Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tom Lendacky | 995 | 41.17% | 6 | 20.00% |
Gary R Hook | 962 | 39.80% | 15 | 50.00% |
Brijesh Singh | 437 | 18.08% | 3 | 10.00% |
Gilad Ben-Yossef | 15 | 0.62% | 1 | 3.33% |
Tian Tao | 4 | 0.17% | 1 | 3.33% |
Lee Jones | 1 | 0.04% | 1 | 3.33% |
Thomas Gleixner | 1 | 0.04% | 1 | 3.33% |
Wei Yongjun | 1 | 0.04% | 1 | 3.33% |
Mike Galbraith | 1 | 0.04% | 1 | 3.33% |
Total | 2417 | 30 |
// SPDX-License-Identifier: GPL-2.0-only /* * AMD Cryptographic Coprocessor (CCP) driver * * Copyright (C) 2013,2019 Advanced Micro Devices, Inc. * * Author: Tom Lendacky <thomas.lendacky@amd.com> * Author: Gary R Hook <gary.hook@amd.com> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/spinlock_types.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/hw_random.h> #include <linux/cpu.h> #include <linux/atomic.h> #ifdef CONFIG_X86 #include <asm/cpu_device_id.h> #endif #include <linux/ccp.h> #include "ccp-dev.h" #define MAX_CCPS 32 /* Limit CCP use to a specifed number of queues per device */ static unsigned int nqueues; module_param(nqueues, uint, 0444); MODULE_PARM_DESC(nqueues, "Number of queues per CCP (minimum 1; default: all available)"); /* Limit the maximum number of configured CCPs */ static atomic_t dev_count = ATOMIC_INIT(0); static unsigned int max_devs = MAX_CCPS; module_param(max_devs, uint, 0444); MODULE_PARM_DESC(max_devs, "Maximum number of CCPs to enable (default: all; 0 disables all CCPs)"); struct ccp_tasklet_data { struct completion completion; struct ccp_cmd *cmd; }; /* Human-readable error strings */ #define CCP_MAX_ERROR_CODE 64 static char *ccp_error_codes[] = { "", "ILLEGAL_ENGINE", "ILLEGAL_KEY_ID", "ILLEGAL_FUNCTION_TYPE", "ILLEGAL_FUNCTION_MODE", "ILLEGAL_FUNCTION_ENCRYPT", "ILLEGAL_FUNCTION_SIZE", "Zlib_MISSING_INIT_EOM", "ILLEGAL_FUNCTION_RSVD", "ILLEGAL_BUFFER_LENGTH", "VLSB_FAULT", "ILLEGAL_MEM_ADDR", "ILLEGAL_MEM_SEL", "ILLEGAL_CONTEXT_ID", "ILLEGAL_KEY_ADDR", "0xF Reserved", "Zlib_ILLEGAL_MULTI_QUEUE", "Zlib_ILLEGAL_JOBID_CHANGE", "CMD_TIMEOUT", "IDMA0_AXI_SLVERR", "IDMA0_AXI_DECERR", "0x15 Reserved", "IDMA1_AXI_SLAVE_FAULT", "IDMA1_AIXI_DECERR", "0x18 Reserved", "ZLIBVHB_AXI_SLVERR", "ZLIBVHB_AXI_DECERR", "0x1B Reserved", "ZLIB_UNEXPECTED_EOM", "ZLIB_EXTRA_DATA", "ZLIB_BTYPE", "ZLIB_UNDEFINED_SYMBOL", "ZLIB_UNDEFINED_DISTANCE_S", "ZLIB_CODE_LENGTH_SYMBOL", "ZLIB _VHB_ILLEGAL_FETCH", "ZLIB_UNCOMPRESSED_LEN", "ZLIB_LIMIT_REACHED", "ZLIB_CHECKSUM_MISMATCH0", "ODMA0_AXI_SLVERR", "ODMA0_AXI_DECERR", "0x28 Reserved", "ODMA1_AXI_SLVERR", "ODMA1_AXI_DECERR", }; void ccp_log_error(struct ccp_device *d, unsigned int e) { if (WARN_ON(e >= CCP_MAX_ERROR_CODE)) return; if (e < ARRAY_SIZE(ccp_error_codes)) dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]); else dev_err(d->dev, "CCP error %d: Unknown Error\n", e); } /* List of CCPs, CCP count, read-write access lock, and access functions * * Lock structure: get ccp_unit_lock for reading whenever we need to * examine the CCP list. While holding it for reading we can acquire * the RR lock to update the round-robin next-CCP pointer. The unit lock * must be acquired before the RR lock. * * If the unit-lock is acquired for writing, we have total control over * the list, so there's no value in getting the RR lock. */ static DEFINE_RWLOCK(ccp_unit_lock); static LIST_HEAD(ccp_units); /* Round-robin counter */ static DEFINE_SPINLOCK(ccp_rr_lock); static struct ccp_device *ccp_rr; /** * ccp_add_device - add a CCP device to the list * * @ccp: ccp_device struct pointer * * Put this CCP on the unit list, which makes it available * for use. * * Returns zero if a CCP device is present, -ENODEV otherwise. */ void ccp_add_device(struct ccp_device *ccp) { unsigned long flags; write_lock_irqsave(&ccp_unit_lock, flags); list_add_tail(&ccp->entry, &ccp_units); if (!ccp_rr) /* We already have the list lock (we're first) so this * pointer can't change on us. Set its initial value. */ ccp_rr = ccp; write_unlock_irqrestore(&ccp_unit_lock, flags); } /** * ccp_del_device - remove a CCP device from the list * * @ccp: ccp_device struct pointer * * Remove this unit from the list of devices. If the next device * up for use is this one, adjust the pointer. If this is the last * device, NULL the pointer. */ void ccp_del_device(struct ccp_device *ccp) { unsigned long flags; write_lock_irqsave(&ccp_unit_lock, flags); if (ccp_rr == ccp) { /* ccp_unit_lock is read/write; any read access * will be suspended while we make changes to the * list and RR pointer. */ if (list_is_last(&ccp_rr->entry, &ccp_units)) ccp_rr = list_first_entry(&ccp_units, struct ccp_device, entry); else ccp_rr = list_next_entry(ccp_rr, entry); } list_del(&ccp->entry); if (list_empty(&ccp_units)) ccp_rr = NULL; write_unlock_irqrestore(&ccp_unit_lock, flags); } int ccp_register_rng(struct ccp_device *ccp) { int ret = 0; dev_dbg(ccp->dev, "Registering RNG...\n"); /* Register an RNG */ ccp->hwrng.name = ccp->rngname; ccp->hwrng.read = ccp_trng_read; ret = hwrng_register(&ccp->hwrng); if (ret) dev_err(ccp->dev, "error registering hwrng (%d)\n", ret); return ret; } void ccp_unregister_rng(struct ccp_device *ccp) { if (ccp->hwrng.name) hwrng_unregister(&ccp->hwrng); } static struct ccp_device *ccp_get_device(void) { unsigned long flags; struct ccp_device *dp = NULL; /* We round-robin through the unit list. * The (ccp_rr) pointer refers to the next unit to use. */ read_lock_irqsave(&ccp_unit_lock, flags); if (!list_empty(&ccp_units)) { spin_lock(&ccp_rr_lock); dp = ccp_rr; if (list_is_last(&ccp_rr->entry, &ccp_units)) ccp_rr = list_first_entry(&ccp_units, struct ccp_device, entry); else ccp_rr = list_next_entry(ccp_rr, entry); spin_unlock(&ccp_rr_lock); } read_unlock_irqrestore(&ccp_unit_lock, flags); return dp; } /** * ccp_present - check if a CCP device is present * * Returns zero if a CCP device is present, -ENODEV otherwise. */ int ccp_present(void) { unsigned long flags; int ret; read_lock_irqsave(&ccp_unit_lock, flags); ret = list_empty(&ccp_units); read_unlock_irqrestore(&ccp_unit_lock, flags); return ret ? -ENODEV : 0; } EXPORT_SYMBOL_GPL(ccp_present); /** * ccp_version - get the version of the CCP device * * Returns the version from the first unit on the list; * otherwise a zero if no CCP device is present */ unsigned int ccp_version(void) { struct ccp_device *dp; unsigned long flags; int ret = 0; read_lock_irqsave(&ccp_unit_lock, flags); if (!list_empty(&ccp_units)) { dp = list_first_entry(&ccp_units, struct ccp_device, entry); ret = dp->vdata->version; } read_unlock_irqrestore(&ccp_unit_lock, flags); return ret; } EXPORT_SYMBOL_GPL(ccp_version); /** * ccp_enqueue_cmd - queue an operation for processing by the CCP * * @cmd: ccp_cmd struct to be processed * * Queue a cmd to be processed by the CCP. If queueing the cmd * would exceed the defined length of the cmd queue the cmd will * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will * result in a return code of -EBUSY. * * The callback routine specified in the ccp_cmd struct will be * called to notify the caller of completion (if the cmd was not * backlogged) or advancement out of the backlog. If the cmd has * advanced out of the backlog the "err" value of the callback * will be -EINPROGRESS. Any other "err" value during callback is * the result of the operation. * * The cmd has been successfully queued if: * the return code is -EINPROGRESS or * the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set */ int ccp_enqueue_cmd(struct ccp_cmd *cmd) { struct ccp_device *ccp; unsigned long flags; unsigned int i; int ret; /* Some commands might need to be sent to a specific device */ ccp = cmd->ccp ? cmd->ccp : ccp_get_device(); if (!ccp) return -ENODEV; /* Caller must supply a callback routine */ if (!cmd->callback) return -EINVAL; cmd->ccp = ccp; spin_lock_irqsave(&ccp->cmd_lock, flags); i = ccp->cmd_q_count; if (ccp->cmd_count >= MAX_CMD_QLEN) { if (cmd->flags & CCP_CMD_MAY_BACKLOG) { ret = -EBUSY; list_add_tail(&cmd->entry, &ccp->backlog); } else { ret = -ENOSPC; } } else { ret = -EINPROGRESS; ccp->cmd_count++; list_add_tail(&cmd->entry, &ccp->cmd); /* Find an idle queue */ if (!ccp->suspending) { for (i = 0; i < ccp->cmd_q_count; i++) { if (ccp->cmd_q[i].active) continue; break; } } } spin_unlock_irqrestore(&ccp->cmd_lock, flags); /* If we found an idle queue, wake it up */ if (i < ccp->cmd_q_count) wake_up_process(ccp->cmd_q[i].kthread); return ret; } EXPORT_SYMBOL_GPL(ccp_enqueue_cmd); static void ccp_do_cmd_backlog(struct work_struct *work) { struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work); struct ccp_device *ccp = cmd->ccp; unsigned long flags; unsigned int i; cmd->callback(cmd->data, -EINPROGRESS); spin_lock_irqsave(&ccp->cmd_lock, flags); ccp->cmd_count++; list_add_tail(&cmd->entry, &ccp->cmd); /* Find an idle queue */ for (i = 0; i < ccp->cmd_q_count; i++) { if (ccp->cmd_q[i].active) continue; break; } spin_unlock_irqrestore(&ccp->cmd_lock, flags); /* If we found an idle queue, wake it up */ if (i < ccp->cmd_q_count) wake_up_process(ccp->cmd_q[i].kthread); } static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q) { struct ccp_device *ccp = cmd_q->ccp; struct ccp_cmd *cmd = NULL; struct ccp_cmd *backlog = NULL; unsigned long flags; spin_lock_irqsave(&ccp->cmd_lock, flags); cmd_q->active = 0; if (ccp->suspending) { cmd_q->suspended = 1; spin_unlock_irqrestore(&ccp->cmd_lock, flags); wake_up_interruptible(&ccp->suspend_queue); return NULL; } if (ccp->cmd_count) { cmd_q->active = 1; cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry); list_del(&cmd->entry); ccp->cmd_count--; } if (!list_empty(&ccp->backlog)) { backlog = list_first_entry(&ccp->backlog, struct ccp_cmd, entry); list_del(&backlog->entry); } spin_unlock_irqrestore(&ccp->cmd_lock, flags); if (backlog) { INIT_WORK(&backlog->work, ccp_do_cmd_backlog); schedule_work(&backlog->work); } return cmd; } static void ccp_do_cmd_complete(unsigned long data) { struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data; struct ccp_cmd *cmd = tdata->cmd; cmd->callback(cmd->data, cmd->ret); complete(&tdata->completion); } /** * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue * * @data: thread-specific data */ int ccp_cmd_queue_thread(void *data) { struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data; struct ccp_cmd *cmd; struct ccp_tasklet_data tdata; struct tasklet_struct tasklet; tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata); set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { schedule(); set_current_state(TASK_INTERRUPTIBLE); cmd = ccp_dequeue_cmd(cmd_q); if (!cmd) continue; __set_current_state(TASK_RUNNING); /* Execute the command */ cmd->ret = ccp_run_cmd(cmd_q, cmd); /* Schedule the completion callback */ tdata.cmd = cmd; init_completion(&tdata.completion); tasklet_schedule(&tasklet); wait_for_completion(&tdata.completion); } __set_current_state(TASK_RUNNING); return 0; } /** * ccp_alloc_struct - allocate and initialize the ccp_device struct * * @sp: sp_device struct of the CCP */ struct ccp_device *ccp_alloc_struct(struct sp_device *sp) { struct device *dev = sp->dev; struct ccp_device *ccp; ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL); if (!ccp) return NULL; ccp->dev = dev; ccp->sp = sp; ccp->axcache = sp->axcache; INIT_LIST_HEAD(&ccp->cmd); INIT_LIST_HEAD(&ccp->backlog); spin_lock_init(&ccp->cmd_lock); mutex_init(&ccp->req_mutex); mutex_init(&ccp->sb_mutex); ccp->sb_count = KSB_COUNT; ccp->sb_start = 0; /* Initialize the wait queues */ init_waitqueue_head(&ccp->sb_queue); init_waitqueue_head(&ccp->suspend_queue); snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord); snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord); return ccp; } int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait) { struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng); u32 trng_value; int len = min_t(int, sizeof(trng_value), max); /* Locking is provided by the caller so we can update device * hwrng-related fields safely */ trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG); if (!trng_value) { /* Zero is returned if not data is available or if a * bad-entropy error is present. Assume an error if * we exceed TRNG_RETRIES reads of zero. */ if (ccp->hwrng_retries++ > TRNG_RETRIES) return -EIO; return 0; } /* Reset the counter and save the rng value */ ccp->hwrng_retries = 0; memcpy(data, &trng_value, len); return len; } bool ccp_queues_suspended(struct ccp_device *ccp) { unsigned int suspended = 0; unsigned long flags; unsigned int i; spin_lock_irqsave(&ccp->cmd_lock, flags); for (i = 0; i < ccp->cmd_q_count; i++) if (ccp->cmd_q[i].suspended) suspended++; spin_unlock_irqrestore(&ccp->cmd_lock, flags); return ccp->cmd_q_count == suspended; } void ccp_dev_suspend(struct sp_device *sp) { struct ccp_device *ccp = sp->ccp_data; unsigned long flags; unsigned int i; /* If there's no device there's nothing to do */ if (!ccp) return; spin_lock_irqsave(&ccp->cmd_lock, flags); ccp->suspending = 1; /* Wake all the queue kthreads to prepare for suspend */ for (i = 0; i < ccp->cmd_q_count; i++) wake_up_process(ccp->cmd_q[i].kthread); spin_unlock_irqrestore(&ccp->cmd_lock, flags); /* Wait for all queue kthreads to say they're done */ while (!ccp_queues_suspended(ccp)) wait_event_interruptible(ccp->suspend_queue, ccp_queues_suspended(ccp)); } void ccp_dev_resume(struct sp_device *sp) { struct ccp_device *ccp = sp->ccp_data; unsigned long flags; unsigned int i; /* If there's no device there's nothing to do */ if (!ccp) return; spin_lock_irqsave(&ccp->cmd_lock, flags); ccp->suspending = 0; /* Wake up all the kthreads */ for (i = 0; i < ccp->cmd_q_count; i++) { ccp->cmd_q[i].suspended = 0; wake_up_process(ccp->cmd_q[i].kthread); } spin_unlock_irqrestore(&ccp->cmd_lock, flags); } int ccp_dev_init(struct sp_device *sp) { struct device *dev = sp->dev; struct ccp_device *ccp; int ret; /* * Check how many we have so far, and stop after reaching * that number */ if (atomic_inc_return(&dev_count) > max_devs) return 0; /* don't fail the load */ ret = -ENOMEM; ccp = ccp_alloc_struct(sp); if (!ccp) goto e_err; sp->ccp_data = ccp; if (!nqueues || (nqueues > MAX_HW_QUEUES)) ccp->max_q_count = MAX_HW_QUEUES; else ccp->max_q_count = nqueues; ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata; if (!ccp->vdata || !ccp->vdata->version) { ret = -ENODEV; dev_err(dev, "missing driver data\n"); goto e_err; } ccp->use_tasklet = sp->use_tasklet; ccp->io_regs = sp->io_map + ccp->vdata->offset; if (ccp->vdata->setup) ccp->vdata->setup(ccp); ret = ccp->vdata->perform->init(ccp); if (ret) { /* A positive number means that the device cannot be initialized, * but no additional message is required. */ if (ret > 0) goto e_quiet; /* An unexpected problem occurred, and should be reported in the log */ goto e_err; } dev_notice(dev, "ccp enabled\n"); return 0; e_err: dev_notice(dev, "ccp initialization failed\n"); e_quiet: sp->ccp_data = NULL; return ret; } void ccp_dev_destroy(struct sp_device *sp) { struct ccp_device *ccp = sp->ccp_data; if (!ccp) return; ccp->vdata->perform->destroy(ccp); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1