Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
George Cherian | 3368 | 97.82% | 2 | 18.18% |
Mikulas Patocka | 36 | 1.05% | 1 | 9.09% |
Herbert Xu | 13 | 0.38% | 1 | 9.09% |
Waiman Long | 6 | 0.17% | 1 | 9.09% |
Colin Ian King | 6 | 0.17% | 1 | 9.09% |
Christophe Jaillet | 4 | 0.12% | 1 | 9.09% |
Gustavo A. R. Silva | 4 | 0.12% | 1 | 9.09% |
Yue haibing | 3 | 0.09% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.06% | 1 | 9.09% |
Lee Jones | 1 | 0.03% | 1 | 9.09% |
Total | 3443 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Cavium, Inc. */ #include "cptvf.h" #include "cptvf_algs.h" #include "request_manager.h" /** * get_free_pending_entry - get free entry from pending queue * @q: pending queue * @qlen: queue length */ static struct pending_entry *get_free_pending_entry(struct pending_queue *q, int qlen) { struct pending_entry *ent = NULL; ent = &q->head[q->rear]; if (unlikely(ent->busy)) { ent = NULL; goto no_free_entry; } q->rear++; if (unlikely(q->rear == qlen)) q->rear = 0; no_free_entry: return ent; } static inline void pending_queue_inc_front(struct pending_qinfo *pqinfo, int qno) { struct pending_queue *queue = &pqinfo->queue[qno]; queue->front++; if (unlikely(queue->front == pqinfo->qlen)) queue->front = 0; } static int setup_sgio_components(struct cpt_vf *cptvf, struct buf_ptr *list, int buf_count, u8 *buffer) { int ret = 0, i, j; int components; struct sglist_component *sg_ptr = NULL; struct pci_dev *pdev = cptvf->pdev; if (unlikely(!list)) { dev_err(&pdev->dev, "Input List pointer is NULL\n"); return -EFAULT; } for (i = 0; i < buf_count; i++) { if (likely(list[i].vptr)) { list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr, list[i].size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) { dev_err(&pdev->dev, "DMA map kernel buffer failed for component: %d\n", i); ret = -EIO; goto sg_cleanup; } } } components = buf_count / 4; sg_ptr = (struct sglist_component *)buffer; for (i = 0; i < components; i++) { sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr); sg_ptr++; } components = buf_count % 4; switch (components) { case 3: sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); fallthrough; case 2: sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); fallthrough; case 1: sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); break; default: break; } return ret; sg_cleanup: for (j = 0; j < i; j++) { if (list[j].dma_addr) { dma_unmap_single(&pdev->dev, list[i].dma_addr, list[i].size, DMA_BIDIRECTIONAL); } list[j].dma_addr = 0; } return ret; } static inline int setup_sgio_list(struct cpt_vf *cptvf, struct cpt_info_buffer *info, struct cpt_request_info *req) { u16 g_sz_bytes = 0, s_sz_bytes = 0; int ret = 0; struct pci_dev *pdev = cptvf->pdev; if (req->incnt > MAX_SG_IN_CNT || req->outcnt > MAX_SG_OUT_CNT) { dev_err(&pdev->dev, "Request SG components are higher than supported\n"); ret = -EINVAL; goto scatter_gather_clean; } /* Setup gather (input) components */ g_sz_bytes = ((req->incnt + 3) / 4) * sizeof(struct sglist_component); info->gather_components = kzalloc(g_sz_bytes, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC); if (!info->gather_components) { ret = -ENOMEM; goto scatter_gather_clean; } ret = setup_sgio_components(cptvf, req->in, req->incnt, info->gather_components); if (ret) { dev_err(&pdev->dev, "Failed to setup gather list\n"); ret = -EFAULT; goto scatter_gather_clean; } /* Setup scatter (output) components */ s_sz_bytes = ((req->outcnt + 3) / 4) * sizeof(struct sglist_component); info->scatter_components = kzalloc(s_sz_bytes, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC); if (!info->scatter_components) { ret = -ENOMEM; goto scatter_gather_clean; } ret = setup_sgio_components(cptvf, req->out, req->outcnt, info->scatter_components); if (ret) { dev_err(&pdev->dev, "Failed to setup gather list\n"); ret = -EFAULT; goto scatter_gather_clean; } /* Create and initialize DPTR */ info->dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE; info->in_buffer = kzalloc(info->dlen, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC); if (!info->in_buffer) { ret = -ENOMEM; goto scatter_gather_clean; } ((__be16 *)info->in_buffer)[0] = cpu_to_be16(req->outcnt); ((__be16 *)info->in_buffer)[1] = cpu_to_be16(req->incnt); ((__be16 *)info->in_buffer)[2] = 0; ((__be16 *)info->in_buffer)[3] = 0; memcpy(&info->in_buffer[8], info->gather_components, g_sz_bytes); memcpy(&info->in_buffer[8 + g_sz_bytes], info->scatter_components, s_sz_bytes); info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer, info->dlen, DMA_BIDIRECTIONAL); if (dma_mapping_error(&pdev->dev, info->dptr_baddr)) { dev_err(&pdev->dev, "Mapping DPTR Failed %d\n", info->dlen); ret = -EIO; goto scatter_gather_clean; } /* Create and initialize RPTR */ info->out_buffer = kzalloc(COMPLETION_CODE_SIZE, req->may_sleep ? GFP_KERNEL : GFP_ATOMIC); if (!info->out_buffer) { ret = -ENOMEM; goto scatter_gather_clean; } *((u64 *)info->out_buffer) = ~((u64)COMPLETION_CODE_INIT); info->alternate_caddr = (u64 *)info->out_buffer; info->rptr_baddr = dma_map_single(&pdev->dev, (void *)info->out_buffer, COMPLETION_CODE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(&pdev->dev, info->rptr_baddr)) { dev_err(&pdev->dev, "Mapping RPTR Failed %d\n", COMPLETION_CODE_SIZE); ret = -EIO; goto scatter_gather_clean; } return 0; scatter_gather_clean: return ret; } static int send_cpt_command(struct cpt_vf *cptvf, union cpt_inst_s *cmd, u32 qno) { struct pci_dev *pdev = cptvf->pdev; struct command_qinfo *qinfo = NULL; struct command_queue *queue; struct command_chunk *chunk; u8 *ent; int ret = 0; if (unlikely(qno >= cptvf->nr_queues)) { dev_err(&pdev->dev, "Invalid queue (qno: %d, nr_queues: %d)\n", qno, cptvf->nr_queues); return -EINVAL; } qinfo = &cptvf->cqinfo; queue = &qinfo->queue[qno]; /* lock commad queue */ spin_lock(&queue->lock); ent = &queue->qhead->head[queue->idx * qinfo->cmd_size]; memcpy(ent, (void *)cmd, qinfo->cmd_size); if (++queue->idx >= queue->qhead->size / 64) { hlist_for_each_entry(chunk, &queue->chead, nextchunk) { if (chunk == queue->qhead) { continue; } else { queue->qhead = chunk; break; } } queue->idx = 0; } /* make sure all memory stores are done before ringing doorbell */ smp_wmb(); cptvf_write_vq_doorbell(cptvf, 1); /* unlock command queue */ spin_unlock(&queue->lock); return ret; } static void do_request_cleanup(struct cpt_vf *cptvf, struct cpt_info_buffer *info) { int i; struct pci_dev *pdev = cptvf->pdev; struct cpt_request_info *req; if (info->dptr_baddr) dma_unmap_single(&pdev->dev, info->dptr_baddr, info->dlen, DMA_BIDIRECTIONAL); if (info->rptr_baddr) dma_unmap_single(&pdev->dev, info->rptr_baddr, COMPLETION_CODE_SIZE, DMA_BIDIRECTIONAL); if (info->comp_baddr) dma_unmap_single(&pdev->dev, info->comp_baddr, sizeof(union cpt_res_s), DMA_BIDIRECTIONAL); if (info->req) { req = info->req; for (i = 0; i < req->outcnt; i++) { if (req->out[i].dma_addr) dma_unmap_single(&pdev->dev, req->out[i].dma_addr, req->out[i].size, DMA_BIDIRECTIONAL); } for (i = 0; i < req->incnt; i++) { if (req->in[i].dma_addr) dma_unmap_single(&pdev->dev, req->in[i].dma_addr, req->in[i].size, DMA_BIDIRECTIONAL); } } kfree_sensitive(info->scatter_components); kfree_sensitive(info->gather_components); kfree_sensitive(info->out_buffer); kfree_sensitive(info->in_buffer); kfree_sensitive((void *)info->completion_addr); kfree_sensitive(info); } static void do_post_process(struct cpt_vf *cptvf, struct cpt_info_buffer *info) { struct pci_dev *pdev = cptvf->pdev; if (!info) { dev_err(&pdev->dev, "incorrect cpt_info_buffer for post processing\n"); return; } do_request_cleanup(cptvf, info); } static inline void process_pending_queue(struct cpt_vf *cptvf, struct pending_qinfo *pqinfo, int qno) { struct pci_dev *pdev = cptvf->pdev; struct pending_queue *pqueue = &pqinfo->queue[qno]; struct pending_entry *pentry = NULL; struct cpt_info_buffer *info = NULL; union cpt_res_s *status = NULL; unsigned char ccode; while (1) { spin_lock_bh(&pqueue->lock); pentry = &pqueue->head[pqueue->front]; if (unlikely(!pentry->busy)) { spin_unlock_bh(&pqueue->lock); break; } info = (struct cpt_info_buffer *)pentry->post_arg; if (unlikely(!info)) { dev_err(&pdev->dev, "Pending Entry post arg NULL\n"); pending_queue_inc_front(pqinfo, qno); spin_unlock_bh(&pqueue->lock); continue; } status = (union cpt_res_s *)pentry->completion_addr; ccode = status->s.compcode; if ((status->s.compcode == CPT_COMP_E_FAULT) || (status->s.compcode == CPT_COMP_E_SWERR)) { dev_err(&pdev->dev, "Request failed with %s\n", (status->s.compcode == CPT_COMP_E_FAULT) ? "DMA Fault" : "Software error"); pentry->completion_addr = NULL; pentry->busy = false; atomic64_dec((&pqueue->pending_count)); pentry->post_arg = NULL; pending_queue_inc_front(pqinfo, qno); do_request_cleanup(cptvf, info); spin_unlock_bh(&pqueue->lock); break; } else if (status->s.compcode == COMPLETION_CODE_INIT) { /* check for timeout */ if (time_after_eq(jiffies, (info->time_in + (CPT_COMMAND_TIMEOUT * HZ)))) { dev_err(&pdev->dev, "Request timed out"); pentry->completion_addr = NULL; pentry->busy = false; atomic64_dec((&pqueue->pending_count)); pentry->post_arg = NULL; pending_queue_inc_front(pqinfo, qno); do_request_cleanup(cptvf, info); spin_unlock_bh(&pqueue->lock); break; } else if ((*info->alternate_caddr == (~COMPLETION_CODE_INIT)) && (info->extra_time < TIME_IN_RESET_COUNT)) { info->time_in = jiffies; info->extra_time++; spin_unlock_bh(&pqueue->lock); break; } } pentry->completion_addr = NULL; pentry->busy = false; pentry->post_arg = NULL; atomic64_dec((&pqueue->pending_count)); pending_queue_inc_front(pqinfo, qno); spin_unlock_bh(&pqueue->lock); do_post_process(info->cptvf, info); /* * Calling callback after we find * that the request has been serviced */ pentry->callback(ccode, pentry->callback_arg); } } int process_request(struct cpt_vf *cptvf, struct cpt_request_info *req) { int ret = 0, clear = 0, queue = 0; struct cpt_info_buffer *info = NULL; struct cptvf_request *cpt_req = NULL; union ctrl_info *ctrl = NULL; union cpt_res_s *result = NULL; struct pending_entry *pentry = NULL; struct pending_queue *pqueue = NULL; struct pci_dev *pdev = cptvf->pdev; u8 group = 0; struct cpt_vq_command vq_cmd; union cpt_inst_s cptinst; info = kzalloc(sizeof(*info), req->may_sleep ? GFP_KERNEL : GFP_ATOMIC); if (unlikely(!info)) { dev_err(&pdev->dev, "Unable to allocate memory for info_buffer\n"); return -ENOMEM; } cpt_req = (struct cptvf_request *)&req->req; ctrl = (union ctrl_info *)&req->ctrl; info->cptvf = cptvf; group = ctrl->s.grp; ret = setup_sgio_list(cptvf, info, req); if (ret) { dev_err(&pdev->dev, "Setting up SG list failed"); goto request_cleanup; } cpt_req->dlen = info->dlen; /* * Get buffer for union cpt_res_s response * structure and its physical address */ info->completion_addr = kzalloc(sizeof(union cpt_res_s), req->may_sleep ? GFP_KERNEL : GFP_ATOMIC); if (unlikely(!info->completion_addr)) { dev_err(&pdev->dev, "Unable to allocate memory for completion_addr\n"); ret = -ENOMEM; goto request_cleanup; } result = (union cpt_res_s *)info->completion_addr; result->s.compcode = COMPLETION_CODE_INIT; info->comp_baddr = dma_map_single(&pdev->dev, (void *)info->completion_addr, sizeof(union cpt_res_s), DMA_BIDIRECTIONAL); if (dma_mapping_error(&pdev->dev, info->comp_baddr)) { dev_err(&pdev->dev, "mapping compptr Failed %lu\n", sizeof(union cpt_res_s)); ret = -EFAULT; goto request_cleanup; } /* Fill the VQ command */ vq_cmd.cmd.u64 = 0; vq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags); vq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1); vq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2); vq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen); vq_cmd.dptr = info->dptr_baddr; vq_cmd.rptr = info->rptr_baddr; vq_cmd.cptr.u64 = 0; vq_cmd.cptr.s.grp = group; /* Get Pending Entry to submit command */ /* Always queue 0, because 1 queue per VF */ queue = 0; pqueue = &cptvf->pqinfo.queue[queue]; if (atomic64_read(&pqueue->pending_count) > PENDING_THOLD) { dev_err(&pdev->dev, "pending threshold reached\n"); process_pending_queue(cptvf, &cptvf->pqinfo, queue); } get_pending_entry: spin_lock_bh(&pqueue->lock); pentry = get_free_pending_entry(pqueue, cptvf->pqinfo.qlen); if (unlikely(!pentry)) { spin_unlock_bh(&pqueue->lock); if (clear == 0) { process_pending_queue(cptvf, &cptvf->pqinfo, queue); clear = 1; goto get_pending_entry; } dev_err(&pdev->dev, "Get free entry failed\n"); dev_err(&pdev->dev, "queue: %d, rear: %d, front: %d\n", queue, pqueue->rear, pqueue->front); ret = -EFAULT; goto request_cleanup; } pentry->completion_addr = info->completion_addr; pentry->post_arg = (void *)info; pentry->callback = req->callback; pentry->callback_arg = req->callback_arg; info->pentry = pentry; pentry->busy = true; atomic64_inc(&pqueue->pending_count); /* Send CPT command */ info->pentry = pentry; info->time_in = jiffies; info->req = req; /* Create the CPT_INST_S type command for HW intrepretation */ cptinst.s.doneint = true; cptinst.s.res_addr = (u64)info->comp_baddr; cptinst.s.tag = 0; cptinst.s.grp = 0; cptinst.s.wq_ptr = 0; cptinst.s.ei0 = vq_cmd.cmd.u64; cptinst.s.ei1 = vq_cmd.dptr; cptinst.s.ei2 = vq_cmd.rptr; cptinst.s.ei3 = vq_cmd.cptr.u64; ret = send_cpt_command(cptvf, &cptinst, queue); spin_unlock_bh(&pqueue->lock); if (unlikely(ret)) { dev_err(&pdev->dev, "Send command failed for AE\n"); ret = -EFAULT; goto request_cleanup; } return 0; request_cleanup: dev_dbg(&pdev->dev, "Failed to submit CPT command\n"); do_request_cleanup(cptvf, info); return ret; } void vq_post_process(struct cpt_vf *cptvf, u32 qno) { struct pci_dev *pdev = cptvf->pdev; if (unlikely(qno > cptvf->nr_queues)) { dev_err(&pdev->dev, "Request for post processing on invalid pending queue: %u\n", qno); return; } process_pending_queue(cptvf, &cptvf->pqinfo, qno); } int cptvf_do_request(void *vfdev, struct cpt_request_info *req) { struct cpt_vf *cptvf = (struct cpt_vf *)vfdev; struct pci_dev *pdev = cptvf->pdev; if (!cpt_device_ready(cptvf)) { dev_err(&pdev->dev, "CPT Device is not ready"); return -ENODEV; } if ((cptvf->vftype == SE_TYPES) && (!req->ctrl.s.se_req)) { dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request", cptvf->vfid); return -EINVAL; } else if ((cptvf->vftype == AE_TYPES) && (req->ctrl.s.se_req)) { dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request", cptvf->vfid); return -EINVAL; } return process_request(cptvf, req); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1