Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vinod Koul | 11490 | 99.51% | 4 | 33.33% |
Björn Andersson | 16 | 0.14% | 1 | 8.33% |
Luca Weiss | 16 | 0.14% | 1 | 8.33% |
Konrad Dybcio | 7 | 0.06% | 1 | 8.33% |
Felipe Balbi | 7 | 0.06% | 1 | 8.33% |
nixiaoming | 5 | 0.04% | 1 | 8.33% |
Tuo Cao | 3 | 0.03% | 1 | 8.33% |
Nathan Chancellor | 1 | 0.01% | 1 | 8.33% |
Arnd Bergmann | 1 | 0.01% | 1 | 8.33% |
Total | 11546 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved. * Copyright (c) 2020, Linaro Limited */ #include <dt-bindings/dma/qcom-gpi.h> #include <linux/bitfield.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/module.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/dma/qcom-gpi-dma.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include "../dmaengine.h" #include "../virt-dma.h" #define TRE_TYPE_DMA 0x10 #define TRE_TYPE_GO 0x20 #define TRE_TYPE_CONFIG0 0x22 /* TRE flags */ #define TRE_FLAGS_CHAIN BIT(0) #define TRE_FLAGS_IEOB BIT(8) #define TRE_FLAGS_IEOT BIT(9) #define TRE_FLAGS_BEI BIT(10) #define TRE_FLAGS_LINK BIT(11) #define TRE_FLAGS_TYPE GENMASK(23, 16) /* SPI CONFIG0 WD0 */ #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0) #define TRE_SPI_C0_LOOPBACK BIT(8) #define TRE_SPI_C0_CS BIT(11) #define TRE_SPI_C0_CPHA BIT(12) #define TRE_SPI_C0_CPOL BIT(13) #define TRE_SPI_C0_TX_PACK BIT(24) #define TRE_SPI_C0_RX_PACK BIT(25) /* CONFIG0 WD2 */ #define TRE_C0_CLK_DIV GENMASK(11, 0) #define TRE_C0_CLK_SRC GENMASK(19, 16) /* SPI GO WD0 */ #define TRE_SPI_GO_CMD GENMASK(4, 0) #define TRE_SPI_GO_CS GENMASK(10, 8) #define TRE_SPI_GO_FRAG BIT(26) /* GO WD2 */ #define TRE_RX_LEN GENMASK(23, 0) /* I2C Config0 WD0 */ #define TRE_I2C_C0_TLOW GENMASK(7, 0) #define TRE_I2C_C0_THIGH GENMASK(15, 8) #define TRE_I2C_C0_TCYL GENMASK(23, 16) #define TRE_I2C_C0_TX_PACK BIT(24) #define TRE_I2C_C0_RX_PACK BIT(25) /* I2C GO WD0 */ #define TRE_I2C_GO_CMD GENMASK(4, 0) #define TRE_I2C_GO_ADDR GENMASK(14, 8) #define TRE_I2C_GO_STRETCH BIT(26) /* DMA TRE */ #define TRE_DMA_LEN GENMASK(23, 0) /* Register offsets from gpi-top */ #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k))) #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24) #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20) #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14) #define GPII_n_CH_k_CNTXT_0_DIR BIT(3) #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0) #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \ (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \ FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \ FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \ FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto)) #define GPI_CHTYPE_DIR_IN (0) #define GPI_CHTYPE_DIR_OUT (1) #define GPI_CHTYPE_PROTO_GPI (0x2) #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k))) #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n))) #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24) #define GPII_n_CH_CMD_CHID GENMASK(7, 0) #define GPII_n_CH_CMD(opcode, chid) \ (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \ FIELD_PREP(GPII_n_CH_CMD_CHID, chid)) #define GPII_n_CH_CMD_ALLOCATE (0) #define GPII_n_CH_CMD_START (1) #define GPII_n_CH_CMD_STOP (2) #define GPII_n_CH_CMD_RESET (9) #define GPII_n_CH_CMD_DE_ALLOC (10) #define GPII_n_CH_CMD_UART_SW_STALE (32) #define GPII_n_CH_CMD_UART_RFR_READY (33) #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34) /* EV Context Array */ #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k))) #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24) #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20) #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16) #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0) #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \ (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \ FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \ FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype)) #define GPI_INTTYPE_IRQ (1) #define GPI_CHTYPE_GPI_EV (0x2) enum CNTXT_OFFS { CNTXT_0_CONFIG = 0x0, CNTXT_1_R_LENGTH = 0x4, CNTXT_2_RING_BASE_LSB = 0x8, CNTXT_3_RING_BASE_MSB = 0xC, CNTXT_4_RING_RP_LSB = 0x10, CNTXT_5_RING_RP_MSB = 0x14, CNTXT_6_RING_WP_LSB = 0x18, CNTXT_7_RING_WP_MSB = 0x1C, CNTXT_8_RING_INT_MOD = 0x20, CNTXT_9_RING_INTVEC = 0x24, CNTXT_10_RING_MSI_LSB = 0x28, CNTXT_11_RING_MSI_MSB = 0x2C, CNTXT_12_RING_RP_UPDATE_LSB = 0x30, CNTXT_13_RING_RP_UPDATE_MSB = 0x34, }; #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k))) #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n))) #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24) #define GPII_n_EV_CMD_CHID GENMASK(7, 0) #define GPII_n_EV_CMD(opcode, chid) \ (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \ FIELD_PREP(GPII_n_EV_CMD_CHID, chid)) #define GPII_n_EV_CH_CMD_ALLOCATE (0x00) #define GPII_n_EV_CH_CMD_RESET (0x09) #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A) #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n))) /* mask type register */ #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n))) #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0) #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6) #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3) #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2) #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1) #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0) #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n))) #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n))) /* Mask channel control interrupt register */ #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n))) #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0) /* Mask event control interrupt register */ #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n))) #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0) #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n))) #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n))) /* Mask event interrupt register */ #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n))) #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0) #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n))) #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n))) #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0) /* GPII specific Global - Enable bit register */ #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n))) #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n))) #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n))) /* GPII general interrupt - Enable bit register */ #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n))) #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0) #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n))) /* GPII Interrupt Type register */ #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n))) #define GPII_n_CNTXT_INTSET_BMSK BIT(0) #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n))) #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n))) #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n))) #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n))) #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n))) /* QOS Registers */ #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k))) /* Scratch registers */ #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k))) #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0) #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4) #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16) #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \ (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \ FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \ FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid)) #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k))) #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k))) #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k))) struct __packed gpi_tre { u32 dword[4]; }; enum msm_gpi_tce_code { MSM_GPI_TCE_SUCCESS = 1, MSM_GPI_TCE_EOT = 2, MSM_GPI_TCE_EOB = 4, MSM_GPI_TCE_UNEXP_ERR = 16, }; #define CMD_TIMEOUT_MS (250) #define MAX_CHANNELS_PER_GPII (2) #define GPI_TX_CHAN (0) #define GPI_RX_CHAN (1) #define STATE_IGNORE (U32_MAX) #define EV_FACTOR (2) #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */ #define CHAN_TRES 64 struct __packed xfer_compl_event { u64 ptr; u32 length:24; u8 code; u16 status; u8 type; u8 chid; }; struct __packed immediate_data_event { u8 data_bytes[8]; u8 length:4; u8 resvd:4; u16 tre_index; u8 code; u16 status; u8 type; u8 chid; }; struct __packed qup_notif_event { u32 status; u32 time; u32 count:24; u8 resvd; u16 resvd1; u8 type; u8 chid; }; struct __packed gpi_ere { u32 dword[4]; }; enum GPI_EV_TYPE { XFER_COMPLETE_EV_TYPE = 0x22, IMMEDIATE_DATA_EV_TYPE = 0x30, QUP_NOTIF_EV_TYPE = 0x31, STALE_EV_TYPE = 0xFF, }; union __packed gpi_event { struct __packed xfer_compl_event xfer_compl_event; struct __packed immediate_data_event immediate_data_event; struct __packed qup_notif_event qup_notif_event; struct __packed gpi_ere gpi_ere; }; enum gpii_irq_settings { DEFAULT_IRQ_SETTINGS, MASK_IEOB_SETTINGS, }; enum gpi_ev_state { DEFAULT_EV_CH_STATE = 0, EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE, EV_STATE_ALLOCATED, MAX_EV_STATES }; static const char *const gpi_ev_state_str[MAX_EV_STATES] = { [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED", [EV_STATE_ALLOCATED] = "ALLOCATED", }; #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \ "INVALID" : gpi_ev_state_str[(_state)]) enum gpi_ch_state { DEFAULT_CH_STATE = 0x0, CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE, CH_STATE_ALLOCATED = 0x1, CH_STATE_STARTED = 0x2, CH_STATE_STOPPED = 0x3, CH_STATE_STOP_IN_PROC = 0x4, CH_STATE_ERROR = 0xf, MAX_CH_STATES }; enum gpi_cmd { GPI_CH_CMD_BEGIN, GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN, GPI_CH_CMD_START, GPI_CH_CMD_STOP, GPI_CH_CMD_RESET, GPI_CH_CMD_DE_ALLOC, GPI_CH_CMD_UART_SW_STALE, GPI_CH_CMD_UART_RFR_READY, GPI_CH_CMD_UART_RFR_NOT_READY, GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY, GPI_EV_CMD_BEGIN, GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN, GPI_EV_CMD_RESET, GPI_EV_CMD_DEALLOC, GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC, GPI_MAX_CMD, }; #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END) static const char *const gpi_cmd_str[GPI_MAX_CMD] = { [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE", [GPI_CH_CMD_START] = "CH START", [GPI_CH_CMD_STOP] = "CH STOP", [GPI_CH_CMD_RESET] = "CH_RESET", [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC", [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE", [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY", [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY", [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE", [GPI_EV_CMD_RESET] = "EV RESET", [GPI_EV_CMD_DEALLOC] = "EV DEALLOC", }; #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \ gpi_cmd_str[(_cmd)]) /* * @DISABLE_STATE: no register access allowed * @CONFIG_STATE: client has configured the channel * @PREP_HARDWARE: register access is allowed * however, no processing EVENTS * @ACTIVE_STATE: channels are fully operational * @PREPARE_TERMINATE: graceful termination of channels * register access is allowed * @PAUSE_STATE: channels are active, but not processing any events */ enum gpi_pm_state { DISABLE_STATE, CONFIG_STATE, PREPARE_HARDWARE, ACTIVE_STATE, PREPARE_TERMINATE, PAUSE_STATE, MAX_PM_STATE }; #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE) static const char *const gpi_pm_state_str[MAX_PM_STATE] = { [DISABLE_STATE] = "DISABLE", [CONFIG_STATE] = "CONFIG", [PREPARE_HARDWARE] = "PREPARE HARDWARE", [ACTIVE_STATE] = "ACTIVE", [PREPARE_TERMINATE] = "PREPARE TERMINATE", [PAUSE_STATE] = "PAUSE", }; #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \ "INVALID" : gpi_pm_state_str[(_state)]) static const struct { enum gpi_cmd gpi_cmd; u32 opcode; u32 state; } gpi_cmd_info[GPI_MAX_CMD] = { { GPI_CH_CMD_ALLOCATE, GPII_n_CH_CMD_ALLOCATE, CH_STATE_ALLOCATED, }, { GPI_CH_CMD_START, GPII_n_CH_CMD_START, CH_STATE_STARTED, }, { GPI_CH_CMD_STOP, GPII_n_CH_CMD_STOP, CH_STATE_STOPPED, }, { GPI_CH_CMD_RESET, GPII_n_CH_CMD_RESET, CH_STATE_ALLOCATED, }, { GPI_CH_CMD_DE_ALLOC, GPII_n_CH_CMD_DE_ALLOC, CH_STATE_NOT_ALLOCATED, }, { GPI_CH_CMD_UART_SW_STALE, GPII_n_CH_CMD_UART_SW_STALE, STATE_IGNORE, }, { GPI_CH_CMD_UART_RFR_READY, GPII_n_CH_CMD_UART_RFR_READY, STATE_IGNORE, }, { GPI_CH_CMD_UART_RFR_NOT_READY, GPII_n_CH_CMD_UART_RFR_NOT_READY, STATE_IGNORE, }, { GPI_EV_CMD_ALLOCATE, GPII_n_EV_CH_CMD_ALLOCATE, EV_STATE_ALLOCATED, }, { GPI_EV_CMD_RESET, GPII_n_EV_CH_CMD_RESET, EV_STATE_ALLOCATED, }, { GPI_EV_CMD_DEALLOC, GPII_n_EV_CH_CMD_DE_ALLOC, EV_STATE_NOT_ALLOCATED, }, }; struct gpi_ring { void *pre_aligned; size_t alloc_size; phys_addr_t phys_addr; dma_addr_t dma_handle; void *base; void *wp; void *rp; u32 len; u32 el_size; u32 elements; bool configured; }; struct gpi_dev { struct dma_device dma_device; struct device *dev; struct resource *res; void __iomem *regs; void __iomem *ee_base; /*ee register base address*/ u32 max_gpii; /* maximum # of gpii instances available per gpi block */ u32 gpii_mask; /* gpii instances available for apps */ u32 ev_factor; /* ev ring length factor */ struct gpii *gpiis; }; struct reg_info { char *name; u32 offset; u32 val; }; struct gchan { struct virt_dma_chan vc; u32 chid; u32 seid; u32 protocol; struct gpii *gpii; enum gpi_ch_state ch_state; enum gpi_pm_state pm_state; void __iomem *ch_cntxt_base_reg; void __iomem *ch_cntxt_db_reg; void __iomem *ch_cmd_reg; u32 dir; struct gpi_ring ch_ring; void *config; }; struct gpii { u32 gpii_id; struct gchan gchan[MAX_CHANNELS_PER_GPII]; struct gpi_dev *gpi_dev; int irq; void __iomem *regs; /* points to gpi top */ void __iomem *ev_cntxt_base_reg; void __iomem *ev_cntxt_db_reg; void __iomem *ev_ring_rp_lsb_reg; void __iomem *ev_cmd_reg; void __iomem *ieob_clr_reg; struct mutex ctrl_lock; enum gpi_ev_state ev_state; bool configured_irq; enum gpi_pm_state pm_state; rwlock_t pm_lock; struct gpi_ring ev_ring; struct tasklet_struct ev_task; /* event processing tasklet */ struct completion cmd_completion; enum gpi_cmd gpi_cmd; u32 cntxt_type_irq_msk; bool ieob_set; }; #define MAX_TRE 3 struct gpi_desc { struct virt_dma_desc vd; size_t len; void *db; /* DB register to program */ struct gchan *gchan; struct gpi_tre tre[MAX_TRE]; u32 num_tre; }; static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = { GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN }; static irqreturn_t gpi_handle_irq(int irq, void *data); static void gpi_ring_recycle_ev_element(struct gpi_ring *ring); static int gpi_ring_add_element(struct gpi_ring *ring, void **wp); static void gpi_process_events(struct gpii *gpii); static inline struct gchan *to_gchan(struct dma_chan *dma_chan) { return container_of(dma_chan, struct gchan, vc.chan); } static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd) { return container_of(vd, struct gpi_desc, vd); } static inline phys_addr_t to_physical(const struct gpi_ring *const ring, void *addr) { return ring->phys_addr + (addr - ring->base); } static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr) { return ring->base + (addr - ring->phys_addr); } static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr) { return readl_relaxed(addr); } static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val) { writel_relaxed(val, addr); } /* gpi_write_reg_field - write to specific bit field */ static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr, u32 mask, u32 shift, u32 val) { u32 tmp = gpi_read_reg(gpii, addr); tmp &= ~mask; val = tmp | ((val << shift) & mask); gpi_write_reg(gpii, addr, val); } static __always_inline void gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val) { void __iomem *addr = gpii->regs + offset; u32 tmp = gpi_read_reg(gpii, addr); tmp &= ~mask; tmp |= u32_encode_bits(val, mask); gpi_write_reg(gpii, addr, tmp); } static void gpi_disable_interrupts(struct gpii *gpii) { gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0); gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0); gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0); gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0); gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), GPII_n_CNTXT_INTSET_BMSK, 0); gpii->cntxt_type_irq_msk = 0; devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii); gpii->configured_irq = false; } /* configure and enable interrupts */ static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask) { const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL | GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB | GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB | GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL | GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); int ret; if (!gpii->configured_irq) { ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq, gpi_handle_irq, IRQF_TRIGGER_HIGH, "gpi-dma", gpii); if (ret < 0) { dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n", gpii->irq, ret); return ret; } } if (settings == MASK_IEOB_SETTINGS) { /* * GPII only uses one EV ring per gpii so we can globally * enable/disable IEOB interrupt */ if (mask) gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; else gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB); gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk); } else { gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable); gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK); gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK); gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK); gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK); gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK); gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0); gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0); gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0); gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0); gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), GPII_n_CNTXT_INTSET_BMSK, 1); gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0); gpii->cntxt_type_irq_msk = enable; } gpii->configured_irq = true; return 0; } /* Sends gpii event or channel command */ static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan, enum gpi_cmd gpi_cmd) { u32 chid = MAX_CHANNELS_PER_GPII; unsigned long timeout; void __iomem *cmd_reg; u32 cmd; if (gpi_cmd >= GPI_MAX_CMD) return -EINVAL; if (IS_CHAN_CMD(gpi_cmd)) chid = gchan->chid; dev_dbg(gpii->gpi_dev->dev, "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid); /* send opcode and wait for completion */ reinit_completion(&gpii->cmd_completion); gpii->gpi_cmd = gpi_cmd; cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg; cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) : GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0); gpi_write_reg(gpii, cmd_reg, cmd); timeout = wait_for_completion_timeout(&gpii->cmd_completion, msecs_to_jiffies(CMD_TIMEOUT_MS)); if (!timeout) { dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid); return -EIO; } /* confirm new ch state is correct , if the cmd is a state change cmd */ if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE) return 0; if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state) return 0; if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state) return 0; return -EIO; } /* program transfer ring DB register */ static inline void gpi_write_ch_db(struct gchan *gchan, struct gpi_ring *ring, void *wp) { struct gpii *gpii = gchan->gpii; phys_addr_t p_wp; p_wp = to_physical(ring, wp); gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp); } /* program event ring DB register */ static inline void gpi_write_ev_db(struct gpii *gpii, struct gpi_ring *ring, void *wp) { phys_addr_t p_wp; p_wp = ring->phys_addr + (wp - ring->base); gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp); } /* process transfer completion interrupt */ static void gpi_process_ieob(struct gpii *gpii) { gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0); tasklet_hi_schedule(&gpii->ev_task); } /* process channel control interrupt */ static void gpi_process_ch_ctrl_irq(struct gpii *gpii) { u32 gpii_id = gpii->gpii_id; u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id); u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset); struct gchan *gchan; u32 chid, state; /* clear the status */ offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id); gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq); for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) { if (!(BIT(chid) & ch_irq)) continue; gchan = &gpii->gchan[chid]; state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg + CNTXT_0_CONFIG); state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state); /* * CH_CMD_DEALLOC cmd always successful. However cmd does * not change hardware status. So overwriting software state * to default state. */ if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC) state = DEFAULT_CH_STATE; gchan->ch_state = state; /* * Triggering complete all if ch_state is not a stop in process. * Stop in process is a transition state and we will wait for * stop interrupt before notifying. */ if (gchan->ch_state != CH_STATE_STOP_IN_PROC) complete_all(&gpii->cmd_completion); } } /* processing gpi general error interrupts */ static void gpi_process_gen_err_irq(struct gpii *gpii) { u32 gpii_id = gpii->gpii_id; u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id); u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); /* clear the status */ dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts); /* Clear the register */ offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id); gpi_write_reg(gpii, gpii->regs + offset, irq_stts); } /* processing gpi level error interrupts */ static void gpi_process_glob_err_irq(struct gpii *gpii) { u32 gpii_id = gpii->gpii_id; u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id); u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id); gpi_write_reg(gpii, gpii->regs + offset, irq_stts); /* only error interrupt should be set */ if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) { dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts); return; } offset = GPII_n_ERROR_LOG_OFFS(gpii_id); gpi_write_reg(gpii, gpii->regs + offset, 0); } /* gpii interrupt handler */ static irqreturn_t gpi_handle_irq(int irq, void *data) { struct gpii *gpii = data; u32 gpii_id = gpii->gpii_id; u32 type, offset; unsigned long flags; read_lock_irqsave(&gpii->pm_lock, flags); /* * States are out of sync to receive interrupt * while software state is in DISABLE state, bailing out. */ if (!REG_ACCESS_VALID(gpii->pm_state)) { dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n", TO_GPI_PM_STR(gpii->pm_state)); goto exit_irq; } offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); type = gpi_read_reg(gpii, gpii->regs + offset); do { /* global gpii error */ if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) { gpi_process_glob_err_irq(gpii); type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB); } /* transfer complete interrupt */ if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) { gpi_process_ieob(gpii); type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; } /* event control irq */ if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) { u32 ev_state; u32 ev_ch_irq; dev_dbg(gpii->gpi_dev->dev, "processing EV CTRL interrupt\n"); offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id); ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset); offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS (gpii_id); gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq); ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg + CNTXT_0_CONFIG); ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state); /* * CMD EV_CMD_DEALLOC is always successful. However * cmd does not change hardware status. So overwriting * software state to default state. */ if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC) ev_state = DEFAULT_EV_CH_STATE; gpii->ev_state = ev_state; dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n", TO_GPI_EV_STATE_STR(gpii->ev_state)); complete_all(&gpii->cmd_completion); type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL); } /* channel control irq */ if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) { dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n"); gpi_process_ch_ctrl_irq(gpii); type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); } if (type) { dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type); gpi_process_gen_err_irq(gpii); goto exit_irq; } offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); type = gpi_read_reg(gpii, gpii->regs + offset); } while (type); exit_irq: read_unlock_irqrestore(&gpii->pm_lock, flags); return IRQ_HANDLED; } /* process DMA Immediate completion data events */ static void gpi_process_imed_data_event(struct gchan *gchan, struct immediate_data_event *imed_event) { struct gpii *gpii = gchan->gpii; struct gpi_ring *ch_ring = &gchan->ch_ring; void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index); struct dmaengine_result result; struct gpi_desc *gpi_desc; struct virt_dma_desc *vd; unsigned long flags; u32 chid; /* * If channel not active don't process event */ if (gchan->pm_state != ACTIVE_STATE) { dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", TO_GPI_PM_STR(gchan->pm_state)); return; } spin_lock_irqsave(&gchan->vc.lock, flags); vd = vchan_next_desc(&gchan->vc); if (!vd) { struct gpi_ere *gpi_ere; struct gpi_tre *gpi_tre; spin_unlock_irqrestore(&gchan->vc.lock, flags); dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n"); gpi_ere = (struct gpi_ere *)imed_event; dev_dbg(gpii->gpi_dev->dev, "Event: %08x %08x %08x %08x\n", gpi_ere->dword[0], gpi_ere->dword[1], gpi_ere->dword[2], gpi_ere->dword[3]); gpi_tre = tre; dev_dbg(gpii->gpi_dev->dev, "Pending TRE: %08x %08x %08x %08x\n", gpi_tre->dword[0], gpi_tre->dword[1], gpi_tre->dword[2], gpi_tre->dword[3]); return; } gpi_desc = to_gpi_desc(vd); spin_unlock_irqrestore(&gchan->vc.lock, flags); /* * RP pointed by Event is to last TRE processed, * we need to update ring rp to tre + 1 */ tre += ch_ring->el_size; if (tre >= (ch_ring->base + ch_ring->len)) tre = ch_ring->base; ch_ring->rp = tre; /* make sure rp updates are immediately visible to all cores */ smp_wmb(); chid = imed_event->chid; if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { if (chid == GPI_RX_CHAN) goto gpi_free_desc; else return; } if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR) result.result = DMA_TRANS_ABORTED; else result.result = DMA_TRANS_NOERROR; result.residue = gpi_desc->len - imed_event->length; dma_cookie_complete(&vd->tx); dmaengine_desc_get_callback_invoke(&vd->tx, &result); gpi_free_desc: spin_lock_irqsave(&gchan->vc.lock, flags); list_del(&vd->node); spin_unlock_irqrestore(&gchan->vc.lock, flags); kfree(gpi_desc); gpi_desc = NULL; } /* processing transfer completion events */ static void gpi_process_xfer_compl_event(struct gchan *gchan, struct xfer_compl_event *compl_event) { struct gpii *gpii = gchan->gpii; struct gpi_ring *ch_ring = &gchan->ch_ring; void *ev_rp = to_virtual(ch_ring, compl_event->ptr); struct virt_dma_desc *vd; struct gpi_desc *gpi_desc; struct dmaengine_result result; unsigned long flags; u32 chid; /* only process events on active channel */ if (unlikely(gchan->pm_state != ACTIVE_STATE)) { dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", TO_GPI_PM_STR(gchan->pm_state)); return; } spin_lock_irqsave(&gchan->vc.lock, flags); vd = vchan_next_desc(&gchan->vc); if (!vd) { struct gpi_ere *gpi_ere; spin_unlock_irqrestore(&gchan->vc.lock, flags); dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n"); gpi_ere = (struct gpi_ere *)compl_event; dev_err(gpii->gpi_dev->dev, "Event: %08x %08x %08x %08x\n", gpi_ere->dword[0], gpi_ere->dword[1], gpi_ere->dword[2], gpi_ere->dword[3]); return; } gpi_desc = to_gpi_desc(vd); spin_unlock_irqrestore(&gchan->vc.lock, flags); /* * RP pointed by Event is to last TRE processed, * we need to update ring rp to ev_rp + 1 */ ev_rp += ch_ring->el_size; if (ev_rp >= (ch_ring->base + ch_ring->len)) ev_rp = ch_ring->base; ch_ring->rp = ev_rp; /* update must be visible to other cores */ smp_wmb(); chid = compl_event->chid; if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { if (chid == GPI_RX_CHAN) goto gpi_free_desc; else return; } if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) { dev_err(gpii->gpi_dev->dev, "Error in Transaction\n"); result.result = DMA_TRANS_ABORTED; } else { dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n"); result.result = DMA_TRANS_NOERROR; } result.residue = gpi_desc->len - compl_event->length; dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue); dma_cookie_complete(&vd->tx); dmaengine_desc_get_callback_invoke(&vd->tx, &result); gpi_free_desc: spin_lock_irqsave(&gchan->vc.lock, flags); list_del(&vd->node); spin_unlock_irqrestore(&gchan->vc.lock, flags); kfree(gpi_desc); gpi_desc = NULL; } /* process all events */ static void gpi_process_events(struct gpii *gpii) { struct gpi_ring *ev_ring = &gpii->ev_ring; phys_addr_t cntxt_rp; void *rp; union gpi_event *gpi_event; struct gchan *gchan; u32 chid, type; cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); rp = to_virtual(ev_ring, cntxt_rp); do { while (rp != ev_ring->rp) { gpi_event = ev_ring->rp; chid = gpi_event->xfer_compl_event.chid; type = gpi_event->xfer_compl_event.type; dev_dbg(gpii->gpi_dev->dev, "Event: CHID:%u, type:%x %08x %08x %08x %08x\n", chid, type, gpi_event->gpi_ere.dword[0], gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2], gpi_event->gpi_ere.dword[3]); switch (type) { case XFER_COMPLETE_EV_TYPE: gchan = &gpii->gchan[chid]; gpi_process_xfer_compl_event(gchan, &gpi_event->xfer_compl_event); break; case STALE_EV_TYPE: dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n"); break; case IMMEDIATE_DATA_EV_TYPE: gchan = &gpii->gchan[chid]; gpi_process_imed_data_event(gchan, &gpi_event->immediate_data_event); break; case QUP_NOTIF_EV_TYPE: dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n"); break; default: dev_dbg(gpii->gpi_dev->dev, "not supported event type:0x%x\n", type); } gpi_ring_recycle_ev_element(ev_ring); } gpi_write_ev_db(gpii, ev_ring, ev_ring->wp); /* clear pending IEOB events */ gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); rp = to_virtual(ev_ring, cntxt_rp); } while (rp != ev_ring->rp); } /* processing events using tasklet */ static void gpi_ev_tasklet(unsigned long data) { struct gpii *gpii = (struct gpii *)data; read_lock(&gpii->pm_lock); if (!REG_ACCESS_VALID(gpii->pm_state)) { read_unlock(&gpii->pm_lock); dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n", TO_GPI_PM_STR(gpii->pm_state)); return; } /* process the events */ gpi_process_events(gpii); /* enable IEOB, switching back to interrupts */ gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1); read_unlock(&gpii->pm_lock); } /* marks all pending events for the channel as stale */ static void gpi_mark_stale_events(struct gchan *gchan) { struct gpii *gpii = gchan->gpii; struct gpi_ring *ev_ring = &gpii->ev_ring; u32 cntxt_rp, local_rp; void *ev_rp; cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); ev_rp = ev_ring->rp; local_rp = (u32)to_physical(ev_ring, ev_rp); while (local_rp != cntxt_rp) { union gpi_event *gpi_event = ev_rp; u32 chid = gpi_event->xfer_compl_event.chid; if (chid == gchan->chid) gpi_event->xfer_compl_event.type = STALE_EV_TYPE; ev_rp += ev_ring->el_size; if (ev_rp >= (ev_ring->base + ev_ring->len)) ev_rp = ev_ring->base; cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); local_rp = (u32)to_physical(ev_ring, ev_rp); } } /* reset sw state and issue channel reset or de-alloc */ static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd) { struct gpii *gpii = gchan->gpii; struct gpi_ring *ch_ring = &gchan->ch_ring; unsigned long flags; LIST_HEAD(list); int ret; ret = gpi_send_cmd(gpii, gchan, gpi_cmd); if (ret) { dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", TO_GPI_CMD_STR(gpi_cmd), ret); return ret; } /* initialize the local ring ptrs */ ch_ring->rp = ch_ring->base; ch_ring->wp = ch_ring->base; /* visible to other cores */ smp_wmb(); /* check event ring for any stale events */ write_lock_irq(&gpii->pm_lock); gpi_mark_stale_events(gchan); /* remove all async descriptors */ spin_lock_irqsave(&gchan->vc.lock, flags); vchan_get_all_descriptors(&gchan->vc, &list); spin_unlock_irqrestore(&gchan->vc.lock, flags); write_unlock_irq(&gpii->pm_lock); vchan_dma_desc_free_list(&gchan->vc, &list); return 0; } static int gpi_start_chan(struct gchan *gchan) { struct gpii *gpii = gchan->gpii; int ret; ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START); if (ret) { dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", TO_GPI_CMD_STR(GPI_CH_CMD_START), ret); return ret; } /* gpii CH is active now */ write_lock_irq(&gpii->pm_lock); gchan->pm_state = ACTIVE_STATE; write_unlock_irq(&gpii->pm_lock); return 0; } static int gpi_stop_chan(struct gchan *gchan) { struct gpii *gpii = gchan->gpii; int ret; ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP); if (ret) { dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret); return ret; } return 0; } /* allocate and configure the transfer channel */ static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd) { struct gpii *gpii = chan->gpii; struct gpi_ring *ring = &chan->ch_ring; int ret; u32 id = gpii->gpii_id; u32 chid = chan->chid; u32 pair_chid = !chid; if (send_alloc_cmd) { ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE); if (ret) { dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret); return ret; } } gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG, GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI)); gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len); gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr); gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr)); gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, upper_32_bits(ring->phys_addr)); gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid), GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid)); gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0); gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0); gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0); gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1); /* flush all the writes */ wmb(); return 0; } /* allocate and configure event ring */ static int gpi_alloc_ev_chan(struct gpii *gpii) { struct gpi_ring *ring = &gpii->ev_ring; void __iomem *base = gpii->ev_cntxt_base_reg; int ret; ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE); if (ret) { dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n", TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret); return ret; } /* program event context */ gpi_write_reg(gpii, base + CNTXT_0_CONFIG, GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV)); gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len); gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr)); gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr)); gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, upper_32_bits(ring->phys_addr)); gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0); gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0); gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0); gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0); /* add events to ring */ ring->wp = (ring->base + ring->len - ring->el_size); /* flush all the writes */ wmb(); /* gpii is active now */ write_lock_irq(&gpii->pm_lock); gpii->pm_state = ACTIVE_STATE; write_unlock_irq(&gpii->pm_lock); gpi_write_ev_db(gpii, ring, ring->wp); return 0; } /* calculate # of ERE/TRE available to queue */ static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring) { int elements = 0; if (ring->wp < ring->rp) { elements = ((ring->rp - ring->wp) / ring->el_size) - 1; } else { elements = (ring->rp - ring->base) / ring->el_size; elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1; } return elements; } static int gpi_ring_add_element(struct gpi_ring *ring, void **wp) { if (gpi_ring_num_elements_avail(ring) <= 0) return -ENOMEM; *wp = ring->wp; ring->wp += ring->el_size; if (ring->wp >= (ring->base + ring->len)) ring->wp = ring->base; /* visible to other cores */ smp_wmb(); return 0; } static void gpi_ring_recycle_ev_element(struct gpi_ring *ring) { /* Update the WP */ ring->wp += ring->el_size; if (ring->wp >= (ring->base + ring->len)) ring->wp = ring->base; /* Update the RP */ ring->rp += ring->el_size; if (ring->rp >= (ring->base + ring->len)) ring->rp = ring->base; /* visible to other cores */ smp_wmb(); } static void gpi_free_ring(struct gpi_ring *ring, struct gpii *gpii) { dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size, ring->pre_aligned, ring->dma_handle); memset(ring, 0, sizeof(*ring)); } /* allocate memory for transfer and event rings */ static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements, u32 el_size, struct gpii *gpii) { u64 len = elements * el_size; int bit; /* ring len must be power of 2 */ bit = find_last_bit((unsigned long *)&len, 32); if (((1 << bit) - 1) & len) bit++; len = 1 << bit; ring->alloc_size = (len + (len - 1)); dev_dbg(gpii->gpi_dev->dev, "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n", elements, el_size, (elements * el_size), len, ring->alloc_size); ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev, ring->alloc_size, &ring->dma_handle, GFP_KERNEL); if (!ring->pre_aligned) { dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n", ring->alloc_size); return -ENOMEM; } /* align the physical mem */ ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1); ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle); ring->rp = ring->base; ring->wp = ring->base; ring->len = len; ring->el_size = el_size; ring->elements = ring->len / ring->el_size; memset(ring->base, 0, ring->len); ring->configured = true; /* update to other cores */ smp_wmb(); dev_dbg(gpii->gpi_dev->dev, "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n", &ring->dma_handle, &ring->phys_addr, ring->len, ring->el_size, ring->elements); return 0; } /* copy tre into transfer ring */ static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan, struct gpi_tre *gpi_tre, void **wp) { struct gpi_tre *ch_tre; int ret; /* get next tre location we can copy */ ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre); if (unlikely(ret)) { dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n"); return; } /* copy the tre info */ memcpy(ch_tre, gpi_tre, sizeof(*ch_tre)); *wp = ch_tre; } /* reset and restart transfer channel */ static int gpi_terminate_all(struct dma_chan *chan) { struct gchan *gchan = to_gchan(chan); struct gpii *gpii = gchan->gpii; int schid, echid, i; int ret = 0; mutex_lock(&gpii->ctrl_lock); /* * treat both channels as a group if its protocol is not UART * STOP, RESET, or START needs to be in lockstep */ schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0; echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII; /* stop the channel */ for (i = schid; i < echid; i++) { gchan = &gpii->gchan[i]; /* disable ch state so no more TRE processing */ write_lock_irq(&gpii->pm_lock); gchan->pm_state = PREPARE_TERMINATE; write_unlock_irq(&gpii->pm_lock); /* send command to Stop the channel */ ret = gpi_stop_chan(gchan); } /* reset the channels (clears any pending tre) */ for (i = schid; i < echid; i++) { gchan = &gpii->gchan[i]; ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET); if (ret) { dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret); goto terminate_exit; } /* reprogram channel CNTXT */ ret = gpi_alloc_chan(gchan, false); if (ret) { dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret); goto terminate_exit; } } /* restart the channels */ for (i = schid; i < echid; i++) { gchan = &gpii->gchan[i]; ret = gpi_start_chan(gchan); if (ret) { dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret); goto terminate_exit; } } terminate_exit: mutex_unlock(&gpii->ctrl_lock); return ret; } /* pause dma transfer for all channels */ static int gpi_pause(struct dma_chan *chan) { struct gchan *gchan = to_gchan(chan); struct gpii *gpii = gchan->gpii; int i, ret; mutex_lock(&gpii->ctrl_lock); /* * pause/resume are per gpii not per channel, so * client needs to call pause only once */ if (gpii->pm_state == PAUSE_STATE) { dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n"); mutex_unlock(&gpii->ctrl_lock); return 0; } /* send stop command to stop the channels */ for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { ret = gpi_stop_chan(&gpii->gchan[i]); if (ret) { mutex_unlock(&gpii->ctrl_lock); return ret; } } disable_irq(gpii->irq); /* Wait for threads to complete out */ tasklet_kill(&gpii->ev_task); write_lock_irq(&gpii->pm_lock); gpii->pm_state = PAUSE_STATE; write_unlock_irq(&gpii->pm_lock); mutex_unlock(&gpii->ctrl_lock); return 0; } /* resume dma transfer */ static int gpi_resume(struct dma_chan *chan) { struct gchan *gchan = to_gchan(chan); struct gpii *gpii = gchan->gpii; int i, ret; mutex_lock(&gpii->ctrl_lock); if (gpii->pm_state == ACTIVE_STATE) { dev_dbg(gpii->gpi_dev->dev, "channel is already active\n"); mutex_unlock(&gpii->ctrl_lock); return 0; } enable_irq(gpii->irq); /* send start command to start the channels */ for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START); if (ret) { dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret); mutex_unlock(&gpii->ctrl_lock); return ret; } } write_lock_irq(&gpii->pm_lock); gpii->pm_state = ACTIVE_STATE; write_unlock_irq(&gpii->pm_lock); mutex_unlock(&gpii->ctrl_lock); return 0; } static void gpi_desc_free(struct virt_dma_desc *vd) { struct gpi_desc *gpi_desc = to_gpi_desc(vd); kfree(gpi_desc); gpi_desc = NULL; } static int gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config) { struct gchan *gchan = to_gchan(chan); if (!config->peripheral_config) return -EINVAL; gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT); if (!gchan->config) return -ENOMEM; memcpy(gchan->config, config->peripheral_config, config->peripheral_size); return 0; } static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc, struct scatterlist *sgl, enum dma_transfer_direction direction) { struct gpi_i2c_config *i2c = chan->config; struct device *dev = chan->gpii->gpi_dev->dev; unsigned int tre_idx = 0; dma_addr_t address; struct gpi_tre *tre; unsigned int i; /* first create config tre if applicable */ if (i2c->set_config) { tre = &desc->tre[tre_idx]; tre_idx++; tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW); tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH); tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL); tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK); tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK); tre->dword[1] = 0; tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV); tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); } /* create the GO tre for Tx */ if (i2c->op == I2C_WRITE) { tre = &desc->tre[tre_idx]; tre_idx++; if (i2c->multi_msg) tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD); else tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD); tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR); tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH); tre->dword[1] = 0; tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN); tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); if (i2c->multi_msg) tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); else tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); } if (i2c->op == I2C_READ || i2c->multi_msg == false) { /* create the DMA TRE */ tre = &desc->tre[tre_idx]; tre_idx++; address = sg_dma_address(sgl); tre->dword[0] = lower_32_bits(address); tre->dword[1] = upper_32_bits(address); tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); } for (i = 0; i < tre_idx; i++) dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); return tre_idx; } static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc, struct scatterlist *sgl, enum dma_transfer_direction direction) { struct gpi_spi_config *spi = chan->config; struct device *dev = chan->gpii->gpi_dev->dev; unsigned int tre_idx = 0; dma_addr_t address; struct gpi_tre *tre; unsigned int i; /* first create config tre if applicable */ if (direction == DMA_MEM_TO_DEV && spi->set_config) { tre = &desc->tre[tre_idx]; tre_idx++; tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ); tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK); tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL); tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA); tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK); tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK); tre->dword[1] = 0; tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV); tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC); tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); } /* create the GO tre for Tx */ if (direction == DMA_MEM_TO_DEV) { tre = &desc->tre[tre_idx]; tre_idx++; tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG); tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS); tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD); tre->dword[1] = 0; tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN); tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); if (spi->cmd == SPI_RX) { tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB); } else if (spi->cmd == SPI_TX) { tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); } else { /* SPI_DUPLEX */ tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); } } /* create the dma tre */ tre = &desc->tre[tre_idx]; tre_idx++; address = sg_dma_address(sgl); tre->dword[0] = lower_32_bits(address); tre->dword[1] = upper_32_bits(address); tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); if (direction == DMA_MEM_TO_DEV) tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); for (i = 0; i < tre_idx; i++) dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); return tre_idx; } /* copy tre into transfer ring */ static struct dma_async_tx_descriptor * gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct gchan *gchan = to_gchan(chan); struct gpii *gpii = gchan->gpii; struct device *dev = gpii->gpi_dev->dev; struct gpi_ring *ch_ring = &gchan->ch_ring; struct gpi_desc *gpi_desc; u32 nr, nr_tre = 0; u8 set_config; int i; gpii->ieob_set = false; if (!is_slave_direction(direction)) { dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction); return NULL; } if (sg_len > 1) { dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len); return NULL; } nr_tre = 3; set_config = *(u32 *)gchan->config; if (!set_config) nr_tre = 2; if (direction == DMA_DEV_TO_MEM) /* rx */ nr_tre = 1; /* calculate # of elements required & available */ nr = gpi_ring_num_elements_avail(ch_ring); if (nr < nr_tre) { dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre); return NULL; } gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT); if (!gpi_desc) return NULL; /* create TREs for xfer */ if (gchan->protocol == QCOM_GPI_SPI) { i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction); } else if (gchan->protocol == QCOM_GPI_I2C) { i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction); } else { dev_err(dev, "invalid peripheral: %d\n", gchan->protocol); kfree(gpi_desc); return NULL; } /* set up the descriptor */ gpi_desc->gchan = gchan; gpi_desc->len = sg_dma_len(sgl); gpi_desc->num_tre = i; return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags); } /* rings transfer ring db to being transfer */ static void gpi_issue_pending(struct dma_chan *chan) { struct gchan *gchan = to_gchan(chan); struct gpii *gpii = gchan->gpii; unsigned long flags, pm_lock_flags; struct virt_dma_desc *vd = NULL; struct gpi_desc *gpi_desc; struct gpi_ring *ch_ring = &gchan->ch_ring; void *tre, *wp = NULL; int i; read_lock_irqsave(&gpii->pm_lock, pm_lock_flags); /* move all submitted discriptors to issued list */ spin_lock_irqsave(&gchan->vc.lock, flags); if (vchan_issue_pending(&gchan->vc)) vd = list_last_entry(&gchan->vc.desc_issued, struct virt_dma_desc, node); spin_unlock_irqrestore(&gchan->vc.lock, flags); /* nothing to do list is empty */ if (!vd) { read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); return; } gpi_desc = to_gpi_desc(vd); for (i = 0; i < gpi_desc->num_tre; i++) { tre = &gpi_desc->tre[i]; gpi_queue_xfer(gpii, gchan, tre, &wp); } gpi_desc->db = ch_ring->wp; gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db); read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); } static int gpi_ch_init(struct gchan *gchan) { struct gpii *gpii = gchan->gpii; const int ev_factor = gpii->gpi_dev->ev_factor; u32 elements; int i = 0, ret = 0; gchan->pm_state = CONFIG_STATE; /* check if both channels are configured before continue */ for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) if (gpii->gchan[i].pm_state != CONFIG_STATE) goto exit_gpi_init; /* protocol must be same for both channels */ if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) { dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n", gpii->gchan[0].protocol, gpii->gchan[1].protocol); ret = -EINVAL; goto exit_gpi_init; } /* allocate memory for event ring */ elements = CHAN_TRES << ev_factor; ret = gpi_alloc_ring(&gpii->ev_ring, elements, sizeof(union gpi_event), gpii); if (ret) goto exit_gpi_init; /* configure interrupts */ write_lock_irq(&gpii->pm_lock); gpii->pm_state = PREPARE_HARDWARE; write_unlock_irq(&gpii->pm_lock); ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0); if (ret) { dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret); goto error_config_int; } /* allocate event rings */ ret = gpi_alloc_ev_chan(gpii); if (ret) { dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret); goto error_alloc_ev_ring; } /* Allocate all channels */ for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { ret = gpi_alloc_chan(&gpii->gchan[i], true); if (ret) { dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret); goto error_alloc_chan; } } /* start channels */ for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { ret = gpi_start_chan(&gpii->gchan[i]); if (ret) { dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret); goto error_start_chan; } } return ret; error_start_chan: for (i = i - 1; i >= 0; i--) { gpi_stop_chan(&gpii->gchan[i]); gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); } i = 2; error_alloc_chan: for (i = i - 1; i >= 0; i--) gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); error_alloc_ev_ring: gpi_disable_interrupts(gpii); error_config_int: gpi_free_ring(&gpii->ev_ring, gpii); exit_gpi_init: mutex_unlock(&gpii->ctrl_lock); return ret; } /* release all channel resources */ static void gpi_free_chan_resources(struct dma_chan *chan) { struct gchan *gchan = to_gchan(chan); struct gpii *gpii = gchan->gpii; enum gpi_pm_state cur_state; int ret, i; mutex_lock(&gpii->ctrl_lock); cur_state = gchan->pm_state; /* disable ch state so no more TRE processing for this channel */ write_lock_irq(&gpii->pm_lock); gchan->pm_state = PREPARE_TERMINATE; write_unlock_irq(&gpii->pm_lock); /* attempt to do graceful hardware shutdown */ if (cur_state == ACTIVE_STATE) { gpi_stop_chan(gchan); ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); if (ret) dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret); gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); } /* free all allocated memory */ gpi_free_ring(&gchan->ch_ring, gpii); vchan_free_chan_resources(&gchan->vc); kfree(gchan->config); write_lock_irq(&gpii->pm_lock); gchan->pm_state = DISABLE_STATE; write_unlock_irq(&gpii->pm_lock); /* if other rings are still active exit */ for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) if (gpii->gchan[i].ch_ring.configured) goto exit_free; /* deallocate EV Ring */ cur_state = gpii->pm_state; write_lock_irq(&gpii->pm_lock); gpii->pm_state = PREPARE_TERMINATE; write_unlock_irq(&gpii->pm_lock); /* wait for threads to complete out */ tasklet_kill(&gpii->ev_task); /* send command to de allocate event ring */ if (cur_state == ACTIVE_STATE) gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC); gpi_free_ring(&gpii->ev_ring, gpii); /* disable interrupts */ if (cur_state == ACTIVE_STATE) gpi_disable_interrupts(gpii); /* set final state to disable */ write_lock_irq(&gpii->pm_lock); gpii->pm_state = DISABLE_STATE; write_unlock_irq(&gpii->pm_lock); exit_free: mutex_unlock(&gpii->ctrl_lock); } /* allocate channel resources */ static int gpi_alloc_chan_resources(struct dma_chan *chan) { struct gchan *gchan = to_gchan(chan); struct gpii *gpii = gchan->gpii; int ret; mutex_lock(&gpii->ctrl_lock); /* allocate memory for transfer ring */ ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES, sizeof(struct gpi_tre), gpii); if (ret) goto xfer_alloc_err; ret = gpi_ch_init(gchan); mutex_unlock(&gpii->ctrl_lock); return ret; xfer_alloc_err: mutex_unlock(&gpii->ctrl_lock); return ret; } static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid) { struct gchan *tx_chan, *rx_chan; unsigned int gpii; /* check if same seid is already configured for another chid */ for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { if (!((1 << gpii) & gpi_dev->gpii_mask)) continue; tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; if (rx_chan->vc.chan.client_count && rx_chan->seid == seid) return gpii; if (tx_chan->vc.chan.client_count && tx_chan->seid == seid) return gpii; } /* no channels configured with same seid, return next avail gpii */ for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { if (!((1 << gpii) & gpi_dev->gpii_mask)) continue; tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; /* check if gpii is configured */ if (tx_chan->vc.chan.client_count || rx_chan->vc.chan.client_count) continue; /* found a free gpii */ return gpii; } /* no gpii instance available to use */ return -EIO; } /* gpi_of_dma_xlate: open client requested channel */ static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args, struct of_dma *of_dma) { struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data; u32 seid, chid; int gpii; struct gchan *gchan; if (args->args_count < 3) { dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n", args->args_count); return NULL; } chid = args->args[0]; if (chid >= MAX_CHANNELS_PER_GPII) { dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid); return NULL; } seid = args->args[1]; /* find next available gpii to use */ gpii = gpi_find_avail_gpii(gpi_dev, seid); if (gpii < 0) { dev_err(gpi_dev->dev, "no available gpii instances\n"); return NULL; } gchan = &gpi_dev->gpiis[gpii].gchan[chid]; if (gchan->vc.chan.client_count) { dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n", gpii, chid, gchan->seid); return NULL; } gchan->seid = seid; gchan->protocol = args->args[2]; return dma_get_slave_channel(&gchan->vc.chan); } static int gpi_probe(struct platform_device *pdev) { struct gpi_dev *gpi_dev; unsigned int i; u32 ee_offset; int ret; gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL); if (!gpi_dev) return -ENOMEM; gpi_dev->dev = &pdev->dev; gpi_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0); gpi_dev->regs = devm_ioremap_resource(gpi_dev->dev, gpi_dev->res); if (IS_ERR(gpi_dev->regs)) return PTR_ERR(gpi_dev->regs); gpi_dev->ee_base = gpi_dev->regs; ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels", &gpi_dev->max_gpii); if (ret) { dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n"); return ret; } ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask", &gpi_dev->gpii_mask); if (ret) { dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n"); return ret; } ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev); gpi_dev->ee_base = gpi_dev->ee_base - ee_offset; gpi_dev->ev_factor = EV_FACTOR; ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64)); if (ret) { dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret); return ret; } gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) * gpi_dev->max_gpii, GFP_KERNEL); if (!gpi_dev->gpiis) return -ENOMEM; /* setup all the supported gpii */ INIT_LIST_HEAD(&gpi_dev->dma_device.channels); for (i = 0; i < gpi_dev->max_gpii; i++) { struct gpii *gpii = &gpi_dev->gpiis[i]; int chan; if (!((1 << i) & gpi_dev->gpii_mask)) continue; /* set up ev cntxt register map */ gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0); gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0); gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB; gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i); gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i); /* set up irq */ ret = platform_get_irq(pdev, i); if (ret < 0) return ret; gpii->irq = ret; /* set up channel specific register info */ for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) { struct gchan *gchan = &gpii->gchan[chan]; /* set up ch cntxt register map */ gchan->ch_cntxt_base_reg = gpi_dev->ee_base + GPII_n_CH_k_CNTXT_0_OFFS(i, chan); gchan->ch_cntxt_db_reg = gpi_dev->ee_base + GPII_n_CH_k_DOORBELL_0_OFFS(i, chan); gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i); /* vchan setup */ vchan_init(&gchan->vc, &gpi_dev->dma_device); gchan->vc.desc_free = gpi_desc_free; gchan->chid = chan; gchan->gpii = gpii; gchan->dir = GPII_CHAN_DIR[chan]; } mutex_init(&gpii->ctrl_lock); rwlock_init(&gpii->pm_lock); tasklet_init(&gpii->ev_task, gpi_ev_tasklet, (unsigned long)gpii); init_completion(&gpii->cmd_completion); gpii->gpii_id = i; gpii->regs = gpi_dev->ee_base; gpii->gpi_dev = gpi_dev; } platform_set_drvdata(pdev, gpi_dev); /* clear and Set capabilities */ dma_cap_zero(gpi_dev->dma_device.cap_mask); dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask); /* configure dmaengine apis */ gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources; gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources; gpi_dev->dma_device.device_tx_status = dma_cookie_status; gpi_dev->dma_device.device_issue_pending = gpi_issue_pending; gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg; gpi_dev->dma_device.device_config = gpi_peripheral_config; gpi_dev->dma_device.device_terminate_all = gpi_terminate_all; gpi_dev->dma_device.dev = gpi_dev->dev; gpi_dev->dma_device.device_pause = gpi_pause; gpi_dev->dma_device.device_resume = gpi_resume; /* register with dmaengine framework */ ret = dma_async_device_register(&gpi_dev->dma_device); if (ret) { dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret); return ret; } ret = of_dma_controller_register(gpi_dev->dev->of_node, gpi_of_dma_xlate, gpi_dev); if (ret) { dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret); return ret; } return ret; } static const struct of_device_id gpi_of_match[] = { { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 }, { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 }, { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 }, { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 }, { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 }, { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 }, { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 }, { }, }; MODULE_DEVICE_TABLE(of, gpi_of_match); static struct platform_driver gpi_driver = { .probe = gpi_probe, .driver = { .name = KBUILD_MODNAME, .of_match_table = gpi_of_match, }, }; static int __init gpi_init(void) { return platform_driver_register(&gpi_driver); } subsys_initcall(gpi_init) MODULE_DESCRIPTION("QCOM GPI DMA engine driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1