Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sinan Kaya | 3441 | 99.57% | 12 | 85.71% |
Allen Pais | 13 | 0.38% | 1 | 7.14% |
Thomas Gleixner | 2 | 0.06% | 1 | 7.14% |
Total | 3456 | 14 |
// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm Technologies HIDMA DMA engine low level code * * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved. */ #include <linux/dmaengine.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/atomic.h> #include <linux/iopoll.h> #include <linux/kfifo.h> #include <linux/bitops.h> #include "hidma.h" #define HIDMA_EVRE_SIZE 16 /* each EVRE is 16 bytes */ #define HIDMA_TRCA_CTRLSTS_REG 0x000 #define HIDMA_TRCA_RING_LOW_REG 0x008 #define HIDMA_TRCA_RING_HIGH_REG 0x00C #define HIDMA_TRCA_RING_LEN_REG 0x010 #define HIDMA_TRCA_DOORBELL_REG 0x400 #define HIDMA_EVCA_CTRLSTS_REG 0x000 #define HIDMA_EVCA_INTCTRL_REG 0x004 #define HIDMA_EVCA_RING_LOW_REG 0x008 #define HIDMA_EVCA_RING_HIGH_REG 0x00C #define HIDMA_EVCA_RING_LEN_REG 0x010 #define HIDMA_EVCA_WRITE_PTR_REG 0x020 #define HIDMA_EVCA_DOORBELL_REG 0x400 #define HIDMA_EVCA_IRQ_STAT_REG 0x100 #define HIDMA_EVCA_IRQ_CLR_REG 0x108 #define HIDMA_EVCA_IRQ_EN_REG 0x110 #define HIDMA_EVRE_CFG_IDX 0 #define HIDMA_EVRE_ERRINFO_BIT_POS 24 #define HIDMA_EVRE_CODE_BIT_POS 28 #define HIDMA_EVRE_ERRINFO_MASK GENMASK(3, 0) #define HIDMA_EVRE_CODE_MASK GENMASK(3, 0) #define HIDMA_CH_CONTROL_MASK GENMASK(7, 0) #define HIDMA_CH_STATE_MASK GENMASK(7, 0) #define HIDMA_CH_STATE_BIT_POS 0x8 #define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS 0 #define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS 1 #define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS 9 #define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS 10 #define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS 11 #define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS 14 #define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS) | \ BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \ BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \ BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \ BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS) | \ BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS)) #define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size) \ do { \ iter += size; \ if (iter >= ring_size) \ iter -= ring_size; \ } while (0) #define HIDMA_CH_STATE(val) \ ((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK) #define HIDMA_ERR_INT_MASK \ (BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS) | \ BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \ BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \ BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \ BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS)) enum ch_command { HIDMA_CH_DISABLE = 0, HIDMA_CH_ENABLE = 1, HIDMA_CH_SUSPEND = 2, HIDMA_CH_RESET = 9, }; enum ch_state { HIDMA_CH_DISABLED = 0, HIDMA_CH_ENABLED = 1, HIDMA_CH_RUNNING = 2, HIDMA_CH_SUSPENDED = 3, HIDMA_CH_STOPPED = 4, }; enum err_code { HIDMA_EVRE_STATUS_COMPLETE = 1, HIDMA_EVRE_STATUS_ERROR = 4, }; static int hidma_is_chan_enabled(int state) { switch (state) { case HIDMA_CH_ENABLED: case HIDMA_CH_RUNNING: return true; default: return false; } } void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch) { struct hidma_tre *tre; if (tre_ch >= lldev->nr_tres) { dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch); return; } tre = &lldev->trepool[tre_ch]; if (atomic_read(&tre->allocated) != true) { dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch); return; } atomic_set(&tre->allocated, 0); } int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name, void (*callback)(void *data), void *data, u32 *tre_ch) { unsigned int i; struct hidma_tre *tre; u32 *tre_local; if (!tre_ch || !lldev) return -EINVAL; /* need to have at least one empty spot in the queue */ for (i = 0; i < lldev->nr_tres - 1; i++) { if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1)) break; } if (i == (lldev->nr_tres - 1)) return -ENOMEM; tre = &lldev->trepool[i]; tre->dma_sig = sig; tre->dev_name = dev_name; tre->callback = callback; tre->data = data; tre->idx = i; tre->status = 0; tre->queued = 0; tre->err_code = 0; tre->err_info = 0; tre->lldev = lldev; tre_local = &tre->tre_local[0]; tre_local[HIDMA_TRE_CFG_IDX] = (lldev->chidx & 0xFF) << 8; tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16); /* set IEOB */ *tre_ch = i; if (callback) callback(data); return 0; } /* * Multiple TREs may be queued and waiting in the pending queue. */ static void hidma_ll_tre_complete(struct tasklet_struct *t) { struct hidma_lldev *lldev = from_tasklet(lldev, t, task); struct hidma_tre *tre; while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) { /* call the user if it has been read by the hardware */ if (tre->callback) tre->callback(tre->data); } } static int hidma_post_completed(struct hidma_lldev *lldev, u8 err_info, u8 err_code) { struct hidma_tre *tre; unsigned long flags; u32 tre_iterator; spin_lock_irqsave(&lldev->lock, flags); tre_iterator = lldev->tre_processed_off; tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE]; if (!tre) { spin_unlock_irqrestore(&lldev->lock, flags); dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n", tre_iterator / HIDMA_TRE_SIZE); return -EINVAL; } lldev->pending_tre_list[tre->tre_index] = NULL; /* * Keep track of pending TREs that SW is expecting to receive * from HW. We got one now. Decrement our counter. */ if (atomic_dec_return(&lldev->pending_tre_count) < 0) { dev_warn(lldev->dev, "tre count mismatch on completion"); atomic_set(&lldev->pending_tre_count, 0); } HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE, lldev->tre_ring_size); lldev->tre_processed_off = tre_iterator; spin_unlock_irqrestore(&lldev->lock, flags); tre->err_info = err_info; tre->err_code = err_code; tre->queued = 0; kfifo_put(&lldev->handoff_fifo, tre); tasklet_schedule(&lldev->task); return 0; } /* * Called to handle the interrupt for the channel. * Return a positive number if TRE or EVRE were consumed on this run. * Return a positive number if there are pending TREs or EVREs. * Return 0 if there is nothing to consume or no pending TREs/EVREs found. */ static int hidma_handle_tre_completion(struct hidma_lldev *lldev) { u32 evre_ring_size = lldev->evre_ring_size; u32 err_info, err_code, evre_write_off; u32 evre_iterator; u32 num_completed = 0; evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG); evre_iterator = lldev->evre_processed_off; if ((evre_write_off > evre_ring_size) || (evre_write_off % HIDMA_EVRE_SIZE)) { dev_err(lldev->dev, "HW reports invalid EVRE write offset\n"); return 0; } /* * By the time control reaches here the number of EVREs and TREs * may not match. Only consume the ones that hardware told us. */ while ((evre_iterator != evre_write_off)) { u32 *current_evre = lldev->evre_ring + evre_iterator; u32 cfg; cfg = current_evre[HIDMA_EVRE_CFG_IDX]; err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS; err_info &= HIDMA_EVRE_ERRINFO_MASK; err_code = (cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK; if (hidma_post_completed(lldev, err_info, err_code)) break; HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE, evre_ring_size); /* * Read the new event descriptor written by the HW. * As we are processing the delivered events, other events * get queued to the SW for processing. */ evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG); num_completed++; /* * An error interrupt might have arrived while we are processing * the completed interrupt. */ if (!hidma_ll_isenabled(lldev)) break; } if (num_completed) { u32 evre_read_off = (lldev->evre_processed_off + HIDMA_EVRE_SIZE * num_completed); evre_read_off = evre_read_off % evre_ring_size; writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG); /* record the last processed tre offset */ lldev->evre_processed_off = evre_read_off; } return num_completed; } void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info, u8 err_code) { while (atomic_read(&lldev->pending_tre_count)) { if (hidma_post_completed(lldev, err_info, err_code)) break; } } static int hidma_ll_reset(struct hidma_lldev *lldev) { u32 val; int ret; val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); val &= ~(HIDMA_CH_CONTROL_MASK << 16); val |= HIDMA_CH_RESET << 16; writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG); /* * Delay 10ms after reset to allow DMA logic to quiesce. * Do a polled read up to 1ms and 10ms maximum. */ ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val, HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED, 1000, 10000); if (ret) { dev_err(lldev->dev, "transfer channel did not reset\n"); return ret; } val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); val &= ~(HIDMA_CH_CONTROL_MASK << 16); val |= HIDMA_CH_RESET << 16; writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG); /* * Delay 10ms after reset to allow DMA logic to quiesce. * Do a polled read up to 1ms and 10ms maximum. */ ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val, HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED, 1000, 10000); if (ret) return ret; lldev->trch_state = HIDMA_CH_DISABLED; lldev->evch_state = HIDMA_CH_DISABLED; return 0; } /* * The interrupt handler for HIDMA will try to consume as many pending * EVRE from the event queue as possible. Each EVRE has an associated * TRE that holds the user interface parameters. EVRE reports the * result of the transaction. Hardware guarantees ordering between EVREs * and TREs. We use last processed offset to figure out which TRE is * associated with which EVRE. If two TREs are consumed by HW, the EVREs * are in order in the event ring. * * This handler will do a one pass for consuming EVREs. Other EVREs may * be delivered while we are working. It will try to consume incoming * EVREs one more time and return. * * For unprocessed EVREs, hardware will trigger another interrupt until * all the interrupt bits are cleared. * * Hardware guarantees that by the time interrupt is observed, all data * transactions in flight are delivered to their respective places and * are visible to the CPU. * * On demand paging for IOMMU is only supported for PCIe via PRI * (Page Request Interface) not for HIDMA. All other hardware instances * including HIDMA work on pinned DMA addresses. * * HIDMA is not aware of IOMMU presence since it follows the DMA API. All * IOMMU latency will be built into the data movement time. By the time * interrupt happens, IOMMU lookups + data movement has already taken place. * * While the first read in a typical PCI endpoint ISR flushes all outstanding * requests traditionally to the destination, this concept does not apply * here for this HW. */ static void hidma_ll_int_handler_internal(struct hidma_lldev *lldev, int cause) { unsigned long irqflags; if (cause & HIDMA_ERR_INT_MASK) { dev_err(lldev->dev, "error 0x%x, disabling...\n", cause); /* Clear out pending interrupts */ writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); /* No further submissions. */ hidma_ll_disable(lldev); /* Driver completes the txn and intimates the client.*/ hidma_cleanup_pending_tre(lldev, 0xFF, HIDMA_EVRE_STATUS_ERROR); return; } spin_lock_irqsave(&lldev->lock, irqflags); writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); spin_unlock_irqrestore(&lldev->lock, irqflags); /* * Fine tuned for this HW... * * This ISR has been designed for this particular hardware. Relaxed * read and write accessors are used for performance reasons due to * interrupt delivery guarantees. Do not copy this code blindly and * expect that to work. * * Try to consume as many EVREs as possible. */ hidma_handle_tre_completion(lldev); } irqreturn_t hidma_ll_inthandler(int chirq, void *arg) { struct hidma_lldev *lldev = arg; u32 status; u32 enable; u32 cause; status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG); cause = status & enable; while (cause) { hidma_ll_int_handler_internal(lldev, cause); /* * Another interrupt might have arrived while we are * processing this one. Read the new cause. */ status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG); cause = status & enable; } return IRQ_HANDLED; } irqreturn_t hidma_ll_inthandler_msi(int chirq, void *arg, int cause) { struct hidma_lldev *lldev = arg; hidma_ll_int_handler_internal(lldev, cause); return IRQ_HANDLED; } int hidma_ll_enable(struct hidma_lldev *lldev) { u32 val; int ret; val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); val &= ~(HIDMA_CH_CONTROL_MASK << 16); val |= HIDMA_CH_ENABLE << 16; writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG); ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val, hidma_is_chan_enabled(HIDMA_CH_STATE(val)), 1000, 10000); if (ret) { dev_err(lldev->dev, "event channel did not get enabled\n"); return ret; } val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); val &= ~(HIDMA_CH_CONTROL_MASK << 16); val |= HIDMA_CH_ENABLE << 16; writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG); ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val, hidma_is_chan_enabled(HIDMA_CH_STATE(val)), 1000, 10000); if (ret) { dev_err(lldev->dev, "transfer channel did not get enabled\n"); return ret; } lldev->trch_state = HIDMA_CH_ENABLED; lldev->evch_state = HIDMA_CH_ENABLED; /* enable irqs */ writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); return 0; } void hidma_ll_start(struct hidma_lldev *lldev) { unsigned long irqflags; spin_lock_irqsave(&lldev->lock, irqflags); writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG); spin_unlock_irqrestore(&lldev->lock, irqflags); } bool hidma_ll_isenabled(struct hidma_lldev *lldev) { u32 val; val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); lldev->trch_state = HIDMA_CH_STATE(val); val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); lldev->evch_state = HIDMA_CH_STATE(val); /* both channels have to be enabled before calling this function */ if (hidma_is_chan_enabled(lldev->trch_state) && hidma_is_chan_enabled(lldev->evch_state)) return true; return false; } void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch) { struct hidma_tre *tre; unsigned long flags; tre = &lldev->trepool[tre_ch]; /* copy the TRE into its location in the TRE ring */ spin_lock_irqsave(&lldev->lock, flags); tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE; lldev->pending_tre_list[tre->tre_index] = tre; memcpy(lldev->tre_ring + lldev->tre_write_offset, &tre->tre_local[0], HIDMA_TRE_SIZE); tre->err_code = 0; tre->err_info = 0; tre->queued = 1; atomic_inc(&lldev->pending_tre_count); lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE) % lldev->tre_ring_size; spin_unlock_irqrestore(&lldev->lock, flags); } /* * Note that even though we stop this channel if there is a pending transaction * in flight it will complete and follow the callback. This request will * prevent further requests to be made. */ int hidma_ll_disable(struct hidma_lldev *lldev) { u32 val; int ret; /* The channel needs to be in working state */ if (!hidma_ll_isenabled(lldev)) return 0; val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG); val &= ~(HIDMA_CH_CONTROL_MASK << 16); val |= HIDMA_CH_SUSPEND << 16; writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG); /* * Start the wait right after the suspend is confirmed. * Do a polled read up to 1ms and 10ms maximum. */ ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val, HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED, 1000, 10000); if (ret) return ret; val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG); val &= ~(HIDMA_CH_CONTROL_MASK << 16); val |= HIDMA_CH_SUSPEND << 16; writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG); /* * Start the wait right after the suspend is confirmed * Delay up to 10ms after reset to allow DMA logic to quiesce. */ ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val, HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED, 1000, 10000); if (ret) return ret; lldev->trch_state = HIDMA_CH_SUSPENDED; lldev->evch_state = HIDMA_CH_SUSPENDED; /* disable interrupts */ writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); return 0; } void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch, dma_addr_t src, dma_addr_t dest, u32 len, u32 flags, u32 txntype) { struct hidma_tre *tre; u32 *tre_local; if (tre_ch >= lldev->nr_tres) { dev_err(lldev->dev, "invalid TRE number in transfer params:%d", tre_ch); return; } tre = &lldev->trepool[tre_ch]; if (atomic_read(&tre->allocated) != true) { dev_err(lldev->dev, "trying to set params on an unused TRE:%d", tre_ch); return; } tre_local = &tre->tre_local[0]; tre_local[HIDMA_TRE_CFG_IDX] &= ~GENMASK(7, 0); tre_local[HIDMA_TRE_CFG_IDX] |= txntype; tre_local[HIDMA_TRE_LEN_IDX] = len; tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src); tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src); tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest); tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest); tre->int_flags = flags; } /* * Called during initialization and after an error condition * to restore hardware state. */ int hidma_ll_setup(struct hidma_lldev *lldev) { int rc; u64 addr; u32 val; u32 nr_tres = lldev->nr_tres; atomic_set(&lldev->pending_tre_count, 0); lldev->tre_processed_off = 0; lldev->evre_processed_off = 0; lldev->tre_write_offset = 0; /* disable interrupts */ writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); /* clear all pending interrupts */ val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); rc = hidma_ll_reset(lldev); if (rc) return rc; /* * Clear all pending interrupts again. * Otherwise, we observe reset complete interrupts. */ val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); /* disable interrupts again after reset */ writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); addr = lldev->tre_dma; writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG); writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG); writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG); addr = lldev->evre_dma; writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG); writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG); writel(HIDMA_EVRE_SIZE * nr_tres, lldev->evca + HIDMA_EVCA_RING_LEN_REG); /* configure interrupts */ hidma_ll_setup_irq(lldev, lldev->msi_support); rc = hidma_ll_enable(lldev); if (rc) return rc; return rc; } void hidma_ll_setup_irq(struct hidma_lldev *lldev, bool msi) { u32 val; lldev->msi_support = msi; /* disable interrupts again after reset */ writel(0, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); /* support IRQ by default */ val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG); val &= ~0xF; if (!lldev->msi_support) val = val | 0x1; writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG); /* clear all pending interrupts and enable them */ writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); } struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres, void __iomem *trca, void __iomem *evca, u8 chidx) { u32 required_bytes; struct hidma_lldev *lldev; int rc; size_t sz; if (!trca || !evca || !dev || !nr_tres) return NULL; /* need at least four TREs */ if (nr_tres < 4) return NULL; /* need an extra space */ nr_tres += 1; lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL); if (!lldev) return NULL; lldev->evca = evca; lldev->trca = trca; lldev->dev = dev; sz = sizeof(struct hidma_tre); lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL); if (!lldev->trepool) return NULL; required_bytes = sizeof(lldev->pending_tre_list[0]); lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes, GFP_KERNEL); if (!lldev->pending_tre_list) return NULL; sz = (HIDMA_TRE_SIZE + 1) * nr_tres; lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma, GFP_KERNEL); if (!lldev->tre_ring) return NULL; lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres; lldev->nr_tres = nr_tres; /* the TRE ring has to be TRE_SIZE aligned */ if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) { u8 tre_ring_shift; tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE; tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift; lldev->tre_dma += tre_ring_shift; lldev->tre_ring += tre_ring_shift; } sz = (HIDMA_EVRE_SIZE + 1) * nr_tres; lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma, GFP_KERNEL); if (!lldev->evre_ring) return NULL; lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres; /* the EVRE ring has to be EVRE_SIZE aligned */ if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) { u8 evre_ring_shift; evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE; evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift; lldev->evre_dma += evre_ring_shift; lldev->evre_ring += evre_ring_shift; } lldev->nr_tres = nr_tres; lldev->chidx = chidx; sz = nr_tres * sizeof(struct hidma_tre *); rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL); if (rc) return NULL; rc = hidma_ll_setup(lldev); if (rc) return NULL; spin_lock_init(&lldev->lock); tasklet_setup(&lldev->task, hidma_ll_tre_complete); lldev->initialized = 1; writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); return lldev; } int hidma_ll_uninit(struct hidma_lldev *lldev) { u32 required_bytes; int rc = 0; u32 val; if (!lldev) return -ENODEV; if (!lldev->initialized) return 0; lldev->initialized = 0; required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres; tasklet_kill(&lldev->task); memset(lldev->trepool, 0, required_bytes); lldev->trepool = NULL; atomic_set(&lldev->pending_tre_count, 0); lldev->tre_write_offset = 0; rc = hidma_ll_reset(lldev); /* * Clear all pending interrupts again. * Otherwise, we observe reset complete interrupts. */ val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG); writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG); writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG); return rc; } enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch) { enum dma_status ret = DMA_ERROR; struct hidma_tre *tre; unsigned long flags; u8 err_code; spin_lock_irqsave(&lldev->lock, flags); tre = &lldev->trepool[tre_ch]; err_code = tre->err_code; if (err_code & HIDMA_EVRE_STATUS_COMPLETE) ret = DMA_COMPLETE; else if (err_code & HIDMA_EVRE_STATUS_ERROR) ret = DMA_ERROR; else ret = DMA_IN_PROGRESS; spin_unlock_irqrestore(&lldev->lock, flags); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1