Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sumit Semwal | 1228 | 22.69% | 8 | 7.48% |
Christian König | 1058 | 19.55% | 18 | 16.82% |
Daniel Vetter | 780 | 14.42% | 14 | 13.08% |
Jason Ekstrand | 503 | 9.30% | 3 | 2.80% |
Maarten Lankhorst | 456 | 8.43% | 4 | 3.74% |
Greg Hackmann | 404 | 7.47% | 3 | 2.80% |
Charan Teja Reddy | 164 | 3.03% | 6 | 5.61% |
Chris Wilson | 143 | 2.64% | 5 | 4.67% |
Dave Airlie | 92 | 1.70% | 2 | 1.87% |
Christopher James Halse Rogers | 91 | 1.68% | 1 | 0.93% |
Jianxin Xiong | 81 | 1.50% | 2 | 1.87% |
Thomas Zimmermann | 56 | 1.03% | 3 | 2.80% |
Greg Kroah-Hartman | 51 | 0.94% | 1 | 0.93% |
Mathias Krause | 48 | 0.89% | 3 | 2.80% |
Michel Dänzer | 42 | 0.78% | 1 | 0.93% |
Hridya Valsaraju | 39 | 0.72% | 1 | 0.93% |
Andrew F. Davis | 28 | 0.52% | 1 | 0.93% |
Guangming Cao | 19 | 0.35% | 3 | 2.80% |
Colin Cross | 17 | 0.31% | 1 | 0.93% |
Russell King | 17 | 0.31% | 2 | 1.87% |
Al Viro | 13 | 0.24% | 5 | 4.67% |
Muhammad Falak R Wani | 12 | 0.22% | 1 | 0.93% |
Tuomas Tynkkynen | 12 | 0.22% | 1 | 0.93% |
Lucas De Marchi | 10 | 0.18% | 1 | 0.93% |
Laurent Pinchart | 8 | 0.15% | 2 | 1.87% |
Américo Wang | 7 | 0.13% | 1 | 0.93% |
Linus Torvalds | 7 | 0.13% | 2 | 1.87% |
Marek Szyprowski | 5 | 0.09% | 1 | 0.93% |
SF Markus Elfring | 4 | 0.07% | 3 | 2.80% |
Rob Clark | 3 | 0.06% | 1 | 0.93% |
Yangtao Li | 3 | 0.06% | 1 | 0.93% |
Borislav Petkov | 3 | 0.06% | 1 | 0.93% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.93% |
Yuanzheng Song | 2 | 0.04% | 1 | 0.93% |
Sui Jingfeng | 1 | 0.02% | 1 | 0.93% |
Jagan Teki | 1 | 0.02% | 1 | 0.93% |
Arnd Bergmann | 1 | 0.02% | 1 | 0.93% |
Total | 5411 | 107 |
// SPDX-License-Identifier: GPL-2.0-only /* * Framework for buffer objects that can be shared across devices/subsystems. * * Copyright(C) 2011 Linaro Limited. All rights reserved. * Author: Sumit Semwal <sumit.semwal@ti.com> * * Many thanks to linaro-mm-sig list, and specially * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and * Daniel Vetter <daniel@ffwll.ch> for their support in creation and * refining of this idea. */ #include <linux/fs.h> #include <linux/slab.h> #include <linux/dma-buf.h> #include <linux/dma-fence.h> #include <linux/dma-fence-unwrap.h> #include <linux/anon_inodes.h> #include <linux/export.h> #include <linux/debugfs.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/sync_file.h> #include <linux/poll.h> #include <linux/dma-resv.h> #include <linux/mm.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <uapi/linux/dma-buf.h> #include <uapi/linux/magic.h> #include "dma-buf-sysfs-stats.h" static inline int is_dma_buf_file(struct file *); struct dma_buf_list { struct list_head head; struct mutex lock; }; static struct dma_buf_list db_list; static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) { struct dma_buf *dmabuf; char name[DMA_BUF_NAME_LEN]; size_t ret = 0; dmabuf = dentry->d_fsdata; spin_lock(&dmabuf->name_lock); if (dmabuf->name) ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); spin_unlock(&dmabuf->name_lock); return dynamic_dname(buffer, buflen, "/%s:%s", dentry->d_name.name, ret > 0 ? name : ""); } static void dma_buf_release(struct dentry *dentry) { struct dma_buf *dmabuf; dmabuf = dentry->d_fsdata; if (unlikely(!dmabuf)) return; BUG_ON(dmabuf->vmapping_counter); /* * If you hit this BUG() it could mean: * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback */ BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); dma_buf_stats_teardown(dmabuf); dmabuf->ops->release(dmabuf); if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) dma_resv_fini(dmabuf->resv); WARN_ON(!list_empty(&dmabuf->attachments)); module_put(dmabuf->owner); kfree(dmabuf->name); kfree(dmabuf); } static int dma_buf_file_release(struct inode *inode, struct file *file) { struct dma_buf *dmabuf; if (!is_dma_buf_file(file)) return -EINVAL; dmabuf = file->private_data; mutex_lock(&db_list.lock); list_del(&dmabuf->list_node); mutex_unlock(&db_list.lock); return 0; } static const struct dentry_operations dma_buf_dentry_ops = { .d_dname = dmabuffs_dname, .d_release = dma_buf_release, }; static struct vfsmount *dma_buf_mnt; static int dma_buf_fs_init_context(struct fs_context *fc) { struct pseudo_fs_context *ctx; ctx = init_pseudo(fc, DMA_BUF_MAGIC); if (!ctx) return -ENOMEM; ctx->dops = &dma_buf_dentry_ops; return 0; } static struct file_system_type dma_buf_fs_type = { .name = "dmabuf", .init_fs_context = dma_buf_fs_init_context, .kill_sb = kill_anon_super, }; static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) { struct dma_buf *dmabuf; if (!is_dma_buf_file(file)) return -EINVAL; dmabuf = file->private_data; /* check if buffer supports mmap */ if (!dmabuf->ops->mmap) return -EINVAL; /* check for overflowing the buffer's size */ if (vma->vm_pgoff + vma_pages(vma) > dmabuf->size >> PAGE_SHIFT) return -EINVAL; return dmabuf->ops->mmap(dmabuf, vma); } static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) { struct dma_buf *dmabuf; loff_t base; if (!is_dma_buf_file(file)) return -EBADF; dmabuf = file->private_data; /* only support discovering the end of the buffer, but also allow SEEK_SET to maintain the idiomatic SEEK_END(0), SEEK_CUR(0) pattern */ if (whence == SEEK_END) base = dmabuf->size; else if (whence == SEEK_SET) base = 0; else return -EINVAL; if (offset != 0) return -EINVAL; return base + offset; } /** * DOC: implicit fence polling * * To support cross-device and cross-driver synchronization of buffer access * implicit fences (represented internally in the kernel with &struct dma_fence) * can be attached to a &dma_buf. The glue for that and a few related things are * provided in the &dma_resv structure. * * Userspace can query the state of these implicitly tracked fences using poll() * and related system calls: * * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the * most recent write or exclusive fence. * * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of * all attached fences, shared and exclusive ones. * * Note that this only signals the completion of the respective fences, i.e. the * DMA transfers are complete. Cache flushing and any other necessary * preparations before CPU access can begin still need to happen. * * As an alternative to poll(), the set of fences on DMA buffer can be * exported as a &sync_file using &dma_buf_sync_file_export. */ static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) { struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); unsigned long flags; spin_lock_irqsave(&dcb->poll->lock, flags); wake_up_locked_poll(dcb->poll, dcb->active); dcb->active = 0; spin_unlock_irqrestore(&dcb->poll->lock, flags); dma_fence_put(fence); /* Paired with get_file in dma_buf_poll */ fput(dmabuf->file); } static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, struct dma_buf_poll_cb_t *dcb) { struct dma_resv_iter cursor; struct dma_fence *fence; int r; dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), fence) { dma_fence_get(fence); r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); if (!r) return true; dma_fence_put(fence); } return false; } static __poll_t dma_buf_poll(struct file *file, poll_table *poll) { struct dma_buf *dmabuf; struct dma_resv *resv; __poll_t events; dmabuf = file->private_data; if (!dmabuf || !dmabuf->resv) return EPOLLERR; resv = dmabuf->resv; poll_wait(file, &dmabuf->poll, poll); events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); if (!events) return 0; dma_resv_lock(resv, NULL); if (events & EPOLLOUT) { struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; /* Check that callback isn't busy */ spin_lock_irq(&dmabuf->poll.lock); if (dcb->active) events &= ~EPOLLOUT; else dcb->active = EPOLLOUT; spin_unlock_irq(&dmabuf->poll.lock); if (events & EPOLLOUT) { /* Paired with fput in dma_buf_poll_cb */ get_file(dmabuf->file); if (!dma_buf_poll_add_cb(resv, true, dcb)) /* No callback queued, wake up any other waiters */ dma_buf_poll_cb(NULL, &dcb->cb); else events &= ~EPOLLOUT; } } if (events & EPOLLIN) { struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; /* Check that callback isn't busy */ spin_lock_irq(&dmabuf->poll.lock); if (dcb->active) events &= ~EPOLLIN; else dcb->active = EPOLLIN; spin_unlock_irq(&dmabuf->poll.lock); if (events & EPOLLIN) { /* Paired with fput in dma_buf_poll_cb */ get_file(dmabuf->file); if (!dma_buf_poll_add_cb(resv, false, dcb)) /* No callback queued, wake up any other waiters */ dma_buf_poll_cb(NULL, &dcb->cb); else events &= ~EPOLLIN; } } dma_resv_unlock(resv); return events; } /** * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. * It could support changing the name of the dma-buf if the same * piece of memory is used for multiple purpose between different devices. * * @dmabuf: [in] dmabuf buffer that will be renamed. * @buf: [in] A piece of userspace memory that contains the name of * the dma-buf. * * Returns 0 on success. If the dma-buf buffer is already attached to * devices, return -EBUSY. * */ static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) { char *name = strndup_user(buf, DMA_BUF_NAME_LEN); if (IS_ERR(name)) return PTR_ERR(name); spin_lock(&dmabuf->name_lock); kfree(dmabuf->name); dmabuf->name = name; spin_unlock(&dmabuf->name_lock); return 0; } #if IS_ENABLED(CONFIG_SYNC_FILE) static long dma_buf_export_sync_file(struct dma_buf *dmabuf, void __user *user_data) { struct dma_buf_export_sync_file arg; enum dma_resv_usage usage; struct dma_fence *fence = NULL; struct sync_file *sync_file; int fd, ret; if (copy_from_user(&arg, user_data, sizeof(arg))) return -EFAULT; if (arg.flags & ~DMA_BUF_SYNC_RW) return -EINVAL; if ((arg.flags & DMA_BUF_SYNC_RW) == 0) return -EINVAL; fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) return fd; usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE); ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence); if (ret) goto err_put_fd; if (!fence) fence = dma_fence_get_stub(); sync_file = sync_file_create(fence); dma_fence_put(fence); if (!sync_file) { ret = -ENOMEM; goto err_put_fd; } arg.fd = fd; if (copy_to_user(user_data, &arg, sizeof(arg))) { ret = -EFAULT; goto err_put_file; } fd_install(fd, sync_file->file); return 0; err_put_file: fput(sync_file->file); err_put_fd: put_unused_fd(fd); return ret; } static long dma_buf_import_sync_file(struct dma_buf *dmabuf, const void __user *user_data) { struct dma_buf_import_sync_file arg; struct dma_fence *fence, *f; enum dma_resv_usage usage; struct dma_fence_unwrap iter; unsigned int num_fences; int ret = 0; if (copy_from_user(&arg, user_data, sizeof(arg))) return -EFAULT; if (arg.flags & ~DMA_BUF_SYNC_RW) return -EINVAL; if ((arg.flags & DMA_BUF_SYNC_RW) == 0) return -EINVAL; fence = sync_file_get_fence(arg.fd); if (!fence) return -EINVAL; usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; num_fences = 0; dma_fence_unwrap_for_each(f, &iter, fence) ++num_fences; if (num_fences > 0) { dma_resv_lock(dmabuf->resv, NULL); ret = dma_resv_reserve_fences(dmabuf->resv, num_fences); if (!ret) { dma_fence_unwrap_for_each(f, &iter, fence) dma_resv_add_fence(dmabuf->resv, f, usage); } dma_resv_unlock(dmabuf->resv); } dma_fence_put(fence); return ret; } #endif static long dma_buf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct dma_buf *dmabuf; struct dma_buf_sync sync; enum dma_data_direction direction; int ret; dmabuf = file->private_data; switch (cmd) { case DMA_BUF_IOCTL_SYNC: if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) return -EFAULT; if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) return -EINVAL; switch (sync.flags & DMA_BUF_SYNC_RW) { case DMA_BUF_SYNC_READ: direction = DMA_FROM_DEVICE; break; case DMA_BUF_SYNC_WRITE: direction = DMA_TO_DEVICE; break; case DMA_BUF_SYNC_RW: direction = DMA_BIDIRECTIONAL; break; default: return -EINVAL; } if (sync.flags & DMA_BUF_SYNC_END) ret = dma_buf_end_cpu_access(dmabuf, direction); else ret = dma_buf_begin_cpu_access(dmabuf, direction); return ret; case DMA_BUF_SET_NAME_A: case DMA_BUF_SET_NAME_B: return dma_buf_set_name(dmabuf, (const char __user *)arg); #if IS_ENABLED(CONFIG_SYNC_FILE) case DMA_BUF_IOCTL_EXPORT_SYNC_FILE: return dma_buf_export_sync_file(dmabuf, (void __user *)arg); case DMA_BUF_IOCTL_IMPORT_SYNC_FILE: return dma_buf_import_sync_file(dmabuf, (const void __user *)arg); #endif default: return -ENOTTY; } } static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) { struct dma_buf *dmabuf = file->private_data; seq_printf(m, "size:\t%zu\n", dmabuf->size); /* Don't count the temporary reference taken inside procfs seq_show */ seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); spin_lock(&dmabuf->name_lock); if (dmabuf->name) seq_printf(m, "name:\t%s\n", dmabuf->name); spin_unlock(&dmabuf->name_lock); } static const struct file_operations dma_buf_fops = { .release = dma_buf_file_release, .mmap = dma_buf_mmap_internal, .llseek = dma_buf_llseek, .poll = dma_buf_poll, .unlocked_ioctl = dma_buf_ioctl, .compat_ioctl = compat_ptr_ioctl, .show_fdinfo = dma_buf_show_fdinfo, }; /* * is_dma_buf_file - Check if struct file* is associated with dma_buf */ static inline int is_dma_buf_file(struct file *file) { return file->f_op == &dma_buf_fops; } static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) { static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); struct file *file; struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); if (IS_ERR(inode)) return ERR_CAST(inode); inode->i_size = dmabuf->size; inode_set_bytes(inode, dmabuf->size); /* * The ->i_ino acquired from get_next_ino() is not unique thus * not suitable for using it as dentry name by dmabuf stats. * Override ->i_ino with the unique and dmabuffs specific * value. */ inode->i_ino = atomic64_add_return(1, &dmabuf_inode); flags &= O_ACCMODE | O_NONBLOCK; file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", flags, &dma_buf_fops); if (IS_ERR(file)) goto err_alloc_file; file->private_data = dmabuf; file->f_path.dentry->d_fsdata = dmabuf; return file; err_alloc_file: iput(inode); return file; } /** * DOC: dma buf device access * * For device DMA access to a shared DMA buffer the usual sequence of operations * is fairly simple: * * 1. The exporter defines his exporter instance using * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private * buffer object into a &dma_buf. It then exports that &dma_buf to userspace * as a file descriptor by calling dma_buf_fd(). * * 2. Userspace passes this file-descriptors to all drivers it wants this buffer * to share with: First the file descriptor is converted to a &dma_buf using * dma_buf_get(). Then the buffer is attached to the device using * dma_buf_attach(). * * Up to this stage the exporter is still free to migrate or reallocate the * backing storage. * * 3. Once the buffer is attached to all devices userspace can initiate DMA * access to the shared buffer. In the kernel this is done by calling * dma_buf_map_attachment() and dma_buf_unmap_attachment(). * * 4. Once a driver is done with a shared buffer it needs to call * dma_buf_detach() (after cleaning up any mappings) and then release the * reference acquired with dma_buf_get() by calling dma_buf_put(). * * For the detailed semantics exporters are expected to implement see * &dma_buf_ops. */ /** * dma_buf_export - Creates a new dma_buf, and associates an anon file * with this buffer, so it can be exported. * Also connect the allocator specific data and ops to the buffer. * Additionally, provide a name string for exporter; useful in debugging. * * @exp_info: [in] holds all the export related information provided * by the exporter. see &struct dma_buf_export_info * for further details. * * Returns, on success, a newly created struct dma_buf object, which wraps the * supplied private data and operations for struct dma_buf_ops. On either * missing ops, or error in allocating struct dma_buf, will return negative * error. * * For most cases the easiest way to create @exp_info is through the * %DEFINE_DMA_BUF_EXPORT_INFO macro. */ struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) { struct dma_buf *dmabuf; struct dma_resv *resv = exp_info->resv; struct file *file; size_t alloc_size = sizeof(struct dma_buf); int ret; if (!exp_info->resv) alloc_size += sizeof(struct dma_resv); else /* prevent &dma_buf[1] == dma_buf->resv */ alloc_size += 1; if (WARN_ON(!exp_info->priv || !exp_info->ops || !exp_info->ops->map_dma_buf || !exp_info->ops->unmap_dma_buf || !exp_info->ops->release)) { return ERR_PTR(-EINVAL); } if (WARN_ON(exp_info->ops->cache_sgt_mapping && (exp_info->ops->pin || exp_info->ops->unpin))) return ERR_PTR(-EINVAL); if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) return ERR_PTR(-EINVAL); if (!try_module_get(exp_info->owner)) return ERR_PTR(-ENOENT); dmabuf = kzalloc(alloc_size, GFP_KERNEL); if (!dmabuf) { ret = -ENOMEM; goto err_module; } dmabuf->priv = exp_info->priv; dmabuf->ops = exp_info->ops; dmabuf->size = exp_info->size; dmabuf->exp_name = exp_info->exp_name; dmabuf->owner = exp_info->owner; spin_lock_init(&dmabuf->name_lock); init_waitqueue_head(&dmabuf->poll); dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; dmabuf->cb_in.active = dmabuf->cb_out.active = 0; if (!resv) { resv = (struct dma_resv *)&dmabuf[1]; dma_resv_init(resv); } dmabuf->resv = resv; file = dma_buf_getfile(dmabuf, exp_info->flags); if (IS_ERR(file)) { ret = PTR_ERR(file); goto err_dmabuf; } dmabuf->file = file; mutex_init(&dmabuf->lock); INIT_LIST_HEAD(&dmabuf->attachments); mutex_lock(&db_list.lock); list_add(&dmabuf->list_node, &db_list.head); mutex_unlock(&db_list.lock); ret = dma_buf_stats_setup(dmabuf); if (ret) goto err_sysfs; return dmabuf; err_sysfs: /* * Set file->f_path.dentry->d_fsdata to NULL so that when * dma_buf_release() gets invoked by dentry_ops, it exits * early before calling the release() dma_buf op. */ file->f_path.dentry->d_fsdata = NULL; fput(file); err_dmabuf: kfree(dmabuf); err_module: module_put(exp_info->owner); return ERR_PTR(ret); } EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); /** * dma_buf_fd - returns a file descriptor for the given struct dma_buf * @dmabuf: [in] pointer to dma_buf for which fd is required. * @flags: [in] flags to give to fd * * On success, returns an associated 'fd'. Else, returns error. */ int dma_buf_fd(struct dma_buf *dmabuf, int flags) { int fd; if (!dmabuf || !dmabuf->file) return -EINVAL; fd = get_unused_fd_flags(flags); if (fd < 0) return fd; fd_install(fd, dmabuf->file); return fd; } EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); /** * dma_buf_get - returns the struct dma_buf related to an fd * @fd: [in] fd associated with the struct dma_buf to be returned * * On success, returns the struct dma_buf associated with an fd; uses * file's refcounting done by fget to increase refcount. returns ERR_PTR * otherwise. */ struct dma_buf *dma_buf_get(int fd) { struct file *file; file = fget(fd); if (!file) return ERR_PTR(-EBADF); if (!is_dma_buf_file(file)) { fput(file); return ERR_PTR(-EINVAL); } return file->private_data; } EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); /** * dma_buf_put - decreases refcount of the buffer * @dmabuf: [in] buffer to reduce refcount of * * Uses file's refcounting done implicitly by fput(). * * If, as a result of this call, the refcount becomes 0, the 'release' file * operation related to this fd is called. It calls &dma_buf_ops.release vfunc * in turn, and frees the memory allocated for dmabuf when exported. */ void dma_buf_put(struct dma_buf *dmabuf) { if (WARN_ON(!dmabuf || !dmabuf->file)) return; fput(dmabuf->file); } EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); static void mangle_sg_table(struct sg_table *sg_table) { #ifdef CONFIG_DMABUF_DEBUG int i; struct scatterlist *sg; /* To catch abuse of the underlying struct page by importers mix * up the bits, but take care to preserve the low SG_ bits to * not corrupt the sgt. The mixing is undone in __unmap_dma_buf * before passing the sgt back to the exporter. */ for_each_sgtable_sg(sg_table, sg, i) sg->page_link ^= ~0xffUL; #endif } static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, enum dma_data_direction direction) { struct sg_table *sg_table; signed long ret; sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); if (IS_ERR_OR_NULL(sg_table)) return sg_table; if (!dma_buf_attachment_is_dynamic(attach)) { ret = dma_resv_wait_timeout(attach->dmabuf->resv, DMA_RESV_USAGE_KERNEL, true, MAX_SCHEDULE_TIMEOUT); if (ret < 0) { attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); return ERR_PTR(ret); } } mangle_sg_table(sg_table); return sg_table; } /** * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list * @dmabuf: [in] buffer to attach device to. * @dev: [in] device to be attached. * @importer_ops: [in] importer operations for the attachment * @importer_priv: [in] importer private pointer for the attachment * * Returns struct dma_buf_attachment pointer for this attachment. Attachments * must be cleaned up by calling dma_buf_detach(). * * Optionally this calls &dma_buf_ops.attach to allow device-specific attach * functionality. * * Returns: * * A pointer to newly created &dma_buf_attachment on success, or a negative * error code wrapped into a pointer on failure. * * Note that this can fail if the backing storage of @dmabuf is in a place not * accessible to @dev, and cannot be moved to a more suitable place. This is * indicated with the error code -EBUSY. */ struct dma_buf_attachment * dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, const struct dma_buf_attach_ops *importer_ops, void *importer_priv) { struct dma_buf_attachment *attach; int ret; if (WARN_ON(!dmabuf || !dev)) return ERR_PTR(-EINVAL); if (WARN_ON(importer_ops && !importer_ops->move_notify)) return ERR_PTR(-EINVAL); attach = kzalloc(sizeof(*attach), GFP_KERNEL); if (!attach) return ERR_PTR(-ENOMEM); attach->dev = dev; attach->dmabuf = dmabuf; if (importer_ops) attach->peer2peer = importer_ops->allow_peer2peer; attach->importer_ops = importer_ops; attach->importer_priv = importer_priv; if (dmabuf->ops->attach) { ret = dmabuf->ops->attach(dmabuf, attach); if (ret) goto err_attach; } dma_resv_lock(dmabuf->resv, NULL); list_add(&attach->node, &dmabuf->attachments); dma_resv_unlock(dmabuf->resv); /* When either the importer or the exporter can't handle dynamic * mappings we cache the mapping here to avoid issues with the * reservation object lock. */ if (dma_buf_attachment_is_dynamic(attach) != dma_buf_is_dynamic(dmabuf)) { struct sg_table *sgt; if (dma_buf_is_dynamic(attach->dmabuf)) { dma_resv_lock(attach->dmabuf->resv, NULL); ret = dmabuf->ops->pin(attach); if (ret) goto err_unlock; } sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); if (!sgt) sgt = ERR_PTR(-ENOMEM); if (IS_ERR(sgt)) { ret = PTR_ERR(sgt); goto err_unpin; } if (dma_buf_is_dynamic(attach->dmabuf)) dma_resv_unlock(attach->dmabuf->resv); attach->sgt = sgt; attach->dir = DMA_BIDIRECTIONAL; } return attach; err_attach: kfree(attach); return ERR_PTR(ret); err_unpin: if (dma_buf_is_dynamic(attach->dmabuf)) dmabuf->ops->unpin(attach); err_unlock: if (dma_buf_is_dynamic(attach->dmabuf)) dma_resv_unlock(attach->dmabuf->resv); dma_buf_detach(dmabuf, attach); return ERR_PTR(ret); } EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); /** * dma_buf_attach - Wrapper for dma_buf_dynamic_attach * @dmabuf: [in] buffer to attach device to. * @dev: [in] device to be attached. * * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static * mapping. */ struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, struct device *dev) { return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); } EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); static void __unmap_dma_buf(struct dma_buf_attachment *attach, struct sg_table *sg_table, enum dma_data_direction direction) { /* uses XOR, hence this unmangles */ mangle_sg_table(sg_table); attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); } /** * dma_buf_detach - Remove the given attachment from dmabuf's attachments list * @dmabuf: [in] buffer to detach from. * @attach: [in] attachment to be detached; is free'd after this call. * * Clean up a device attachment obtained by calling dma_buf_attach(). * * Optionally this calls &dma_buf_ops.detach for device-specific detach. */ void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) { if (WARN_ON(!dmabuf || !attach)) return; if (attach->sgt) { if (dma_buf_is_dynamic(attach->dmabuf)) dma_resv_lock(attach->dmabuf->resv, NULL); __unmap_dma_buf(attach, attach->sgt, attach->dir); if (dma_buf_is_dynamic(attach->dmabuf)) { dmabuf->ops->unpin(attach); dma_resv_unlock(attach->dmabuf->resv); } } dma_resv_lock(dmabuf->resv, NULL); list_del(&attach->node); dma_resv_unlock(dmabuf->resv); if (dmabuf->ops->detach) dmabuf->ops->detach(dmabuf, attach); kfree(attach); } EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); /** * dma_buf_pin - Lock down the DMA-buf * @attach: [in] attachment which should be pinned * * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may * call this, and only for limited use cases like scanout and not for temporary * pin operations. It is not permitted to allow userspace to pin arbitrary * amounts of buffers through this interface. * * Buffers must be unpinned by calling dma_buf_unpin(). * * Returns: * 0 on success, negative error code on failure. */ int dma_buf_pin(struct dma_buf_attachment *attach) { struct dma_buf *dmabuf = attach->dmabuf; int ret = 0; WARN_ON(!dma_buf_attachment_is_dynamic(attach)); dma_resv_assert_held(dmabuf->resv); if (dmabuf->ops->pin) ret = dmabuf->ops->pin(attach); return ret; } EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); /** * dma_buf_unpin - Unpin a DMA-buf * @attach: [in] attachment which should be unpinned * * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move * any mapping of @attach again and inform the importer through * &dma_buf_attach_ops.move_notify. */ void dma_buf_unpin(struct dma_buf_attachment *attach) { struct dma_buf *dmabuf = attach->dmabuf; WARN_ON(!dma_buf_attachment_is_dynamic(attach)); dma_resv_assert_held(dmabuf->resv); if (dmabuf->ops->unpin) dmabuf->ops->unpin(attach); } EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); /** * dma_buf_map_attachment - Returns the scatterlist table of the attachment; * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the * dma_buf_ops. * @attach: [in] attachment whose scatterlist is to be returned * @direction: [in] direction of DMA transfer * * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR * on error. May return -EINTR if it is interrupted by a signal. * * On success, the DMA addresses and lengths in the returned scatterlist are * PAGE_SIZE aligned. * * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that * the underlying backing storage is pinned for as long as a mapping exists, * therefore users/importers should not hold onto a mapping for undue amounts of * time. * * Important: Dynamic importers must wait for the exclusive fence of the struct * dma_resv attached to the DMA-BUF first. */ struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, enum dma_data_direction direction) { struct sg_table *sg_table; int r; might_sleep(); if (WARN_ON(!attach || !attach->dmabuf)) return ERR_PTR(-EINVAL); if (dma_buf_attachment_is_dynamic(attach)) dma_resv_assert_held(attach->dmabuf->resv); if (attach->sgt) { /* * Two mappings with different directions for the same * attachment are not allowed. */ if (attach->dir != direction && attach->dir != DMA_BIDIRECTIONAL) return ERR_PTR(-EBUSY); return attach->sgt; } if (dma_buf_is_dynamic(attach->dmabuf)) { dma_resv_assert_held(attach->dmabuf->resv); if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { r = attach->dmabuf->ops->pin(attach); if (r) return ERR_PTR(r); } } sg_table = __map_dma_buf(attach, direction); if (!sg_table) sg_table = ERR_PTR(-ENOMEM); if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) attach->dmabuf->ops->unpin(attach); if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { attach->sgt = sg_table; attach->dir = direction; } #ifdef CONFIG_DMA_API_DEBUG if (!IS_ERR(sg_table)) { struct scatterlist *sg; u64 addr; int len; int i; for_each_sgtable_dma_sg(sg_table, sg, i) { addr = sg_dma_address(sg); len = sg_dma_len(sg); if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { pr_debug("%s: addr %llx or len %x is not page aligned!\n", __func__, addr, len); } } } #endif /* CONFIG_DMA_API_DEBUG */ return sg_table; } EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); /** * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of * dma_buf_ops. * @attach: [in] attachment to unmap buffer from * @sg_table: [in] scatterlist info of the buffer to unmap * @direction: [in] direction of DMA transfer * * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). */ void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, struct sg_table *sg_table, enum dma_data_direction direction) { might_sleep(); if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) return; if (dma_buf_attachment_is_dynamic(attach)) dma_resv_assert_held(attach->dmabuf->resv); if (attach->sgt == sg_table) return; if (dma_buf_is_dynamic(attach->dmabuf)) dma_resv_assert_held(attach->dmabuf->resv); __unmap_dma_buf(attach, sg_table, direction); if (dma_buf_is_dynamic(attach->dmabuf) && !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) dma_buf_unpin(attach); } EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); /** * dma_buf_move_notify - notify attachments that DMA-buf is moving * * @dmabuf: [in] buffer which is moving * * Informs all attachmenst that they need to destroy and recreated all their * mappings. */ void dma_buf_move_notify(struct dma_buf *dmabuf) { struct dma_buf_attachment *attach; dma_resv_assert_held(dmabuf->resv); list_for_each_entry(attach, &dmabuf->attachments, node) if (attach->importer_ops) attach->importer_ops->move_notify(attach); } EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); /** * DOC: cpu access * * There are mutliple reasons for supporting CPU access to a dma buffer object: * * - Fallback operations in the kernel, for example when a device is connected * over USB and the kernel needs to shuffle the data around first before * sending it away. Cache coherency is handled by braketing any transactions * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() * access. * * Since for most kernel internal dma-buf accesses need the entire buffer, a * vmap interface is introduced. Note that on very old 32-bit architectures * vmalloc space might be limited and result in vmap calls failing. * * Interfaces:: * * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map) * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map) * * The vmap call can fail if there is no vmap support in the exporter, or if * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference * count for all vmap access and calls down into the exporter's vmap function * only when no vmapping exists, and only unmaps it once. Protection against * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. * * - For full compatibility on the importer side with existing userspace * interfaces, which might already support mmap'ing buffers. This is needed in * many processing pipelines (e.g. feeding a software rendered image into a * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION * framework already supported this and for DMA buffer file descriptors to * replace ION buffers mmap support was needed. * * There is no special interfaces, userspace simply calls mmap on the dma-buf * fd. But like for CPU access there's a need to braket the actual access, * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must * be restarted. * * Some systems might need some sort of cache coherency management e.g. when * CPU and GPU domains are being accessed through dma-buf at the same time. * To circumvent this problem there are begin/end coherency markers, that * forward directly to existing dma-buf device drivers vfunc hooks. Userspace * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The * sequence would be used like following: * * - mmap dma-buf fd * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you * want (with the new data being consumed by say the GPU or the scanout * device) * - munmap once you don't need the buffer any more * * For correctness and optimal performance, it is always required to use * SYNC_START and SYNC_END before and after, respectively, when accessing the * mapped address. Userspace cannot rely on coherent access, even when there * are systems where it just works without calling these ioctls. * * - And as a CPU fallback in userspace processing pipelines. * * Similar to the motivation for kernel cpu access it is again important that * the userspace code of a given importing subsystem can use the same * interfaces with a imported dma-buf buffer object as with a native buffer * object. This is especially important for drm where the userspace part of * contemporary OpenGL, X, and other drivers is huge, and reworking them to * use a different way to mmap a buffer rather invasive. * * The assumption in the current dma-buf interfaces is that redirecting the * initial mmap is all that's needed. A survey of some of the existing * subsystems shows that no driver seems to do any nefarious thing like * syncing up with outstanding asynchronous processing on the device or * allocating special resources at fault time. So hopefully this is good * enough, since adding interfaces to intercept pagefaults and allow pte * shootdowns would increase the complexity quite a bit. * * Interface:: * * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, * unsigned long); * * If the importing subsystem simply provides a special-purpose mmap call to * set up a mapping in userspace, calling do_mmap with &dma_buf.file will * equally achieve that for a dma-buf object. */ static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, enum dma_data_direction direction) { bool write = (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE); struct dma_resv *resv = dmabuf->resv; long ret; /* Wait on any implicit rendering fences */ ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), true, MAX_SCHEDULE_TIMEOUT); if (ret < 0) return ret; return 0; } /** * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific * preparations. Coherency is only guaranteed in the specified range for the * specified access direction. * @dmabuf: [in] buffer to prepare cpu access for. * @direction: [in] length of range for cpu access. * * After the cpu access is complete the caller should call * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is * it guaranteed to be coherent with other DMA access. * * This function will also wait for any DMA transactions tracked through * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit * synchronization this function will only ensure cache coherency, callers must * ensure synchronization with such DMA transactions on their own. * * Can return negative error values, returns 0 on success. */ int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, enum dma_data_direction direction) { int ret = 0; if (WARN_ON(!dmabuf)) return -EINVAL; might_lock(&dmabuf->resv->lock.base); if (dmabuf->ops->begin_cpu_access) ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); /* Ensure that all fences are waited upon - but we first allow * the native handler the chance to do so more efficiently if it * chooses. A double invocation here will be reasonably cheap no-op. */ if (ret == 0) ret = __dma_buf_begin_cpu_access(dmabuf, direction); return ret; } EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); /** * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific * actions. Coherency is only guaranteed in the specified range for the * specified access direction. * @dmabuf: [in] buffer to complete cpu access for. * @direction: [in] length of range for cpu access. * * This terminates CPU access started with dma_buf_begin_cpu_access(). * * Can return negative error values, returns 0 on success. */ int dma_buf_end_cpu_access(struct dma_buf *dmabuf, enum dma_data_direction direction) { int ret = 0; WARN_ON(!dmabuf); might_lock(&dmabuf->resv->lock.base); if (dmabuf->ops->end_cpu_access) ret = dmabuf->ops->end_cpu_access(dmabuf, direction); return ret; } EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); /** * dma_buf_mmap - Setup up a userspace mmap with the given vma * @dmabuf: [in] buffer that should back the vma * @vma: [in] vma for the mmap * @pgoff: [in] offset in pages where this mmap should start within the * dma-buf buffer. * * This function adjusts the passed in vma so that it points at the file of the * dma_buf operation. It also adjusts the starting pgoff and does bounds * checking on the size of the vma. Then it calls the exporters mmap function to * set up the mapping. * * Can return negative error values, returns 0 on success. */ int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, unsigned long pgoff) { if (WARN_ON(!dmabuf || !vma)) return -EINVAL; /* check if buffer supports mmap */ if (!dmabuf->ops->mmap) return -EINVAL; /* check for offset overflow */ if (pgoff + vma_pages(vma) < pgoff) return -EOVERFLOW; /* check for overflowing the buffer's size */ if (pgoff + vma_pages(vma) > dmabuf->size >> PAGE_SHIFT) return -EINVAL; /* readjust the vma */ vma_set_file(vma, dmabuf->file); vma->vm_pgoff = pgoff; return dmabuf->ops->mmap(dmabuf, vma); } EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); /** * dma_buf_vmap - Create virtual mapping for the buffer object into kernel * address space. Same restrictions as for vmap and friends apply. * @dmabuf: [in] buffer to vmap * @map: [out] returns the vmap pointer * * This call may fail due to lack of virtual mapping address space. * These calls are optional in drivers. The intended use for them * is for mapping objects linear in kernel space for high use objects. * * To ensure coherency users must call dma_buf_begin_cpu_access() and * dma_buf_end_cpu_access() around any cpu access performed through this * mapping. * * Returns 0 on success, or a negative errno code otherwise. */ int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) { struct iosys_map ptr; int ret = 0; iosys_map_clear(map); if (WARN_ON(!dmabuf)) return -EINVAL; if (!dmabuf->ops->vmap) return -EINVAL; mutex_lock(&dmabuf->lock); if (dmabuf->vmapping_counter) { dmabuf->vmapping_counter++; BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); *map = dmabuf->vmap_ptr; goto out_unlock; } BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); ret = dmabuf->ops->vmap(dmabuf, &ptr); if (WARN_ON_ONCE(ret)) goto out_unlock; dmabuf->vmap_ptr = ptr; dmabuf->vmapping_counter = 1; *map = dmabuf->vmap_ptr; out_unlock: mutex_unlock(&dmabuf->lock); return ret; } EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); /** * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. * @dmabuf: [in] buffer to vunmap * @map: [in] vmap pointer to vunmap */ void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) { if (WARN_ON(!dmabuf)) return; BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); BUG_ON(dmabuf->vmapping_counter == 0); BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); mutex_lock(&dmabuf->lock); if (--dmabuf->vmapping_counter == 0) { if (dmabuf->ops->vunmap) dmabuf->ops->vunmap(dmabuf, map); iosys_map_clear(&dmabuf->vmap_ptr); } mutex_unlock(&dmabuf->lock); } EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); #ifdef CONFIG_DEBUG_FS static int dma_buf_debug_show(struct seq_file *s, void *unused) { struct dma_buf *buf_obj; struct dma_buf_attachment *attach_obj; int count = 0, attach_count; size_t size = 0; int ret; ret = mutex_lock_interruptible(&db_list.lock); if (ret) return ret; seq_puts(s, "\nDma-buf Objects:\n"); seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", "size", "flags", "mode", "count", "ino"); list_for_each_entry(buf_obj, &db_list.head, list_node) { ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); if (ret) goto error_unlock; spin_lock(&buf_obj->name_lock); seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", buf_obj->size, buf_obj->file->f_flags, buf_obj->file->f_mode, file_count(buf_obj->file), buf_obj->exp_name, file_inode(buf_obj->file)->i_ino, buf_obj->name ?: "<none>"); spin_unlock(&buf_obj->name_lock); dma_resv_describe(buf_obj->resv, s); seq_puts(s, "\tAttached Devices:\n"); attach_count = 0; list_for_each_entry(attach_obj, &buf_obj->attachments, node) { seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); attach_count++; } dma_resv_unlock(buf_obj->resv); seq_printf(s, "Total %d devices attached\n\n", attach_count); count++; size += buf_obj->size; } seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); mutex_unlock(&db_list.lock); return 0; error_unlock: mutex_unlock(&db_list.lock); return ret; } DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); static struct dentry *dma_buf_debugfs_dir; static int dma_buf_init_debugfs(void) { struct dentry *d; int err = 0; d = debugfs_create_dir("dma_buf", NULL); if (IS_ERR(d)) return PTR_ERR(d); dma_buf_debugfs_dir = d; d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, NULL, &dma_buf_debug_fops); if (IS_ERR(d)) { pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); debugfs_remove_recursive(dma_buf_debugfs_dir); dma_buf_debugfs_dir = NULL; err = PTR_ERR(d); } return err; } static void dma_buf_uninit_debugfs(void) { debugfs_remove_recursive(dma_buf_debugfs_dir); } #else static inline int dma_buf_init_debugfs(void) { return 0; } static inline void dma_buf_uninit_debugfs(void) { } #endif static int __init dma_buf_init(void) { int ret; ret = dma_buf_init_sysfs_statistics(); if (ret) return ret; dma_buf_mnt = kern_mount(&dma_buf_fs_type); if (IS_ERR(dma_buf_mnt)) return PTR_ERR(dma_buf_mnt); mutex_init(&db_list.lock); INIT_LIST_HEAD(&db_list.head); dma_buf_init_debugfs(); return 0; } subsys_initcall(dma_buf_init); static void __exit dma_buf_deinit(void) { dma_buf_uninit_debugfs(); kern_unmount(dma_buf_mnt); dma_buf_uninit_sysfs_statistics(); } __exitcall(dma_buf_deinit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1