); irq_set_affinity_hint(pci_irq_vector(pdev, vec), cptvf->affinity_mask[vec]); } static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val) { union cptx_vqx_saddr vqx_saddr; vqx_saddr.u = val; cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u); } static void cptvf_device_init(struct cpt_vf *cptvf) { u64 base_addr = 0; /* Disable the VQ */ cptvf_write_vq_ctl(cptvf, 0); /* Reset the doorbell */ cptvf_write_vq_doorbell(cptvf, 0); /* Clear inflight */ cptvf_write_vq_inprog(cptvf, 0); /* Write VQ SADDR */ /* TODO: for now only one queue, so hard coded */ base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr); cptvf_write_vq_saddr(cptvf, base_addr); /* Configure timerhold / coalescence */ cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD); cptvf_write_vq_done_numwait(cptvf, 1); /* Enable the VQ */ cptvf_write_vq_ctl(cptvf, 1); /* Flag the VF ready */ cptvf->flags |= CPT_FLAG_DEVICE_READY; } static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct cpt_vf *cptvf; int err; cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL); if (!cptvf) return -ENOMEM; pci_set_drvdata(pdev, cptvf); cptvf->pdev = pdev; err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); pci_set_drvdata(pdev, NULL); return err; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto cptvf_err_disable_device; } /* Mark as VF driver */ cptvf->flags |= CPT_FLAG_VF_DRIVER; err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable 48-bit DMA configuration\n"); goto cptvf_err_release_regions; } /* MAP PF's configuration registers */ cptvf->reg_base = pcim_iomap(pdev, 0, 0); if (!cptvf->reg_base) { dev_err(dev, "Cannot map config register space, aborting\n"); err = -ENOMEM; goto cptvf_err_release_regions; } cptvf->node = dev_to_node(&pdev->dev); err = pci_alloc_irq_vectors(pdev, CPT_VF_MSIX_VECTORS, CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX); if (err < 0) { dev_err(dev, "Request for #%d msix vectors failed\n", CPT_VF_MSIX_VECTORS); goto cptvf_err_release_regions; } err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf_misc_intr_handler, 0, "CPT VF misc intr", cptvf); if (err) { dev_err(dev, "Request misc irq failed"); goto cptvf_free_vectors; } /* Enable mailbox interrupt */ cptvf_enable_mbox_interrupts(cptvf); cptvf_enable_swerr_interrupts(cptvf); /* Check ready with PF */ /* Gets chip ID / device Id from PF if ready */ err = cptvf_check_pf_ready(cptvf); if (err) { dev_err(dev, "PF not responding to READY msg"); goto cptvf_free_misc_irq; } /* CPT VF software resources initialization */ cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE; err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF); if (err) { dev_err(dev, "cptvf_sw_init() failed"); goto cptvf_free_misc_irq; } /* Convey VQ LEN to PF */ err = cptvf_send_vq_size_msg(cptvf); if (err) { dev_err(dev, "PF not responding to QLEN msg"); goto cptvf_free_misc_irq; } /* CPT VF device initialization */ cptvf_device_init(cptvf); /* Send msg to PF to assign currnet Q to required group */ cptvf->vfgrp = 1; err = cptvf_send_vf_to_grp_msg(cptvf); if (err) { dev_err(dev, "PF not responding to VF_GRP msg"); goto cptvf_free_misc_irq; } cptvf->priority = 1; err = cptvf_send_vf_priority_msg(cptvf); if (err) { dev_err(dev, "PF not responding to VF_PRIO msg"); goto cptvf_free_misc_irq; } err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf_done_intr_handler, 0, "CPT VF done intr", cptvf); if (err) { dev_err(dev, "Request done irq failed\n"); goto cptvf_free_misc_irq; } /* Enable mailbox interrupt */ cptvf_enable_done_interrupts(cptvf); /* Set irq affinity masks */ cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); err = cptvf_send_vf_up(cptvf); if (err) { dev_err(dev, "PF not responding to UP msg"); goto cptvf_free_irq_affinity; } err = cvm_crypto_init(cptvf); if (err) { dev_err(dev, "Algorithm register failed\n"); goto cptvf_free_irq_affinity; } return 0; cptvf_free_irq_affinity: cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); cptvf_free_misc_irq: free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); cptvf_free_vectors: pci_free_irq_vectors(cptvf->pdev); cptvf_err_release_regions: pci_release_regions(pdev); cptvf_err_disable_device: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void cptvf_remove(struct pci_dev *pdev) { struct cpt_vf *cptvf = pci_get_drvdata(pdev); if (!cptvf) { dev_err(&pdev->dev, "Invalid CPT-VF device\n"); return; } /* Convey DOWN to PF */ if (cptvf_send_vf_down(cptvf)) { dev_err(&pdev->dev, "PF not responding to DOWN msg"); } else { cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); pci_free_irq_vectors(cptvf->pdev); cptvf_sw_cleanup(cptvf); pci_set_drvdata(pdev, NULL); pci_release_regions(pdev); pci_disable_device(pdev); cvm_crypto_exit(); } } static void cptvf_shutdown(struct pci_dev *pdev) { cptvf_remove(pdev); } /* Supported devices */ static const struct pci_device_id cptvf_id_table[] = { {PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0}, { 0, } /* end of table */ }; static struct pci_driver cptvf_pci_driver = { .name = DRV_NAME, .id_table = cptvf_id_table, .probe = cptvf_probe, .remove = cptvf_remove, .shutdown = cptvf_shutdown, }; module_pci_driver(cptvf_pci_driver); MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>"); MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, cptvf_id_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1