Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
SrujanaChalla | 8515 | 99.00% | 1 | 12.50% |
Mikulas Patocka | 30 | 0.35% | 1 | 12.50% |
Herbert Xu | 30 | 0.35% | 1 | 12.50% |
Dan Carpenter | 10 | 0.12% | 1 | 12.50% |
Colin Ian King | 5 | 0.06% | 1 | 12.50% |
Jiapeng Chong | 4 | 0.05% | 1 | 12.50% |
Eric Biggers | 4 | 0.05% | 1 | 12.50% |
Christophe Jaillet | 3 | 0.03% | 1 | 12.50% |
Total | 8601 | 8 |
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <crypto/aes.h> #include <crypto/authenc.h> #include <crypto/cryptd.h> #include <crypto/des.h> #include <crypto/internal/aead.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/xts.h> #include <crypto/scatterwalk.h> #include <linux/rtnetlink.h> #include <linux/sort.h> #include <linux/module.h> #include "otx_cptvf.h" #include "otx_cptvf_algs.h" #include "otx_cptvf_reqmgr.h" #define CPT_MAX_VF_NUM 64 /* Size of salt in AES GCM mode */ #define AES_GCM_SALT_SIZE 4 /* Size of IV in AES GCM mode */ #define AES_GCM_IV_SIZE 8 /* Size of ICV (Integrity Check Value) in AES GCM mode */ #define AES_GCM_ICV_SIZE 16 /* Offset of IV in AES GCM mode */ #define AES_GCM_IV_OFFSET 8 #define CONTROL_WORD_LEN 8 #define KEY2_OFFSET 48 #define DMA_MODE_FLAG(dma_mode) \ (((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0) /* Truncated SHA digest size */ #define SHA1_TRUNC_DIGEST_SIZE 12 #define SHA256_TRUNC_DIGEST_SIZE 16 #define SHA384_TRUNC_DIGEST_SIZE 24 #define SHA512_TRUNC_DIGEST_SIZE 32 static DEFINE_MUTEX(mutex); static int is_crypto_registered; struct cpt_device_desc { enum otx_cptpf_type pf_type; struct pci_dev *dev; int num_queues; }; struct cpt_device_table { atomic_t count; struct cpt_device_desc desc[CPT_MAX_VF_NUM]; }; static struct cpt_device_table se_devices = { .count = ATOMIC_INIT(0) }; static struct cpt_device_table ae_devices = { .count = ATOMIC_INIT(0) }; static inline int get_se_device(struct pci_dev **pdev, int *cpu_num) { int count, ret = 0; count = atomic_read(&se_devices.count); if (count < 1) return -ENODEV; *cpu_num = get_cpu(); if (se_devices.desc[0].pf_type == OTX_CPT_SE) { /* * On OcteonTX platform there is one CPT instruction queue bound * to each VF. We get maximum performance if one CPT queue * is available for each cpu otherwise CPT queues need to be * shared between cpus. */ if (*cpu_num >= count) *cpu_num %= count; *pdev = se_devices.desc[*cpu_num].dev; } else { pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type); ret = -EINVAL; } put_cpu(); return ret; } static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req) { struct otx_cpt_req_ctx *rctx; struct aead_request *req; struct crypto_aead *tfm; req = container_of(cpt_req->areq, struct aead_request, base); tfm = crypto_aead_reqtfm(req); rctx = aead_request_ctx(req); if (memcmp(rctx->fctx.hmac.s.hmac_calc, rctx->fctx.hmac.s.hmac_recv, crypto_aead_authsize(tfm)) != 0) return -EBADMSG; return 0; } static void otx_cpt_aead_callback(int status, void *arg1, void *arg2) { struct otx_cpt_info_buffer *cpt_info = arg2; struct crypto_async_request *areq = arg1; struct otx_cpt_req_info *cpt_req; struct pci_dev *pdev; if (!cpt_info) goto complete; cpt_req = cpt_info->req; if (!status) { /* * When selected cipher is NULL we need to manually * verify whether calculated hmac value matches * received hmac value */ if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ && !cpt_req->is_enc) status = validate_hmac_cipher_null(cpt_req); } pdev = cpt_info->pdev; do_request_cleanup(pdev, cpt_info); complete: if (areq) areq->complete(areq, status); } static void output_iv_copyback(struct crypto_async_request *areq) { struct otx_cpt_req_info *req_info; struct skcipher_request *sreq; struct crypto_skcipher *stfm; struct otx_cpt_req_ctx *rctx; struct otx_cpt_enc_ctx *ctx; u32 start, ivsize; sreq = container_of(areq, struct skcipher_request, base); stfm = crypto_skcipher_reqtfm(sreq); ctx = crypto_skcipher_ctx(stfm); if (ctx->cipher_type == OTX_CPT_AES_CBC || ctx->cipher_type == OTX_CPT_DES3_CBC) { rctx = skcipher_request_ctx(sreq); req_info = &rctx->cpt_req; ivsize = crypto_skcipher_ivsize(stfm); start = sreq->cryptlen - ivsize; if (req_info->is_enc) { scatterwalk_map_and_copy(sreq->iv, sreq->dst, start, ivsize, 0); } else { if (sreq->src != sreq->dst) { scatterwalk_map_and_copy(sreq->iv, sreq->src, start, ivsize, 0); } else { memcpy(sreq->iv, req_info->iv_out, ivsize); kfree(req_info->iv_out); } } } } static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2) { struct otx_cpt_info_buffer *cpt_info = arg2; struct crypto_async_request *areq = arg1; struct pci_dev *pdev; if (areq) { if (!status) output_iv_copyback(areq); if (cpt_info) { pdev = cpt_info->pdev; do_request_cleanup(pdev, cpt_info); } areq->complete(areq, status); } } static inline void update_input_data(struct otx_cpt_req_info *req_info, struct scatterlist *inp_sg, u32 nbytes, u32 *argcnt) { req_info->req.dlen += nbytes; while (nbytes) { u32 len = min(nbytes, inp_sg->length); u8 *ptr = sg_virt(inp_sg); req_info->in[*argcnt].vptr = (void *)ptr; req_info->in[*argcnt].size = len; nbytes -= len; ++(*argcnt); inp_sg = sg_next(inp_sg); } } static inline void update_output_data(struct otx_cpt_req_info *req_info, struct scatterlist *outp_sg, u32 offset, u32 nbytes, u32 *argcnt) { req_info->rlen += nbytes; while (nbytes) { u32 len = min(nbytes, outp_sg->length - offset); u8 *ptr = sg_virt(outp_sg); req_info->out[*argcnt].vptr = (void *) (ptr + offset); req_info->out[*argcnt].size = len; nbytes -= len; ++(*argcnt); offset = 0; outp_sg = sg_next(outp_sg); } } static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc, u32 *argcnt) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm); struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm); struct otx_cpt_fc_ctx *fctx = &rctx->fctx; int ivsize = crypto_skcipher_ivsize(stfm); u32 start = req->cryptlen - ivsize; gfp_t flags; flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC | DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); if (enc) { req_info->req.opcode.s.minor = 2; } else { req_info->req.opcode.s.minor = 3; if ((ctx->cipher_type == OTX_CPT_AES_CBC || ctx->cipher_type == OTX_CPT_DES3_CBC) && req->src == req->dst) { req_info->iv_out = kmalloc(ivsize, flags); if (!req_info->iv_out) return -ENOMEM; scatterwalk_map_and_copy(req_info->iv_out, req->src, start, ivsize, 0); } } /* Encryption data length */ req_info->req.param1 = req->cryptlen; /* Authentication data length */ req_info->req.param2 = 0; fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR; if (ctx->cipher_type == OTX_CPT_AES_XTS) memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2); else memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len); memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm)); fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags); /* * Storing Packet Data Information in offset * Control Word First 8 bytes */ req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; req_info->in[*argcnt].size = CONTROL_WORD_LEN; req_info->req.dlen += CONTROL_WORD_LEN; ++(*argcnt); req_info->in[*argcnt].vptr = (u8 *)fctx; req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx); req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx); ++(*argcnt); return 0; } static inline u32 create_input_list(struct skcipher_request *req, u32 enc, u32 enc_iv_len) { struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0; int ret; ret = create_ctx_hdr(req, enc, &argcnt); if (ret) return ret; update_input_data(req_info, req->src, req->cryptlen, &argcnt); req_info->incnt = argcnt; return 0; } static inline void create_output_list(struct skcipher_request *req, u32 enc_iv_len) { struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0; /* * OUTPUT Buffer Processing * AES encryption/decryption output would be * received in the following format * * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----| * [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ] */ update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt); req_info->outcnt = argcnt; } static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 enc_iv_len = crypto_skcipher_ivsize(stfm); struct pci_dev *pdev; int status, cpu_num; /* Validate that request doesn't exceed maximum CPT supported size */ if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE) return -E2BIG; /* Clear control words */ rctx->ctrl_word.flags = 0; rctx->fctx.enc.enc_ctrl.flags = 0; status = create_input_list(req, enc, enc_iv_len); if (status) return status; create_output_list(req, enc_iv_len); status = get_se_device(&pdev, &cpu_num); if (status) return status; req_info->callback = (void *)otx_cpt_skcipher_callback; req_info->areq = &req->base; req_info->req_type = OTX_CPT_ENC_DEC_REQ; req_info->is_enc = enc; req_info->is_trunc_hmac = false; req_info->ctrl.s.grp = 0; /* * We perform an asynchronous send and once * the request is completed the driver would * intimate through registered call back functions */ status = otx_cpt_do_request(pdev, req_info, cpu_num); return status; } static int otx_cpt_skcipher_encrypt(struct skcipher_request *req) { return cpt_enc_dec(req, true); } static int otx_cpt_skcipher_decrypt(struct skcipher_request *req) { return cpt_enc_dec(req, false); } static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); const u8 *key2 = key + (keylen / 2); const u8 *key1 = key; int ret; ret = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen); if (ret) return ret; ctx->key_len = keylen; memcpy(ctx->enc_key, key1, keylen / 2); memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2); ctx->cipher_type = OTX_CPT_AES_XTS; switch (ctx->key_len) { case 2 * AES_KEYSIZE_128: ctx->key_type = OTX_CPT_AES_128_BIT; break; case 2 * AES_KEYSIZE_256: ctx->key_type = OTX_CPT_AES_256_BIT; break; default: return -EINVAL; } return 0; } static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen, u8 cipher_type) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); if (keylen != DES3_EDE_KEY_SIZE) return -EINVAL; ctx->key_len = keylen; ctx->cipher_type = cipher_type; memcpy(ctx->enc_key, key, keylen); return 0; } static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen, u8 cipher_type) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); switch (keylen) { case AES_KEYSIZE_128: ctx->key_type = OTX_CPT_AES_128_BIT; break; case AES_KEYSIZE_192: ctx->key_type = OTX_CPT_AES_192_BIT; break; case AES_KEYSIZE_256: ctx->key_type = OTX_CPT_AES_256_BIT; break; default: return -EINVAL; } ctx->key_len = keylen; ctx->cipher_type = cipher_type; memcpy(ctx->enc_key, key, keylen); return 0; } static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC); } static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB); } static int otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CFB); } static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC); } static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB); } static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); memset(ctx, 0, sizeof(*ctx)); /* * Additional memory for skcipher_request is * allocated since the cryptd daemon uses * this memory for request_ctx information */ crypto_skcipher_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx) + sizeof(struct skcipher_request)); return 0; } static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); ctx->cipher_type = cipher_type; ctx->mac_type = mac_type; /* * When selected cipher is NULL we use HMAC opcode instead of * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms * for calculating ipad and opad */ if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) { switch (ctx->mac_type) { case OTX_CPT_SHA1: ctx->hashalg = crypto_alloc_shash("sha1", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX_CPT_SHA256: ctx->hashalg = crypto_alloc_shash("sha256", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX_CPT_SHA384: ctx->hashalg = crypto_alloc_shash("sha384", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX_CPT_SHA512: ctx->hashalg = crypto_alloc_shash("sha512", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; } } crypto_aead_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx)); return 0; } static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1); } static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256); } static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384); } static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512); } static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1); } static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256); } static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384); } static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512); } static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL); } static void otx_cpt_aead_exit(struct crypto_aead *tfm) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); kfree(ctx->ipad); kfree(ctx->opad); if (ctx->hashalg) crypto_free_shash(ctx->hashalg); kfree(ctx->sdesc); } /* * This is the Integrity Check Value validation (aka the authentication tag * length) */ static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm, unsigned int authsize) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); switch (ctx->mac_type) { case OTX_CPT_SHA1: if (authsize != SHA1_DIGEST_SIZE && authsize != SHA1_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA1_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_SHA256: if (authsize != SHA256_DIGEST_SIZE && authsize != SHA256_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA256_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_SHA384: if (authsize != SHA384_DIGEST_SIZE && authsize != SHA384_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA384_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_SHA512: if (authsize != SHA512_DIGEST_SIZE && authsize != SHA512_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA512_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_MAC_NULL: if (ctx->cipher_type == OTX_CPT_AES_GCM) { if (authsize != AES_GCM_ICV_SIZE) return -EINVAL; } else return -EINVAL; break; default: return -EINVAL; } tfm->authsize = authsize; return 0; } static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg) { struct otx_cpt_sdesc *sdesc; int size; size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); sdesc = kmalloc(size, GFP_KERNEL); if (!sdesc) return NULL; sdesc->shash.tfm = alg; return sdesc; } static inline void swap_data32(void *buf, u32 len) { cpu_to_be32_array(buf, buf, len / 4); } static inline void swap_data64(void *buf, u32 len) { __be64 *dst = buf; u64 *src = buf; int i = 0; for (i = 0 ; i < len / 8; i++, src++, dst++) *dst = cpu_to_be64p(src); } static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad) { struct sha512_state *sha512; struct sha256_state *sha256; struct sha1_state *sha1; switch (mac_type) { case OTX_CPT_SHA1: sha1 = (struct sha1_state *) in_pad; swap_data32(sha1->state, SHA1_DIGEST_SIZE); memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE); break; case OTX_CPT_SHA256: sha256 = (struct sha256_state *) in_pad; swap_data32(sha256->state, SHA256_DIGEST_SIZE); memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE); break; case OTX_CPT_SHA384: case OTX_CPT_SHA512: sha512 = (struct sha512_state *) in_pad; swap_data64(sha512->state, SHA512_DIGEST_SIZE); memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE); break; default: return -EINVAL; } return 0; } static int aead_hmac_init(struct crypto_aead *cipher) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); int state_size = crypto_shash_statesize(ctx->hashalg); int ds = crypto_shash_digestsize(ctx->hashalg); int bs = crypto_shash_blocksize(ctx->hashalg); int authkeylen = ctx->auth_key_len; u8 *ipad = NULL, *opad = NULL; int ret = 0, icount = 0; ctx->sdesc = alloc_sdesc(ctx->hashalg); if (!ctx->sdesc) return -ENOMEM; ctx->ipad = kzalloc(bs, GFP_KERNEL); if (!ctx->ipad) { ret = -ENOMEM; goto calc_fail; } ctx->opad = kzalloc(bs, GFP_KERNEL); if (!ctx->opad) { ret = -ENOMEM; goto calc_fail; } ipad = kzalloc(state_size, GFP_KERNEL); if (!ipad) { ret = -ENOMEM; goto calc_fail; } opad = kzalloc(state_size, GFP_KERNEL); if (!opad) { ret = -ENOMEM; goto calc_fail; } if (authkeylen > bs) { ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key, authkeylen, ipad); if (ret) goto calc_fail; authkeylen = ds; } else { memcpy(ipad, ctx->key, authkeylen); } memset(ipad + authkeylen, 0, bs - authkeylen); memcpy(opad, ipad, bs); for (icount = 0; icount < bs; icount++) { ipad[icount] ^= 0x36; opad[icount] ^= 0x5c; } /* * Partial Hash calculated from the software * algorithm is retrieved for IPAD & OPAD */ /* IPAD Calculation */ crypto_shash_init(&ctx->sdesc->shash); crypto_shash_update(&ctx->sdesc->shash, ipad, bs); crypto_shash_export(&ctx->sdesc->shash, ipad); ret = copy_pad(ctx->mac_type, ctx->ipad, ipad); if (ret) goto calc_fail; /* OPAD Calculation */ crypto_shash_init(&ctx->sdesc->shash); crypto_shash_update(&ctx->sdesc->shash, opad, bs); crypto_shash_export(&ctx->sdesc->shash, opad); ret = copy_pad(ctx->mac_type, ctx->opad, opad); if (ret) goto calc_fail; kfree(ipad); kfree(opad); return 0; calc_fail: kfree(ctx->ipad); ctx->ipad = NULL; kfree(ctx->opad); ctx->opad = NULL; kfree(ipad); kfree(opad); kfree(ctx->sdesc); ctx->sdesc = NULL; return ret; } static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); struct crypto_authenc_key_param *param; int enckeylen = 0, authkeylen = 0; struct rtattr *rta = (void *)key; int status = -EINVAL; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; if (keylen > OTX_CPT_MAX_KEY_SIZE) goto badkey; authkeylen = keylen - enckeylen; memcpy(ctx->key, key, keylen); switch (enckeylen) { case AES_KEYSIZE_128: ctx->key_type = OTX_CPT_AES_128_BIT; break; case AES_KEYSIZE_192: ctx->key_type = OTX_CPT_AES_192_BIT; break; case AES_KEYSIZE_256: ctx->key_type = OTX_CPT_AES_256_BIT; break; default: /* Invalid key length */ goto badkey; } ctx->enc_key_len = enckeylen; ctx->auth_key_len = authkeylen; status = aead_hmac_init(cipher); if (status) goto badkey; return 0; badkey: return status; } static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); struct crypto_authenc_key_param *param; struct rtattr *rta = (void *)key; int enckeylen = 0; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (enckeylen != 0) goto badkey; if (keylen > OTX_CPT_MAX_KEY_SIZE) goto badkey; memcpy(ctx->key, key, keylen); ctx->enc_key_len = enckeylen; ctx->auth_key_len = keylen; return 0; badkey: return -EINVAL; } static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); /* * For aes gcm we expect to get encryption key (16, 24, 32 bytes) * and salt (4 bytes) */ switch (keylen) { case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE: ctx->key_type = OTX_CPT_AES_128_BIT; ctx->enc_key_len = AES_KEYSIZE_128; break; case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE: ctx->key_type = OTX_CPT_AES_192_BIT; ctx->enc_key_len = AES_KEYSIZE_192; break; case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE: ctx->key_type = OTX_CPT_AES_256_BIT; ctx->enc_key_len = AES_KEYSIZE_256; break; default: /* Invalid key and salt length */ return -EINVAL; } /* Store encryption key and salt */ memcpy(ctx->key, key, keylen); return 0; } static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc, u32 *argcnt) { struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct otx_cpt_fc_ctx *fctx = &rctx->fctx; int mac_len = crypto_aead_authsize(tfm); int ds; rctx->ctrl_word.e.enc_data_offset = req->assoclen; switch (ctx->cipher_type) { case OTX_CPT_AES_CBC: fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR; /* Copy encryption key to context */ memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len, ctx->enc_key_len); /* Copy IV to context */ memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm)); ds = crypto_shash_digestsize(ctx->hashalg); if (ctx->mac_type == OTX_CPT_SHA384) ds = SHA512_DIGEST_SIZE; if (ctx->ipad) memcpy(fctx->hmac.e.ipad, ctx->ipad, ds); if (ctx->opad) memcpy(fctx->hmac.e.opad, ctx->opad, ds); break; case OTX_CPT_AES_GCM: fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR; /* Copy encryption key to context */ memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len); /* Copy salt to context */ memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len, AES_GCM_SALT_SIZE); rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET; break; default: /* Unknown cipher type */ return -EINVAL; } rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.cflags); req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC | DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); if (enc) { req_info->req.opcode.s.minor = 2; req_info->req.param1 = req->cryptlen; req_info->req.param2 = req->cryptlen + req->assoclen; } else { req_info->req.opcode.s.minor = 3; req_info->req.param1 = req->cryptlen - mac_len; req_info->req.param2 = req->cryptlen + req->assoclen - mac_len; } fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type; fctx->enc.enc_ctrl.e.mac_len = mac_len; fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags); /* * Storing Packet Data Information in offset * Control Word First 8 bytes */ req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; req_info->in[*argcnt].size = CONTROL_WORD_LEN; req_info->req.dlen += CONTROL_WORD_LEN; ++(*argcnt); req_info->in[*argcnt].vptr = (u8 *)fctx; req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx); req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx); ++(*argcnt); return 0; } static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt, u32 enc) { struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); struct otx_cpt_req_info *req_info = &rctx->cpt_req; req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC | DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); req_info->is_trunc_hmac = ctx->is_trunc_hmac; req_info->req.opcode.s.minor = 0; req_info->req.param1 = ctx->auth_key_len; req_info->req.param2 = ctx->mac_type << 8; /* Add authentication key */ req_info->in[*argcnt].vptr = ctx->key; req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8); req_info->req.dlen += round_up(ctx->auth_key_len, 8); ++(*argcnt); return 0; } static inline u32 create_aead_input_list(struct aead_request *req, u32 enc) { struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 inputlen = req->cryptlen + req->assoclen; u32 status, argcnt = 0; status = create_aead_ctx_hdr(req, enc, &argcnt); if (status) return status; update_input_data(req_info, req->src, inputlen, &argcnt); req_info->incnt = argcnt; return 0; } static inline u32 create_aead_output_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0, outputlen = 0; if (enc) outputlen = req->cryptlen + req->assoclen + mac_len; else outputlen = req->cryptlen + req->assoclen - mac_len; update_output_data(req_info, req->dst, 0, outputlen, &argcnt); req_info->outcnt = argcnt; return 0; } static inline u32 create_aead_null_input_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 inputlen, argcnt = 0; if (enc) inputlen = req->cryptlen + req->assoclen; else inputlen = req->cryptlen + req->assoclen - mac_len; create_hmac_ctx_hdr(req, &argcnt, enc); update_input_data(req_info, req->src, inputlen, &argcnt); req_info->incnt = argcnt; return 0; } static inline u32 create_aead_null_output_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct scatterlist *dst; u8 *ptr = NULL; int argcnt = 0, status, offset; u32 inputlen; if (enc) inputlen = req->cryptlen + req->assoclen; else inputlen = req->cryptlen + req->assoclen - mac_len; /* * If source and destination are different * then copy payload to destination */ if (req->src != req->dst) { ptr = kmalloc(inputlen, (req_info->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC); if (!ptr) { status = -ENOMEM; goto error; } status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr, inputlen); if (status != inputlen) { status = -EINVAL; goto error_free; } status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr, inputlen); if (status != inputlen) { status = -EINVAL; goto error_free; } kfree(ptr); } if (enc) { /* * In an encryption scenario hmac needs * to be appended after payload */ dst = req->dst; offset = inputlen; while (offset >= dst->length) { offset -= dst->length; dst = sg_next(dst); if (!dst) { status = -ENOENT; goto error; } } update_output_data(req_info, dst, offset, mac_len, &argcnt); } else { /* * In a decryption scenario calculated hmac for received * payload needs to be compare with hmac received */ status = sg_copy_buffer(req->src, sg_nents(req->src), rctx->fctx.hmac.s.hmac_recv, mac_len, inputlen, true); if (status != mac_len) { status = -EINVAL; goto error; } req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc; req_info->out[argcnt].size = mac_len; argcnt++; } req_info->outcnt = argcnt; return 0; error_free: kfree(ptr); error: return status; } static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc) { struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct pci_dev *pdev; u32 status, cpu_num; /* Clear control words */ rctx->ctrl_word.flags = 0; rctx->fctx.enc.enc_ctrl.flags = 0; req_info->callback = otx_cpt_aead_callback; req_info->areq = &req->base; req_info->req_type = reg_type; req_info->is_enc = enc; req_info->is_trunc_hmac = false; switch (reg_type) { case OTX_CPT_AEAD_ENC_DEC_REQ: status = create_aead_input_list(req, enc); if (status) return status; status = create_aead_output_list(req, enc, crypto_aead_authsize(tfm)); if (status) return status; break; case OTX_CPT_AEAD_ENC_DEC_NULL_REQ: status = create_aead_null_input_list(req, enc, crypto_aead_authsize(tfm)); if (status) return status; status = create_aead_null_output_list(req, enc, crypto_aead_authsize(tfm)); if (status) return status; break; default: return -EINVAL; } /* Validate that request doesn't exceed maximum CPT supported size */ if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE || req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE) return -E2BIG; status = get_se_device(&pdev, &cpu_num); if (status) return status; req_info->ctrl.s.grp = 0; status = otx_cpt_do_request(pdev, req_info, cpu_num); /* * We perform an asynchronous send and once * the request is completed the driver would * intimate through registered call back functions */ return status; } static int otx_cpt_aead_encrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true); } static int otx_cpt_aead_decrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false); } static int otx_cpt_aead_null_encrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true); } static int otx_cpt_aead_null_decrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false); } static struct skcipher_alg otx_cpt_skciphers[] = { { .base.cra_name = "xts(aes)", .base.cra_driver_name = "cpt_xts_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = AES_BLOCK_SIZE, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_xts_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cpt_cbc_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_cbc_aes_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "cpt_ecb_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = 0, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_ecb_aes_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "cfb(aes)", .base.cra_driver_name = "cpt_cfb_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_cfb_aes_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "cbc(des3_ede)", .base.cra_driver_name = "cpt_cbc_des3_ede", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = otx_cpt_skcipher_cbc_des3_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "ecb(des3_ede)", .base.cra_driver_name = "cpt_ecb_des3_ede", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = 0, .setkey = otx_cpt_skcipher_ecb_des3_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, } }; static struct aead_alg otx_cpt_aeads[] = { { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "cpt_hmac_sha1_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha1_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "cpt_hmac_sha256_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha256_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "cpt_hmac_sha384_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha384_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "cpt_hmac_sha512_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha512_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha1),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha1_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha1_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA1_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha256),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha256_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha256_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA256_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha384),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha384_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha384_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA384_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha512),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha512_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha512_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA512_DIGEST_SIZE, }, { .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "cpt_rfc4106_gcm_aes", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_gcm_aes_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_gcm_aes_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_GCM_IV_SIZE, .maxauthsize = AES_GCM_ICV_SIZE, } }; static inline int is_any_alg_used(void) { int i; for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++) if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1) return true; for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++) if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1) return true; return false; } static inline int cpt_register_algs(void) { int i, err = 0; if (!IS_ENABLED(CONFIG_DM_CRYPT)) { for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++) otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; err = crypto_register_skciphers(otx_cpt_skciphers, ARRAY_SIZE(otx_cpt_skciphers)); if (err) return err; } for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++) otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads)); if (err) { crypto_unregister_skciphers(otx_cpt_skciphers, ARRAY_SIZE(otx_cpt_skciphers)); return err; } return 0; } static inline void cpt_unregister_algs(void) { crypto_unregister_skciphers(otx_cpt_skciphers, ARRAY_SIZE(otx_cpt_skciphers)); crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads)); } static int compare_func(const void *lptr, const void *rptr) { struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; if (ldesc->dev->devfn < rdesc->dev->devfn) return -1; if (ldesc->dev->devfn > rdesc->dev->devfn) return 1; return 0; } static void swap_func(void *lptr, void *rptr, int size) { struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; swap(*ldesc, *rdesc); } int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod, enum otx_cptpf_type pf_type, enum otx_cptvf_type engine_type, int num_queues, int num_devices) { int ret = 0; int count; mutex_lock(&mutex); switch (engine_type) { case OTX_CPT_SE_TYPES: count = atomic_read(&se_devices.count); if (count >= CPT_MAX_VF_NUM) { dev_err(&pdev->dev, "No space to add a new device\n"); ret = -ENOSPC; goto err; } se_devices.desc[count].pf_type = pf_type; se_devices.desc[count].num_queues = num_queues; se_devices.desc[count++].dev = pdev; atomic_inc(&se_devices.count); if (atomic_read(&se_devices.count) == num_devices && is_crypto_registered == false) { if (cpt_register_algs()) { dev_err(&pdev->dev, "Error in registering crypto algorithms\n"); ret = -EINVAL; goto err; } try_module_get(mod); is_crypto_registered = true; } sort(se_devices.desc, count, sizeof(struct cpt_device_desc), compare_func, swap_func); break; case OTX_CPT_AE_TYPES: count = atomic_read(&ae_devices.count); if (count >= CPT_MAX_VF_NUM) { dev_err(&pdev->dev, "No space to a add new device\n"); ret = -ENOSPC; goto err; } ae_devices.desc[count].pf_type = pf_type; ae_devices.desc[count].num_queues = num_queues; ae_devices.desc[count++].dev = pdev; atomic_inc(&ae_devices.count); sort(ae_devices.desc, count, sizeof(struct cpt_device_desc), compare_func, swap_func); break; default: dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type); ret = BAD_OTX_CPTVF_TYPE; } err: mutex_unlock(&mutex); return ret; } void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod, enum otx_cptvf_type engine_type) { struct cpt_device_table *dev_tbl; bool dev_found = false; int i, j, count; mutex_lock(&mutex); dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices; count = atomic_read(&dev_tbl->count); for (i = 0; i < count; i++) if (pdev == dev_tbl->desc[i].dev) { for (j = i; j < count-1; j++) dev_tbl->desc[j] = dev_tbl->desc[j+1]; dev_found = true; break; } if (!dev_found) { dev_err(&pdev->dev, "%s device not found\n", __func__); goto exit; } if (engine_type != OTX_CPT_AE_TYPES) { if (atomic_dec_and_test(&se_devices.count) && !is_any_alg_used()) { cpt_unregister_algs(); module_put(mod); is_crypto_registered = false; } } else atomic_dec(&ae_devices.count); exit: mutex_unlock(&mutex); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1