Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Herbert Xu | 1198 | 46.24% | 16 | 38.10% |
Chuck Ebbert | 397 | 15.32% | 2 | 4.76% |
Sebastian Andrzej Siewior | 377 | 14.55% | 3 | 7.14% |
Michal Ludvig | 371 | 14.32% | 4 | 9.52% |
Eric Biggers | 184 | 7.10% | 1 | 2.38% |
Andi Kleen | 28 | 1.08% | 1 | 2.38% |
Tejun Heo | 9 | 0.35% | 2 | 4.76% |
Geliang Tang | 6 | 0.23% | 1 | 2.38% |
Ard Biesheuvel | 5 | 0.19% | 2 | 4.76% |
Borislav Petkov | 4 | 0.15% | 1 | 2.38% |
Thomas Gleixner | 4 | 0.15% | 2 | 4.76% |
Suresh B. Siddha | 2 | 0.08% | 1 | 2.38% |
jia zhang | 1 | 0.04% | 1 | 2.38% |
Andrew Lutomirski | 1 | 0.04% | 1 | 2.38% |
Jeremy Katz | 1 | 0.04% | 1 | 2.38% |
Ingo Molnar | 1 | 0.04% | 1 | 2.38% |
Arvind Yadav | 1 | 0.04% | 1 | 2.38% |
Kees Cook | 1 | 0.04% | 1 | 2.38% |
Total | 2591 | 42 |
// SPDX-License-Identifier: GPL-2.0-only /* * Cryptographic API. * * Support for VIA PadLock hardware crypto engine. * * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> * */ #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/internal/skcipher.h> #include <crypto/padlock.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/percpu.h> #include <linux/smp.h> #include <linux/slab.h> #include <asm/cpu_device_id.h> #include <asm/byteorder.h> #include <asm/processor.h> #include <asm/fpu/api.h> /* * Number of data blocks actually fetched for each xcrypt insn. * Processors with prefetch errata will fetch extra blocks. */ static unsigned int ecb_fetch_blocks = 2; #define MAX_ECB_FETCH_BLOCKS (8) #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE) static unsigned int cbc_fetch_blocks = 1; #define MAX_CBC_FETCH_BLOCKS (4) #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE) /* Control word. */ struct cword { unsigned int __attribute__ ((__packed__)) rounds:4, algo:3, keygen:1, interm:1, encdec:1, ksize:2; } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); /* Whenever making any changes to the following * structure *make sure* you keep E, d_data * and cword aligned on 16 Bytes boundaries and * the Hardware can access 16 * 16 bytes of E and d_data * (only the first 15 * 16 bytes matter but the HW reads * more). */ struct aes_ctx { u32 E[AES_MAX_KEYLENGTH_U32] __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); u32 d_data[AES_MAX_KEYLENGTH_U32] __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); struct { struct cword encrypt; struct cword decrypt; } cword; u32 *D; }; static DEFINE_PER_CPU(struct cword *, paes_last_cword); /* Tells whether the ACE is capable to generate the extended key for a given key_len. */ static inline int aes_hw_extkey_available(uint8_t key_len) { /* TODO: We should check the actual CPU model/stepping as it's possible that the capability will be added in the next CPU revisions. */ if (key_len == 16) return 1; return 0; } static inline struct aes_ctx *aes_ctx_common(void *ctx) { unsigned long addr = (unsigned long)ctx; unsigned long align = PADLOCK_ALIGNMENT; if (align <= crypto_tfm_ctx_alignment()) align = 1; return (struct aes_ctx *)ALIGN(addr, align); } static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm) { return aes_ctx_common(crypto_tfm_ctx(tfm)); } static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm) { return aes_ctx_common(crypto_skcipher_ctx(tfm)); } static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct aes_ctx *ctx = aes_ctx(tfm); const __le32 *key = (const __le32 *)in_key; struct crypto_aes_ctx gen_aes; int cpu; if (key_len % 8) return -EINVAL; /* * If the hardware is capable of generating the extended key * itself we must supply the plain key for both encryption * and decryption. */ ctx->D = ctx->E; ctx->E[0] = le32_to_cpu(key[0]); ctx->E[1] = le32_to_cpu(key[1]); ctx->E[2] = le32_to_cpu(key[2]); ctx->E[3] = le32_to_cpu(key[3]); /* Prepare control words. */ memset(&ctx->cword, 0, sizeof(ctx->cword)); ctx->cword.decrypt.encdec = 1; ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; ctx->cword.encrypt.ksize = (key_len - 16) / 8; ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; /* Don't generate extended keys if the hardware can do it. */ if (aes_hw_extkey_available(key_len)) goto ok; ctx->D = ctx->d_data; ctx->cword.encrypt.keygen = 1; ctx->cword.decrypt.keygen = 1; if (aes_expandkey(&gen_aes, in_key, key_len)) return -EINVAL; memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH); memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH); ok: for_each_online_cpu(cpu) if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) || &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu)) per_cpu(paes_last_cword, cpu) = NULL; return 0; } static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len); } /* ====== Encryption/decryption routines ====== */ /* These are the real call to PadLock. */ static inline void padlock_reset_key(struct cword *cword) { int cpu = raw_smp_processor_id(); if (cword != per_cpu(paes_last_cword, cpu)) #ifndef CONFIG_X86_64 asm volatile ("pushfl; popfl"); #else asm volatile ("pushfq; popfq"); #endif } static inline void padlock_store_cword(struct cword *cword) { per_cpu(paes_last_cword, raw_smp_processor_id()) = cword; } /* * While the padlock instructions don't use FP/SSE registers, they * generate a spurious DNA fault when CR0.TS is '1'. Fortunately, * the kernel doesn't use CR0.TS. */ static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key, struct cword *control_word, int count) { asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ : "+S"(input), "+D"(output) : "d"(control_word), "b"(key), "c"(count)); } static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key, u8 *iv, struct cword *control_word, int count) { asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ : "+S" (input), "+D" (output), "+a" (iv) : "d" (control_word), "b" (key), "c" (count)); return iv; } static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword, int count) { /* * Padlock prefetches extra data so we must provide mapped input buffers. * Assume there are at least 16 bytes of stack already in use. */ u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); memcpy(tmp, in, count * AES_BLOCK_SIZE); rep_xcrypt_ecb(tmp, out, key, cword, count); } static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key, u8 *iv, struct cword *cword, int count) { /* * Padlock prefetches extra data so we must provide mapped input buffers. * Assume there are at least 16 bytes of stack already in use. */ u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); memcpy(tmp, in, count * AES_BLOCK_SIZE); return rep_xcrypt_cbc(tmp, out, key, iv, cword, count); } static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key, struct cword *cword, int count) { /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data. * We could avoid some copying here but it's probably not worth it. */ if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) { ecb_crypt_copy(in, out, key, cword, count); return; } rep_xcrypt_ecb(in, out, key, cword, count); } static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key, u8 *iv, struct cword *cword, int count) { /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */ if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE)) return cbc_crypt_copy(in, out, key, iv, cword, count); return rep_xcrypt_cbc(in, out, key, iv, cword, count); } static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, void *control_word, u32 count) { u32 initial = count & (ecb_fetch_blocks - 1); if (count < ecb_fetch_blocks) { ecb_crypt(input, output, key, control_word, count); return; } count -= initial; if (initial) asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ : "+S"(input), "+D"(output) : "d"(control_word), "b"(key), "c"(initial)); asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ : "+S"(input), "+D"(output) : "d"(control_word), "b"(key), "c"(count)); } static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, u8 *iv, void *control_word, u32 count) { u32 initial = count & (cbc_fetch_blocks - 1); if (count < cbc_fetch_blocks) return cbc_crypt(input, output, key, iv, control_word, count); count -= initial; if (initial) asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ : "+S" (input), "+D" (output), "+a" (iv) : "d" (control_word), "b" (key), "c" (initial)); asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ : "+S" (input), "+D" (output), "+a" (iv) : "d" (control_word), "b" (key), "c" (count)); return iv; } static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct aes_ctx *ctx = aes_ctx(tfm); padlock_reset_key(&ctx->cword.encrypt); ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1); padlock_store_cword(&ctx->cword.encrypt); } static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct aes_ctx *ctx = aes_ctx(tfm); padlock_reset_key(&ctx->cword.encrypt); ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1); padlock_store_cword(&ctx->cword.encrypt); } static struct crypto_alg aes_alg = { .cra_name = "aes", .cra_driver_name = "aes-padlock", .cra_priority = PADLOCK_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct aes_ctx), .cra_alignmask = PADLOCK_ALIGNMENT - 1, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = padlock_aes_encrypt, .cia_decrypt = padlock_aes_decrypt, } } }; static int ecb_aes_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aes_ctx *ctx = skcipher_aes_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; padlock_reset_key(&ctx->cword.encrypt); err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, ctx->E, &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } padlock_store_cword(&ctx->cword.encrypt); return err; } static int ecb_aes_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aes_ctx *ctx = skcipher_aes_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; padlock_reset_key(&ctx->cword.decrypt); err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, ctx->D, &ctx->cword.decrypt, nbytes / AES_BLOCK_SIZE); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } padlock_store_cword(&ctx->cword.encrypt); return err; } static struct skcipher_alg ecb_aes_alg = { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "ecb-aes-padlock", .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aes_ctx), .base.cra_alignmask = PADLOCK_ALIGNMENT - 1, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aes_set_key_skcipher, .encrypt = ecb_aes_encrypt, .decrypt = ecb_aes_decrypt, }; static int cbc_aes_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aes_ctx *ctx = skcipher_aes_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; padlock_reset_key(&ctx->cword.encrypt); err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr, ctx->E, walk.iv, &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE); memcpy(walk.iv, iv, AES_BLOCK_SIZE); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } padlock_store_cword(&ctx->cword.decrypt); return err; } static int cbc_aes_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aes_ctx *ctx = skcipher_aes_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; padlock_reset_key(&ctx->cword.encrypt); err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr, ctx->D, walk.iv, &ctx->cword.decrypt, nbytes / AES_BLOCK_SIZE); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } padlock_store_cword(&ctx->cword.encrypt); return err; } static struct skcipher_alg cbc_aes_alg = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-aes-padlock", .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aes_ctx), .base.cra_alignmask = PADLOCK_ALIGNMENT - 1, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aes_set_key_skcipher, .encrypt = cbc_aes_encrypt, .decrypt = cbc_aes_decrypt, }; static const struct x86_cpu_id padlock_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id); static int __init padlock_init(void) { int ret; struct cpuinfo_x86 *c = &cpu_data(0); if (!x86_match_cpu(padlock_cpu_id)) return -ENODEV; if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) { printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); return -ENODEV; } if ((ret = crypto_register_alg(&aes_alg)) != 0) goto aes_err; if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0) goto ecb_aes_err; if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0) goto cbc_aes_err; printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) { ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS; cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS; printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n"); } out: return ret; cbc_aes_err: crypto_unregister_skcipher(&ecb_aes_alg); ecb_aes_err: crypto_unregister_alg(&aes_alg); aes_err: printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n"); goto out; } static void __exit padlock_fini(void) { crypto_unregister_skcipher(&cbc_aes_alg); crypto_unregister_skcipher(&ecb_aes_alg); crypto_unregister_alg(&aes_alg); } module_init(padlock_init); module_exit(padlock_fini); MODULE_DESCRIPTION("VIA PadLock AES algorithm support"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michal Ludvig"); MODULE_ALIAS_CRYPTO("aes");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1