Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 958 | 51.42% | 1 | 4.76% |
Romain Perier | 616 | 33.06% | 7 | 33.33% |
Herbert Xu | 235 | 12.61% | 2 | 9.52% |
Russell King | 43 | 2.31% | 5 | 23.81% |
Thomas Petazzoni | 5 | 0.27% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.11% | 1 | 4.76% |
SrujanaChalla | 1 | 0.05% | 1 | 4.76% |
Himanshu Jha | 1 | 0.05% | 1 | 4.76% |
Bhaskar Chowdhury | 1 | 0.05% | 1 | 4.76% |
Julia Lawall | 1 | 0.05% | 1 | 4.76% |
Total | 1863 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Provide TDMA helper functions used by cipher and hash algorithm * implementations. * * Author: Boris Brezillon <boris.brezillon@free-electrons.com> * Author: Arnaud Ebalard <arno@natisbad.org> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include "cesa.h" bool mv_cesa_req_dma_iter_next_transfer(struct mv_cesa_dma_iter *iter, struct mv_cesa_sg_dma_iter *sgiter, unsigned int len) { if (!sgiter->sg) return false; sgiter->op_offset += len; sgiter->offset += len; if (sgiter->offset == sg_dma_len(sgiter->sg)) { if (sg_is_last(sgiter->sg)) return false; sgiter->offset = 0; sgiter->sg = sg_next(sgiter->sg); } if (sgiter->op_offset == iter->op_len) return false; return true; } void mv_cesa_dma_step(struct mv_cesa_req *dreq) { struct mv_cesa_engine *engine = dreq->engine; writel_relaxed(0, engine->regs + CESA_SA_CFG); mv_cesa_set_int_mask(engine, CESA_SA_INT_ACC0_IDMA_DONE); writel_relaxed(CESA_TDMA_DST_BURST_128B | CESA_TDMA_SRC_BURST_128B | CESA_TDMA_NO_BYTE_SWAP | CESA_TDMA_EN, engine->regs + CESA_TDMA_CONTROL); writel_relaxed(CESA_SA_CFG_ACT_CH0_IDMA | CESA_SA_CFG_MULTI_PKT | CESA_SA_CFG_CH0_W_IDMA | CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG); writel_relaxed(dreq->chain.first->cur_dma, engine->regs + CESA_TDMA_NEXT_ADDR); WARN_ON(readl(engine->regs + CESA_SA_CMD) & CESA_SA_CMD_EN_CESA_SA_ACCL0); writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); } void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq) { struct mv_cesa_tdma_desc *tdma; for (tdma = dreq->chain.first; tdma;) { struct mv_cesa_tdma_desc *old_tdma = tdma; u32 type = tdma->flags & CESA_TDMA_TYPE_MSK; if (type == CESA_TDMA_OP) dma_pool_free(cesa_dev->dma->op_pool, tdma->op, le32_to_cpu(tdma->src)); tdma = tdma->next; dma_pool_free(cesa_dev->dma->tdma_desc_pool, old_tdma, old_tdma->cur_dma); } dreq->chain.first = NULL; dreq->chain.last = NULL; } void mv_cesa_dma_prepare(struct mv_cesa_req *dreq, struct mv_cesa_engine *engine) { struct mv_cesa_tdma_desc *tdma; for (tdma = dreq->chain.first; tdma; tdma = tdma->next) { if (tdma->flags & CESA_TDMA_DST_IN_SRAM) tdma->dst = cpu_to_le32(tdma->dst_dma + engine->sram_dma); if (tdma->flags & CESA_TDMA_SRC_IN_SRAM) tdma->src = cpu_to_le32(tdma->src_dma + engine->sram_dma); if ((tdma->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_OP) mv_cesa_adjust_op(engine, tdma->op); } } void mv_cesa_tdma_chain(struct mv_cesa_engine *engine, struct mv_cesa_req *dreq) { if (engine->chain.first == NULL && engine->chain.last == NULL) { engine->chain.first = dreq->chain.first; engine->chain.last = dreq->chain.last; } else { struct mv_cesa_tdma_desc *last; last = engine->chain.last; last->next = dreq->chain.first; engine->chain.last = dreq->chain.last; /* * Break the DMA chain if the CESA_TDMA_BREAK_CHAIN is set on * the last element of the current chain, or if the request * being queued needs the IV regs to be set before lauching * the request. */ if (!(last->flags & CESA_TDMA_BREAK_CHAIN) && !(dreq->chain.first->flags & CESA_TDMA_SET_STATE)) last->next_dma = cpu_to_le32(dreq->chain.first->cur_dma); } } int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status) { struct crypto_async_request *req = NULL; struct mv_cesa_tdma_desc *tdma = NULL, *next = NULL; dma_addr_t tdma_cur; int res = 0; tdma_cur = readl(engine->regs + CESA_TDMA_CUR); for (tdma = engine->chain.first; tdma; tdma = next) { spin_lock_bh(&engine->lock); next = tdma->next; spin_unlock_bh(&engine->lock); if (tdma->flags & CESA_TDMA_END_OF_REQ) { struct crypto_async_request *backlog = NULL; struct mv_cesa_ctx *ctx; u32 current_status; spin_lock_bh(&engine->lock); /* * if req is NULL, this means we're processing the * request in engine->req. */ if (!req) req = engine->req; else req = mv_cesa_dequeue_req_locked(engine, &backlog); /* Re-chaining to the next request */ engine->chain.first = tdma->next; tdma->next = NULL; /* If this is the last request, clear the chain */ if (engine->chain.first == NULL) engine->chain.last = NULL; spin_unlock_bh(&engine->lock); ctx = crypto_tfm_ctx(req->tfm); current_status = (tdma->cur_dma == tdma_cur) ? status : CESA_SA_INT_ACC0_IDMA_DONE; res = ctx->ops->process(req, current_status); ctx->ops->complete(req); if (res == 0) mv_cesa_engine_enqueue_complete_request(engine, req); if (backlog) backlog->complete(backlog, -EINPROGRESS); } if (res || tdma->cur_dma == tdma_cur) break; } /* * Save the last request in error to engine->req, so that the core * knows which request was faulty */ if (res) { spin_lock_bh(&engine->lock); engine->req = req; spin_unlock_bh(&engine->lock); } return res; } static struct mv_cesa_tdma_desc * mv_cesa_dma_add_desc(struct mv_cesa_tdma_chain *chain, gfp_t flags) { struct mv_cesa_tdma_desc *new_tdma = NULL; dma_addr_t dma_handle; new_tdma = dma_pool_zalloc(cesa_dev->dma->tdma_desc_pool, flags, &dma_handle); if (!new_tdma) return ERR_PTR(-ENOMEM); new_tdma->cur_dma = dma_handle; if (chain->last) { chain->last->next_dma = cpu_to_le32(dma_handle); chain->last->next = new_tdma; } else { chain->first = new_tdma; } chain->last = new_tdma; return new_tdma; } int mv_cesa_dma_add_result_op(struct mv_cesa_tdma_chain *chain, dma_addr_t src, u32 size, u32 flags, gfp_t gfp_flags) { struct mv_cesa_tdma_desc *tdma, *op_desc; tdma = mv_cesa_dma_add_desc(chain, gfp_flags); if (IS_ERR(tdma)) return PTR_ERR(tdma); /* We re-use an existing op_desc object to retrieve the context * and result instead of allocating a new one. * There is at least one object of this type in a CESA crypto * req, just pick the first one in the chain. */ for (op_desc = chain->first; op_desc; op_desc = op_desc->next) { u32 type = op_desc->flags & CESA_TDMA_TYPE_MSK; if (type == CESA_TDMA_OP) break; } if (!op_desc) return -EIO; tdma->byte_cnt = cpu_to_le32(size | BIT(31)); tdma->src_dma = src; tdma->dst_dma = op_desc->src_dma; tdma->op = op_desc->op; flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM); tdma->flags = flags | CESA_TDMA_RESULT; return 0; } struct mv_cesa_op_ctx *mv_cesa_dma_add_op(struct mv_cesa_tdma_chain *chain, const struct mv_cesa_op_ctx *op_templ, bool skip_ctx, gfp_t flags) { struct mv_cesa_tdma_desc *tdma; struct mv_cesa_op_ctx *op; dma_addr_t dma_handle; unsigned int size; tdma = mv_cesa_dma_add_desc(chain, flags); if (IS_ERR(tdma)) return ERR_CAST(tdma); op = dma_pool_alloc(cesa_dev->dma->op_pool, flags, &dma_handle); if (!op) return ERR_PTR(-ENOMEM); *op = *op_templ; size = skip_ctx ? sizeof(op->desc) : sizeof(*op); tdma = chain->last; tdma->op = op; tdma->byte_cnt = cpu_to_le32(size | BIT(31)); tdma->src = cpu_to_le32(dma_handle); tdma->dst_dma = CESA_SA_CFG_SRAM_OFFSET; tdma->flags = CESA_TDMA_DST_IN_SRAM | CESA_TDMA_OP; return op; } int mv_cesa_dma_add_data_transfer(struct mv_cesa_tdma_chain *chain, dma_addr_t dst, dma_addr_t src, u32 size, u32 flags, gfp_t gfp_flags) { struct mv_cesa_tdma_desc *tdma; tdma = mv_cesa_dma_add_desc(chain, gfp_flags); if (IS_ERR(tdma)) return PTR_ERR(tdma); tdma->byte_cnt = cpu_to_le32(size | BIT(31)); tdma->src_dma = src; tdma->dst_dma = dst; flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM); tdma->flags = flags | CESA_TDMA_DATA; return 0; } int mv_cesa_dma_add_dummy_launch(struct mv_cesa_tdma_chain *chain, gfp_t flags) { struct mv_cesa_tdma_desc *tdma; tdma = mv_cesa_dma_add_desc(chain, flags); return PTR_ERR_OR_ZERO(tdma); } int mv_cesa_dma_add_dummy_end(struct mv_cesa_tdma_chain *chain, gfp_t flags) { struct mv_cesa_tdma_desc *tdma; tdma = mv_cesa_dma_add_desc(chain, flags); if (IS_ERR(tdma)) return PTR_ERR(tdma); tdma->byte_cnt = cpu_to_le32(BIT(31)); return 0; } int mv_cesa_dma_add_op_transfers(struct mv_cesa_tdma_chain *chain, struct mv_cesa_dma_iter *dma_iter, struct mv_cesa_sg_dma_iter *sgiter, gfp_t gfp_flags) { u32 flags = sgiter->dir == DMA_TO_DEVICE ? CESA_TDMA_DST_IN_SRAM : CESA_TDMA_SRC_IN_SRAM; unsigned int len; do { dma_addr_t dst, src; int ret; len = mv_cesa_req_dma_iter_transfer_len(dma_iter, sgiter); if (sgiter->dir == DMA_TO_DEVICE) { dst = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset; src = sg_dma_address(sgiter->sg) + sgiter->offset; } else { dst = sg_dma_address(sgiter->sg) + sgiter->offset; src = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset; } ret = mv_cesa_dma_add_data_transfer(chain, dst, src, len, flags, gfp_flags); if (ret) return ret; } while (mv_cesa_req_dma_iter_next_transfer(dma_iter, sgiter, len)); return 0; } size_t mv_cesa_sg_copy(struct mv_cesa_engine *engine, struct scatterlist *sgl, unsigned int nents, unsigned int sram_off, size_t buflen, off_t skip, bool to_sram) { unsigned int sg_flags = SG_MITER_ATOMIC; struct sg_mapping_iter miter; unsigned int offset = 0; if (to_sram) sg_flags |= SG_MITER_FROM_SG; else sg_flags |= SG_MITER_TO_SG; sg_miter_start(&miter, sgl, nents, sg_flags); if (!sg_miter_skip(&miter, skip)) return 0; while ((offset < buflen) && sg_miter_next(&miter)) { unsigned int len; len = min(miter.length, buflen - offset); if (to_sram) { if (engine->pool) memcpy(engine->sram_pool + sram_off + offset, miter.addr, len); else memcpy_toio(engine->sram + sram_off + offset, miter.addr, len); } else { if (engine->pool) memcpy(miter.addr, engine->sram_pool + sram_off + offset, len); else memcpy_fromio(miter.addr, engine->sram + sram_off + offset, len); } offset += len; } sg_miter_stop(&miter); return offset; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1