Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stanimir Varbanov | 1791 | 66.75% | 1 | 3.23% |
Ard Biesheuvel | 252 | 9.39% | 3 | 9.68% |
Thara Gopinath | 235 | 8.76% | 7 | 22.58% |
Eneas U de Queiroz | 208 | 7.75% | 10 | 32.26% |
Herbert Xu | 115 | 4.29% | 3 | 9.68% |
Corentin Labbe | 57 | 2.12% | 2 | 6.45% |
Wei Yongjun | 10 | 0.37% | 1 | 3.23% |
Jack Wang | 6 | 0.22% | 1 | 3.23% |
Chengfeng Ye | 5 | 0.19% | 1 | 3.23% |
Mikulas Patocka | 2 | 0.07% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.07% | 1 | 3.23% |
Total | 2683 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved. */ #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/errno.h> #include <crypto/aes.h> #include <crypto/internal/des.h> #include <crypto/internal/skcipher.h> #include "cipher.h" static unsigned int aes_sw_max_len = CONFIG_CRYPTO_DEV_QCE_SW_MAX_LEN; module_param(aes_sw_max_len, uint, 0644); MODULE_PARM_DESC(aes_sw_max_len, "Only use hardware for AES requests larger than this " "[0=always use hardware; anything <16 breaks AES-GCM; default=" __stringify(CONFIG_CRYPTO_DEV_QCE_SW_MAX_LEN)"]"); static LIST_HEAD(skcipher_algs); static void qce_skcipher_done(void *data) { struct crypto_async_request *async_req = data; struct skcipher_request *req = skcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req); struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req)); struct qce_device *qce = tmpl->qce; struct qce_result_dump *result_buf = qce->dma.result_buf; enum dma_data_direction dir_src, dir_dst; u32 status; int error; bool diff_dst; diff_dst = (req->src != req->dst) ? true : false; dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL; error = qce_dma_terminate_all(&qce->dma); if (error) dev_dbg(qce->dev, "skcipher dma termination error (%d)\n", error); if (diff_dst) dma_unmap_sg(qce->dev, rctx->src_sg, rctx->src_nents, dir_src); dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); sg_free_table(&rctx->dst_tbl); error = qce_check_status(qce, &status); if (error < 0) dev_dbg(qce->dev, "skcipher operation error (%x)\n", status); memcpy(rctx->iv, result_buf->encr_cntr_iv, rctx->ivsize); qce->async_req_done(tmpl->qce, error); } static int qce_skcipher_async_req_handle(struct crypto_async_request *async_req) { struct skcipher_request *req = skcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req)); struct qce_device *qce = tmpl->qce; enum dma_data_direction dir_src, dir_dst; struct scatterlist *sg; bool diff_dst; gfp_t gfp; int dst_nents, src_nents, ret; rctx->iv = req->iv; rctx->ivsize = crypto_skcipher_ivsize(skcipher); rctx->cryptlen = req->cryptlen; diff_dst = (req->src != req->dst) ? true : false; dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL; rctx->src_nents = sg_nents_for_len(req->src, req->cryptlen); if (diff_dst) rctx->dst_nents = sg_nents_for_len(req->dst, req->cryptlen); else rctx->dst_nents = rctx->src_nents; if (rctx->src_nents < 0) { dev_err(qce->dev, "Invalid numbers of src SG.\n"); return rctx->src_nents; } if (rctx->dst_nents < 0) { dev_err(qce->dev, "Invalid numbers of dst SG.\n"); return -rctx->dst_nents; } rctx->dst_nents += 1; gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; ret = sg_alloc_table(&rctx->dst_tbl, rctx->dst_nents, gfp); if (ret) return ret; sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ); sg = qce_sgtable_add(&rctx->dst_tbl, req->dst, req->cryptlen); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto error_free; } sg = qce_sgtable_add(&rctx->dst_tbl, &rctx->result_sg, QCE_RESULT_BUF_SZ); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto error_free; } sg_mark_end(sg); rctx->dst_sg = rctx->dst_tbl.sgl; dst_nents = dma_map_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); if (!dst_nents) { ret = -EIO; goto error_free; } if (diff_dst) { src_nents = dma_map_sg(qce->dev, req->src, rctx->src_nents, dir_src); if (!src_nents) { ret = -EIO; goto error_unmap_dst; } rctx->src_sg = req->src; } else { rctx->src_sg = rctx->dst_sg; src_nents = dst_nents - 1; } ret = qce_dma_prep_sgs(&qce->dma, rctx->src_sg, src_nents, rctx->dst_sg, dst_nents, qce_skcipher_done, async_req); if (ret) goto error_unmap_src; qce_dma_issue_pending(&qce->dma); ret = qce_start(async_req, tmpl->crypto_alg_type); if (ret) goto error_terminate; return 0; error_terminate: qce_dma_terminate_all(&qce->dma); error_unmap_src: if (diff_dst) dma_unmap_sg(qce->dev, req->src, rctx->src_nents, dir_src); error_unmap_dst: dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); error_free: sg_free_table(&rctx->dst_tbl); return ret; } static int qce_skcipher_setkey(struct crypto_skcipher *ablk, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ablk); struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm); unsigned long flags = to_cipher_tmpl(ablk)->alg_flags; unsigned int __keylen; int ret; if (!key || !keylen) return -EINVAL; /* * AES XTS key1 = key2 not supported by crypto engine. * Revisit to request a fallback cipher in this case. */ if (IS_XTS(flags)) { __keylen = keylen >> 1; if (!memcmp(key, key + __keylen, __keylen)) return -ENOKEY; } else { __keylen = keylen; } switch (__keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_256: memcpy(ctx->enc_key, key, keylen); break; case AES_KEYSIZE_192: break; default: return -EINVAL; } ret = crypto_skcipher_setkey(ctx->fallback, key, keylen); if (!ret) ctx->enc_keylen = keylen; return ret; } static int qce_des_setkey(struct crypto_skcipher *ablk, const u8 *key, unsigned int keylen) { struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(ablk); int err; err = verify_skcipher_des_key(ablk, key); if (err) return err; ctx->enc_keylen = keylen; memcpy(ctx->enc_key, key, keylen); return 0; } static int qce_des3_setkey(struct crypto_skcipher *ablk, const u8 *key, unsigned int keylen) { struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(ablk); u32 _key[6]; int err; err = verify_skcipher_des3_key(ablk, key); if (err) return err; /* * The crypto engine does not support any two keys * being the same for triple des algorithms. The * verify_skcipher_des3_key does not check for all the * below conditions. Return -ENOKEY in case any two keys * are the same. Revisit to see if a fallback cipher * is needed to handle this condition. */ memcpy(_key, key, DES3_EDE_KEY_SIZE); if (!((_key[0] ^ _key[2]) | (_key[1] ^ _key[3])) || !((_key[2] ^ _key[4]) | (_key[3] ^ _key[5])) || !((_key[0] ^ _key[4]) | (_key[1] ^ _key[5]))) return -ENOKEY; ctx->enc_keylen = keylen; memcpy(ctx->enc_key, key, keylen); return 0; } static int qce_skcipher_crypt(struct skcipher_request *req, int encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req); struct qce_alg_template *tmpl = to_cipher_tmpl(tfm); unsigned int blocksize = crypto_skcipher_blocksize(tfm); int keylen; int ret; rctx->flags = tmpl->alg_flags; rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT; keylen = IS_XTS(rctx->flags) ? ctx->enc_keylen >> 1 : ctx->enc_keylen; /* CE does not handle 0 length messages */ if (!req->cryptlen) return 0; /* * ECB and CBC algorithms require message lengths to be * multiples of block size. */ if (IS_ECB(rctx->flags) || IS_CBC(rctx->flags)) if (!IS_ALIGNED(req->cryptlen, blocksize)) return -EINVAL; /* * Conditions for requesting a fallback cipher * AES-192 (not supported by crypto engine (CE)) * AES-XTS request with len <= 512 byte (not recommended to use CE) * AES-XTS request with len > QCE_SECTOR_SIZE and * is not a multiple of it.(Revisit this condition to check if it is * needed in all versions of CE) */ if (IS_AES(rctx->flags) && ((keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_256) || (IS_XTS(rctx->flags) && ((req->cryptlen <= aes_sw_max_len) || (req->cryptlen > QCE_SECTOR_SIZE && req->cryptlen % QCE_SECTOR_SIZE))))) { skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback); skcipher_request_set_callback(&rctx->fallback_req, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst, req->cryptlen, req->iv); ret = encrypt ? crypto_skcipher_encrypt(&rctx->fallback_req) : crypto_skcipher_decrypt(&rctx->fallback_req); return ret; } return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base); } static int qce_skcipher_encrypt(struct skcipher_request *req) { return qce_skcipher_crypt(req, 1); } static int qce_skcipher_decrypt(struct skcipher_request *req) { return qce_skcipher_crypt(req, 0); } static int qce_skcipher_init(struct crypto_skcipher *tfm) { /* take the size without the fallback skcipher_request at the end */ crypto_skcipher_set_reqsize(tfm, offsetof(struct qce_cipher_reqctx, fallback_req)); return 0; } static int qce_skcipher_init_fallback(struct crypto_skcipher *tfm) { struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->fallback = crypto_alloc_skcipher(crypto_tfm_alg_name(&tfm->base), 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback)) return PTR_ERR(ctx->fallback); crypto_skcipher_set_reqsize(tfm, sizeof(struct qce_cipher_reqctx) + crypto_skcipher_reqsize(ctx->fallback)); return 0; } static void qce_skcipher_exit(struct crypto_skcipher *tfm) { struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(ctx->fallback); } struct qce_skcipher_def { unsigned long flags; const char *name; const char *drv_name; unsigned int blocksize; unsigned int chunksize; unsigned int ivsize; unsigned int min_keysize; unsigned int max_keysize; }; static const struct qce_skcipher_def skcipher_def[] = { { .flags = QCE_ALG_AES | QCE_MODE_ECB, .name = "ecb(aes)", .drv_name = "ecb-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = 0, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_CBC, .name = "cbc(aes)", .drv_name = "cbc-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_CTR, .name = "ctr(aes)", .drv_name = "ctr-aes-qce", .blocksize = 1, .chunksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_XTS, .name = "xts(aes)", .drv_name = "xts-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, }, { .flags = QCE_ALG_DES | QCE_MODE_ECB, .name = "ecb(des)", .drv_name = "ecb-des-qce", .blocksize = DES_BLOCK_SIZE, .ivsize = 0, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, }, { .flags = QCE_ALG_DES | QCE_MODE_CBC, .name = "cbc(des)", .drv_name = "cbc-des-qce", .blocksize = DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, }, { .flags = QCE_ALG_3DES | QCE_MODE_ECB, .name = "ecb(des3_ede)", .drv_name = "ecb-3des-qce", .blocksize = DES3_EDE_BLOCK_SIZE, .ivsize = 0, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, }, { .flags = QCE_ALG_3DES | QCE_MODE_CBC, .name = "cbc(des3_ede)", .drv_name = "cbc-3des-qce", .blocksize = DES3_EDE_BLOCK_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, }, }; static int qce_skcipher_register_one(const struct qce_skcipher_def *def, struct qce_device *qce) { struct qce_alg_template *tmpl; struct skcipher_alg *alg; int ret; tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL); if (!tmpl) return -ENOMEM; alg = &tmpl->alg.skcipher; snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", def->drv_name); alg->base.cra_blocksize = def->blocksize; alg->chunksize = def->chunksize; alg->ivsize = def->ivsize; alg->min_keysize = def->min_keysize; alg->max_keysize = def->max_keysize; alg->setkey = IS_3DES(def->flags) ? qce_des3_setkey : IS_DES(def->flags) ? qce_des_setkey : qce_skcipher_setkey; alg->encrypt = qce_skcipher_encrypt; alg->decrypt = qce_skcipher_decrypt; alg->base.cra_priority = 300; alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY; alg->base.cra_ctxsize = sizeof(struct qce_cipher_ctx); alg->base.cra_alignmask = 0; alg->base.cra_module = THIS_MODULE; if (IS_AES(def->flags)) { alg->base.cra_flags |= CRYPTO_ALG_NEED_FALLBACK; alg->init = qce_skcipher_init_fallback; alg->exit = qce_skcipher_exit; } else { alg->init = qce_skcipher_init; } INIT_LIST_HEAD(&tmpl->entry); tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_SKCIPHER; tmpl->alg_flags = def->flags; tmpl->qce = qce; ret = crypto_register_skcipher(alg); if (ret) { dev_err(qce->dev, "%s registration failed\n", alg->base.cra_name); kfree(tmpl); return ret; } list_add_tail(&tmpl->entry, &skcipher_algs); dev_dbg(qce->dev, "%s is registered\n", alg->base.cra_name); return 0; } static void qce_skcipher_unregister(struct qce_device *qce) { struct qce_alg_template *tmpl, *n; list_for_each_entry_safe(tmpl, n, &skcipher_algs, entry) { crypto_unregister_skcipher(&tmpl->alg.skcipher); list_del(&tmpl->entry); kfree(tmpl); } } static int qce_skcipher_register(struct qce_device *qce) { int ret, i; for (i = 0; i < ARRAY_SIZE(skcipher_def); i++) { ret = qce_skcipher_register_one(&skcipher_def[i], qce); if (ret) goto err; } return 0; err: qce_skcipher_unregister(qce); return ret; } const struct qce_algo_ops skcipher_ops = { .type = CRYPTO_ALG_TYPE_SKCIPHER, .register_algs = qce_skcipher_register, .unregister_algs = qce_skcipher_unregister, .async_req_handle = qce_skcipher_async_req_handle, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1