Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Akhil R | 6706 | 100.00% | 4 | 100.00% |
Total | 6706 | 4 |
// SPDX-License-Identifier: GPL-2.0-only /* * DMA driver for NVIDIA Tegra GPC DMA controller. * * Copyright (c) 2014-2022, NVIDIA CORPORATION. All rights reserved. */ #include <linux/bitfield.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/iommu.h> #include <linux/iopoll.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/slab.h> #include <dt-bindings/memory/tegra186-mc.h> #include "virt-dma.h" /* CSR register */ #define TEGRA_GPCDMA_CHAN_CSR 0x00 #define TEGRA_GPCDMA_CSR_ENB BIT(31) #define TEGRA_GPCDMA_CSR_IE_EOC BIT(30) #define TEGRA_GPCDMA_CSR_ONCE BIT(27) #define TEGRA_GPCDMA_CSR_FC_MODE GENMASK(25, 24) #define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO \ FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0) #define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO \ FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1) #define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO \ FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2) #define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO \ FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3) #define TEGRA_GPCDMA_CSR_DMA GENMASK(23, 21) #define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC \ FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0) #define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC \ FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1) #define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC \ FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2) #define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC \ FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3) #define TEGRA_GPCDMA_CSR_DMA_MEM2MEM \ FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4) #define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT \ FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6) #define TEGRA_GPCDMA_CSR_REQ_SEL_MASK GENMASK(20, 16) #define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED \ FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4) #define TEGRA_GPCDMA_CSR_IRQ_MASK BIT(15) #define TEGRA_GPCDMA_CSR_WEIGHT GENMASK(13, 10) /* STATUS register */ #define TEGRA_GPCDMA_CHAN_STATUS 0x004 #define TEGRA_GPCDMA_STATUS_BUSY BIT(31) #define TEGRA_GPCDMA_STATUS_ISE_EOC BIT(30) #define TEGRA_GPCDMA_STATUS_PING_PONG BIT(28) #define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY BIT(27) #define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE BIT(26) #define TEGRA_GPCDMA_STATUS_CHANNEL_RX BIT(25) #define TEGRA_GPCDMA_STATUS_CHANNEL_TX BIT(24) #define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA BIT(23) #define TEGRA_GPCDMA_STATUS_IRQ_STA BIT(21) #define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA BIT(20) #define TEGRA_GPCDMA_CHAN_CSRE 0x008 #define TEGRA_GPCDMA_CHAN_CSRE_PAUSE BIT(31) /* Source address */ #define TEGRA_GPCDMA_CHAN_SRC_PTR 0x00C /* Destination address */ #define TEGRA_GPCDMA_CHAN_DST_PTR 0x010 /* High address pointer */ #define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR 0x014 #define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR GENMASK(7, 0) #define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR GENMASK(23, 16) /* MC sequence register */ #define TEGRA_GPCDMA_CHAN_MCSEQ 0x18 #define TEGRA_GPCDMA_MCSEQ_DATA_SWAP BIT(31) #define TEGRA_GPCDMA_MCSEQ_REQ_COUNT GENMASK(30, 25) #define TEGRA_GPCDMA_MCSEQ_BURST GENMASK(24, 23) #define TEGRA_GPCDMA_MCSEQ_BURST_2 \ FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0) #define TEGRA_GPCDMA_MCSEQ_BURST_16 \ FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3) #define TEGRA_GPCDMA_MCSEQ_WRAP1 GENMASK(22, 20) #define TEGRA_GPCDMA_MCSEQ_WRAP0 GENMASK(19, 17) #define TEGRA_GPCDMA_MCSEQ_WRAP_NONE 0 #define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK GENMASK(13, 7) #define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK GENMASK(6, 0) /* MMIO sequence register */ #define TEGRA_GPCDMA_CHAN_MMIOSEQ 0x01c #define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF BIT(31) #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH GENMASK(30, 28) #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8 \ FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0) #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16 \ FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1) #define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32 \ FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2) #define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP BIT(27) #define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT 23 #define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN 2U #define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX 32U #define TEGRA_GPCDMA_MMIOSEQ_BURST(bs) \ (GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT) #define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID GENMASK(22, 19) #define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD GENMASK(18, 16) #define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT GENMASK(8, 7) /* Channel WCOUNT */ #define TEGRA_GPCDMA_CHAN_WCOUNT 0x20 /* Transfer count */ #define TEGRA_GPCDMA_CHAN_XFER_COUNT 0x24 /* DMA byte count status */ #define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS 0x28 /* Error Status Register */ #define TEGRA_GPCDMA_CHAN_ERR_STATUS 0x30 #define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT 8 #define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK 0xF #define TEGRA_GPCDMA_CHAN_ERR_TYPE(err) ( \ ((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) & \ TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK) #define TEGRA_DMA_BM_FIFO_FULL_ERR 0xF #define TEGRA_DMA_PERIPH_FIFO_FULL_ERR 0xE #define TEGRA_DMA_PERIPH_ID_ERR 0xD #define TEGRA_DMA_STREAM_ID_ERR 0xC #define TEGRA_DMA_MC_SLAVE_ERR 0xB #define TEGRA_DMA_MMIO_SLAVE_ERR 0xA /* Fixed Pattern */ #define TEGRA_GPCDMA_CHAN_FIXED_PATTERN 0x34 #define TEGRA_GPCDMA_CHAN_TZ 0x38 #define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1 BIT(0) #define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1 BIT(1) #define TEGRA_GPCDMA_CHAN_SPARE 0x3c #define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC BIT(16) /* * If any burst is in flight and DMA paused then this is the time to complete * on-flight burst and update DMA status register. */ #define TEGRA_GPCDMA_BURST_COMPLETE_TIME 10 #define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT 5000 /* 5 msec */ /* Channel base address offset from GPCDMA base address */ #define TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET 0x20000 struct tegra_dma; struct tegra_dma_channel; /* * tegra_dma_chip_data Tegra chip specific DMA data * @nr_channels: Number of channels available in the controller. * @channel_reg_size: Channel register size. * @max_dma_count: Maximum DMA transfer count supported by DMA controller. * @hw_support_pause: DMA HW engine support pause of the channel. */ struct tegra_dma_chip_data { bool hw_support_pause; unsigned int nr_channels; unsigned int channel_reg_size; unsigned int max_dma_count; int (*terminate)(struct tegra_dma_channel *tdc); }; /* DMA channel registers */ struct tegra_dma_channel_regs { u32 csr; u32 src_ptr; u32 dst_ptr; u32 high_addr_ptr; u32 mc_seq; u32 mmio_seq; u32 wcount; u32 fixed_pattern; }; /* * tegra_dma_sg_req: DMA request details to configure hardware. This * contains the details for one transfer to configure DMA hw. * The client's request for data transfer can be broken into multiple * sub-transfer as per requester details and hw support. This sub transfer * get added as an array in Tegra DMA desc which manages the transfer details. */ struct tegra_dma_sg_req { unsigned int len; struct tegra_dma_channel_regs ch_regs; }; /* * tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to * manage client request and keep track of transfer status, callbacks * and request counts etc. */ struct tegra_dma_desc { bool cyclic; unsigned int bytes_req; unsigned int bytes_xfer; unsigned int sg_idx; unsigned int sg_count; struct virt_dma_desc vd; struct tegra_dma_channel *tdc; struct tegra_dma_sg_req sg_req[]; }; /* * tegra_dma_channel: Channel specific information */ struct tegra_dma_channel { bool config_init; char name[30]; enum dma_transfer_direction sid_dir; int id; int irq; int slave_id; struct tegra_dma *tdma; struct virt_dma_chan vc; struct tegra_dma_desc *dma_desc; struct dma_slave_config dma_sconfig; unsigned int stream_id; unsigned long chan_base_offset; }; /* * tegra_dma: Tegra DMA specific information */ struct tegra_dma { const struct tegra_dma_chip_data *chip_data; unsigned long sid_m2d_reserved; unsigned long sid_d2m_reserved; void __iomem *base_addr; struct device *dev; struct dma_device dma_dev; struct reset_control *rst; struct tegra_dma_channel channels[]; }; static inline void tdc_write(struct tegra_dma_channel *tdc, u32 reg, u32 val) { writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg); } static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg) { return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg); } static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc) { return container_of(dc, struct tegra_dma_channel, vc.chan); } static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd) { return container_of(vd, struct tegra_dma_desc, vd); } static inline struct device *tdc2dev(struct tegra_dma_channel *tdc) { return tdc->vc.chan.device->dev; } static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc) { dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n", tdc->id, tdc->name); dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n", tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR), tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS), tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE), tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR), tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR) ); dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n", tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ), tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ), tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT), tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT), tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS) ); dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n", tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS)); } static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc, enum dma_transfer_direction direction) { struct tegra_dma *tdma = tdc->tdma; int sid = tdc->slave_id; if (!is_slave_direction(direction)) return 0; switch (direction) { case DMA_MEM_TO_DEV: if (test_and_set_bit(sid, &tdma->sid_m2d_reserved)) { dev_err(tdma->dev, "slave id already in use\n"); return -EINVAL; } break; case DMA_DEV_TO_MEM: if (test_and_set_bit(sid, &tdma->sid_d2m_reserved)) { dev_err(tdma->dev, "slave id already in use\n"); return -EINVAL; } break; default: break; } tdc->sid_dir = direction; return 0; } static void tegra_dma_sid_free(struct tegra_dma_channel *tdc) { struct tegra_dma *tdma = tdc->tdma; int sid = tdc->slave_id; switch (tdc->sid_dir) { case DMA_MEM_TO_DEV: clear_bit(sid, &tdma->sid_m2d_reserved); break; case DMA_DEV_TO_MEM: clear_bit(sid, &tdma->sid_d2m_reserved); break; default: break; } tdc->sid_dir = DMA_TRANS_NONE; } static void tegra_dma_desc_free(struct virt_dma_desc *vd) { kfree(container_of(vd, struct tegra_dma_desc, vd)); } static int tegra_dma_slave_config(struct dma_chan *dc, struct dma_slave_config *sconfig) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig)); tdc->config_init = true; return 0; } static int tegra_dma_pause(struct tegra_dma_channel *tdc) { int ret; u32 val; val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE); val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE; tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val); /* Wait until busy bit is de-asserted */ ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr + tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS, val, !(val & TEGRA_GPCDMA_STATUS_BUSY), TEGRA_GPCDMA_BURST_COMPLETE_TIME, TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT); if (ret) { dev_err(tdc2dev(tdc), "DMA pause timed out\n"); tegra_dma_dump_chan_regs(tdc); } return ret; } static int tegra_dma_device_pause(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); unsigned long flags; int ret; if (!tdc->tdma->chip_data->hw_support_pause) return -ENOSYS; spin_lock_irqsave(&tdc->vc.lock, flags); ret = tegra_dma_pause(tdc); spin_unlock_irqrestore(&tdc->vc.lock, flags); return ret; } static void tegra_dma_resume(struct tegra_dma_channel *tdc) { u32 val; val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE); val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE; tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val); } static int tegra_dma_device_resume(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); unsigned long flags; if (!tdc->tdma->chip_data->hw_support_pause) return -ENOSYS; spin_lock_irqsave(&tdc->vc.lock, flags); tegra_dma_resume(tdc); spin_unlock_irqrestore(&tdc->vc.lock, flags); return 0; } static inline int tegra_dma_pause_noerr(struct tegra_dma_channel *tdc) { /* Return 0 irrespective of PAUSE status. * This is useful to recover channels that can exit out of flush * state when the channel is disabled. */ tegra_dma_pause(tdc); return 0; } static void tegra_dma_disable(struct tegra_dma_channel *tdc) { u32 csr, status; csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR); /* Disable interrupts */ csr &= ~TEGRA_GPCDMA_CSR_IE_EOC; /* Disable DMA */ csr &= ~TEGRA_GPCDMA_CSR_ENB; tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr); /* Clear interrupt status if it is there */ status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS); if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) { dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__); tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, status); } } static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc) { struct tegra_dma_desc *dma_desc = tdc->dma_desc; struct tegra_dma_channel_regs *ch_regs; int ret; u32 val; dma_desc->sg_idx++; /* Reset the sg index for cyclic transfers */ if (dma_desc->sg_idx == dma_desc->sg_count) dma_desc->sg_idx = 0; /* Configure next transfer immediately after DMA is busy */ ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr + tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS, val, (val & TEGRA_GPCDMA_STATUS_BUSY), 0, TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT); if (ret) return; ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs; tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount); tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr); tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr); tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr); /* Start DMA */ tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr | TEGRA_GPCDMA_CSR_ENB); } static void tegra_dma_start(struct tegra_dma_channel *tdc) { struct tegra_dma_desc *dma_desc = tdc->dma_desc; struct tegra_dma_channel_regs *ch_regs; struct virt_dma_desc *vdesc; if (!dma_desc) { vdesc = vchan_next_desc(&tdc->vc); if (!vdesc) return; dma_desc = vd_to_tegra_dma_desc(vdesc); list_del(&vdesc->node); dma_desc->tdc = tdc; tdc->dma_desc = dma_desc; tegra_dma_resume(tdc); } ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs; tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, ch_regs->wcount); tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, 0); tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, ch_regs->src_ptr); tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, ch_regs->dst_ptr); tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, ch_regs->high_addr_ptr); tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, ch_regs->fixed_pattern); tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, ch_regs->mmio_seq); tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, ch_regs->mc_seq); tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr); /* Start DMA */ tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, ch_regs->csr | TEGRA_GPCDMA_CSR_ENB); } static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc) { vchan_cookie_complete(&tdc->dma_desc->vd); tegra_dma_sid_free(tdc); tdc->dma_desc = NULL; } static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc, unsigned int err_status) { switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) { case TEGRA_DMA_BM_FIFO_FULL_ERR: dev_err(tdc->tdma->dev, "GPCDMA CH%d bm fifo full\n", tdc->id); break; case TEGRA_DMA_PERIPH_FIFO_FULL_ERR: dev_err(tdc->tdma->dev, "GPCDMA CH%d peripheral fifo full\n", tdc->id); break; case TEGRA_DMA_PERIPH_ID_ERR: dev_err(tdc->tdma->dev, "GPCDMA CH%d illegal peripheral id\n", tdc->id); break; case TEGRA_DMA_STREAM_ID_ERR: dev_err(tdc->tdma->dev, "GPCDMA CH%d illegal stream id\n", tdc->id); break; case TEGRA_DMA_MC_SLAVE_ERR: dev_err(tdc->tdma->dev, "GPCDMA CH%d mc slave error\n", tdc->id); break; case TEGRA_DMA_MMIO_SLAVE_ERR: dev_err(tdc->tdma->dev, "GPCDMA CH%d mmio slave error\n", tdc->id); break; default: dev_err(tdc->tdma->dev, "GPCDMA CH%d security violation %x\n", tdc->id, err_status); } } static irqreturn_t tegra_dma_isr(int irq, void *dev_id) { struct tegra_dma_channel *tdc = dev_id; struct tegra_dma_desc *dma_desc = tdc->dma_desc; struct tegra_dma_sg_req *sg_req; u32 status; /* Check channel error status register */ status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS); if (status) { tegra_dma_chan_decode_error(tdc, status); tegra_dma_dump_chan_regs(tdc); tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, 0xFFFFFFFF); } spin_lock(&tdc->vc.lock); status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS); if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC)) goto irq_done; tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, TEGRA_GPCDMA_STATUS_ISE_EOC); if (!dma_desc) goto irq_done; sg_req = dma_desc->sg_req; dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len; if (dma_desc->cyclic) { vchan_cyclic_callback(&dma_desc->vd); tegra_dma_configure_next_sg(tdc); } else { dma_desc->sg_idx++; if (dma_desc->sg_idx == dma_desc->sg_count) tegra_dma_xfer_complete(tdc); else tegra_dma_start(tdc); } irq_done: spin_unlock(&tdc->vc.lock); return IRQ_HANDLED; } static void tegra_dma_issue_pending(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); unsigned long flags; if (tdc->dma_desc) return; spin_lock_irqsave(&tdc->vc.lock, flags); if (vchan_issue_pending(&tdc->vc)) tegra_dma_start(tdc); /* * For cyclic DMA transfers, program the second * transfer parameters as soon as the first DMA * transfer is started inorder for the DMA * controller to trigger the second transfer * with the correct parameters. */ if (tdc->dma_desc && tdc->dma_desc->cyclic) tegra_dma_configure_next_sg(tdc); spin_unlock_irqrestore(&tdc->vc.lock, flags); } static int tegra_dma_stop_client(struct tegra_dma_channel *tdc) { int ret; u32 status, csr; /* * Change the client associated with the DMA channel * to stop DMA engine from starting any more bursts for * the given client and wait for in flight bursts to complete */ csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR); csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK); csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED; tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, csr); /* Wait for in flight data transfer to finish */ udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME); /* If TX/RX path is still active wait till it becomes * inactive */ ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr + tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS, status, !(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX | TEGRA_GPCDMA_STATUS_CHANNEL_RX)), 5, TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT); if (ret) { dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n"); tegra_dma_dump_chan_regs(tdc); } return ret; } static int tegra_dma_terminate_all(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); unsigned long flags; LIST_HEAD(head); int err; spin_lock_irqsave(&tdc->vc.lock, flags); if (tdc->dma_desc) { err = tdc->tdma->chip_data->terminate(tdc); if (err) { spin_unlock_irqrestore(&tdc->vc.lock, flags); return err; } tegra_dma_disable(tdc); tdc->dma_desc = NULL; } tegra_dma_sid_free(tdc); vchan_get_all_descriptors(&tdc->vc, &head); spin_unlock_irqrestore(&tdc->vc.lock, flags); vchan_dma_desc_free_list(&tdc->vc, &head); return 0; } static int tegra_dma_get_residual(struct tegra_dma_channel *tdc) { struct tegra_dma_desc *dma_desc = tdc->dma_desc; struct tegra_dma_sg_req *sg_req = dma_desc->sg_req; unsigned int bytes_xfer, residual; u32 wcount = 0, status; wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT); /* * Set wcount = 0 if EOC bit is set. The transfer would have * already completed and the CHAN_XFER_COUNT could have updated * for the next transfer, specifically in case of cyclic transfers. */ status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS); if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) wcount = 0; bytes_xfer = dma_desc->bytes_xfer + sg_req[dma_desc->sg_idx].len - (wcount * 4); residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req); return residual; } static enum dma_status tegra_dma_tx_status(struct dma_chan *dc, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_desc *dma_desc; struct virt_dma_desc *vd; unsigned int residual; unsigned long flags; enum dma_status ret; ret = dma_cookie_status(dc, cookie, txstate); if (ret == DMA_COMPLETE) return ret; spin_lock_irqsave(&tdc->vc.lock, flags); vd = vchan_find_desc(&tdc->vc, cookie); if (vd) { dma_desc = vd_to_tegra_dma_desc(vd); residual = dma_desc->bytes_req; dma_set_residue(txstate, residual); } else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) { residual = tegra_dma_get_residual(tdc); dma_set_residue(txstate, residual); } else { dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie); } spin_unlock_irqrestore(&tdc->vc.lock, flags); return ret; } static inline int get_bus_width(struct tegra_dma_channel *tdc, enum dma_slave_buswidth slave_bw) { switch (slave_bw) { case DMA_SLAVE_BUSWIDTH_1_BYTE: return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8; case DMA_SLAVE_BUSWIDTH_2_BYTES: return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16; case DMA_SLAVE_BUSWIDTH_4_BYTES: return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32; default: dev_err(tdc2dev(tdc), "given slave bus width is not supported\n"); return -EINVAL; } } static unsigned int get_burst_size(struct tegra_dma_channel *tdc, u32 burst_size, enum dma_slave_buswidth slave_bw, int len) { unsigned int burst_mmio_width, burst_byte; /* * burst_size from client is in terms of the bus_width. * convert that into words. * If burst_size is not specified from client, then use * len to calculate the optimum burst size */ burst_byte = burst_size ? burst_size * slave_bw : len; burst_mmio_width = burst_byte / 4; if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN) return 0; burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX); return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width); } static int get_transfer_param(struct tegra_dma_channel *tdc, enum dma_transfer_direction direction, u32 *apb_addr, u32 *mmio_seq, u32 *csr, unsigned int *burst_size, enum dma_slave_buswidth *slave_bw) { switch (direction) { case DMA_MEM_TO_DEV: *apb_addr = tdc->dma_sconfig.dst_addr; *mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width); *burst_size = tdc->dma_sconfig.dst_maxburst; *slave_bw = tdc->dma_sconfig.dst_addr_width; *csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC; return 0; case DMA_DEV_TO_MEM: *apb_addr = tdc->dma_sconfig.src_addr; *mmio_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width); *burst_size = tdc->dma_sconfig.src_maxburst; *slave_bw = tdc->dma_sconfig.src_addr_width; *csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC; return 0; default: dev_err(tdc2dev(tdc), "DMA direction is not supported\n"); } return -EINVAL; } static struct dma_async_tx_descriptor * tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value, size_t len, unsigned long flags) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count; struct tegra_dma_sg_req *sg_req; struct tegra_dma_desc *dma_desc; u32 csr, mc_seq; if ((len & 3) || (dest & 3) || len > max_dma_count) { dev_err(tdc2dev(tdc), "DMA length/memory address is not supported\n"); return NULL; } /* Set DMA mode to fixed pattern */ csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT; /* Enable once or continuous mode */ csr |= TEGRA_GPCDMA_CSR_ONCE; /* Enable IRQ mask */ csr |= TEGRA_GPCDMA_CSR_IRQ_MASK; /* Enable the DMA interrupt */ if (flags & DMA_PREP_INTERRUPT) csr |= TEGRA_GPCDMA_CSR_IE_EOC; /* Configure default priority weight for the channel */ csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1); mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ); /* retain stream-id and clean rest */ mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK; /* Set the address wrapping */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); /* Program outstanding MC requests */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1); /* Set burst size */ mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16; dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT); if (!dma_desc) return NULL; dma_desc->bytes_req = len; dma_desc->sg_count = 1; sg_req = dma_desc->sg_req; sg_req[0].ch_regs.src_ptr = 0; sg_req[0].ch_regs.dst_ptr = dest; sg_req[0].ch_regs.high_addr_ptr = FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32)); sg_req[0].ch_regs.fixed_pattern = value; /* Word count reg takes value as (N +1) words */ sg_req[0].ch_regs.wcount = ((len - 4) >> 2); sg_req[0].ch_regs.csr = csr; sg_req[0].ch_regs.mmio_seq = 0; sg_req[0].ch_regs.mc_seq = mc_seq; sg_req[0].len = len; dma_desc->cyclic = false; return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags); } static struct dma_async_tx_descriptor * tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_sg_req *sg_req; struct tegra_dma_desc *dma_desc; unsigned int max_dma_count; u32 csr, mc_seq; max_dma_count = tdc->tdma->chip_data->max_dma_count; if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) { dev_err(tdc2dev(tdc), "DMA length/memory address is not supported\n"); return NULL; } /* Set DMA mode to memory to memory transfer */ csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM; /* Enable once or continuous mode */ csr |= TEGRA_GPCDMA_CSR_ONCE; /* Enable IRQ mask */ csr |= TEGRA_GPCDMA_CSR_IRQ_MASK; /* Enable the DMA interrupt */ if (flags & DMA_PREP_INTERRUPT) csr |= TEGRA_GPCDMA_CSR_IE_EOC; /* Configure default priority weight for the channel */ csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1); mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ); /* retain stream-id and clean rest */ mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) | (TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK); /* Set the address wrapping */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); /* Program outstanding MC requests */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1); /* Set burst size */ mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16; dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT); if (!dma_desc) return NULL; dma_desc->bytes_req = len; dma_desc->sg_count = 1; sg_req = dma_desc->sg_req; sg_req[0].ch_regs.src_ptr = src; sg_req[0].ch_regs.dst_ptr = dest; sg_req[0].ch_regs.high_addr_ptr = FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32)); sg_req[0].ch_regs.high_addr_ptr |= FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32)); /* Word count reg takes value as (N +1) words */ sg_req[0].ch_regs.wcount = ((len - 4) >> 2); sg_req[0].ch_regs.csr = csr; sg_req[0].ch_regs.mmio_seq = 0; sg_req[0].ch_regs.mc_seq = mc_seq; sg_req[0].len = len; dma_desc->cyclic = false; return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags); } static struct dma_async_tx_descriptor * tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count; enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED; u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0; struct tegra_dma_sg_req *sg_req; struct tegra_dma_desc *dma_desc; struct scatterlist *sg; u32 burst_size; unsigned int i; int ret; if (!tdc->config_init) { dev_err(tdc2dev(tdc), "DMA channel is not configured\n"); return NULL; } if (sg_len < 1) { dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len); return NULL; } ret = tegra_dma_sid_reserve(tdc, direction); if (ret) return NULL; ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr, &burst_size, &slave_bw); if (ret < 0) return NULL; /* Enable once or continuous mode */ csr |= TEGRA_GPCDMA_CSR_ONCE; /* Program the slave id in requestor select */ csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id); /* Enable IRQ mask */ csr |= TEGRA_GPCDMA_CSR_IRQ_MASK; /* Configure default priority weight for the channel*/ csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1); /* Enable the DMA interrupt */ if (flags & DMA_PREP_INTERRUPT) csr |= TEGRA_GPCDMA_CSR_IE_EOC; mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ); /* retain stream-id and clean rest */ mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK; /* Set the address wrapping on both MC and MMIO side */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1); /* Program 2 MC outstanding requests by default. */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1); /* Setting MC burst size depending on MMIO burst size */ if (burst_size == 64) mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16; else mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2; dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT); if (!dma_desc) return NULL; dma_desc->sg_count = sg_len; sg_req = dma_desc->sg_req; /* Make transfer requests */ for_each_sg(sgl, sg, sg_len, i) { u32 len; dma_addr_t mem; mem = sg_dma_address(sg); len = sg_dma_len(sg); if ((len & 3) || (mem & 3) || len > max_dma_count) { dev_err(tdc2dev(tdc), "DMA length/memory address is not supported\n"); kfree(dma_desc); return NULL; } mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len); dma_desc->bytes_req += len; if (direction == DMA_MEM_TO_DEV) { sg_req[i].ch_regs.src_ptr = mem; sg_req[i].ch_regs.dst_ptr = apb_ptr; sg_req[i].ch_regs.high_addr_ptr = FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32)); } else if (direction == DMA_DEV_TO_MEM) { sg_req[i].ch_regs.src_ptr = apb_ptr; sg_req[i].ch_regs.dst_ptr = mem; sg_req[i].ch_regs.high_addr_ptr = FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32)); } /* * Word count register takes input in words. Writing a value * of N into word count register means a req of (N+1) words. */ sg_req[i].ch_regs.wcount = ((len - 4) >> 2); sg_req[i].ch_regs.csr = csr; sg_req[i].ch_regs.mmio_seq = mmio_seq; sg_req[i].ch_regs.mc_seq = mc_seq; sg_req[i].len = len; } dma_desc->cyclic = false; return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags); } static struct dma_async_tx_descriptor * tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED; u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size; unsigned int max_dma_count, len, period_count, i; struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_desc *dma_desc; struct tegra_dma_sg_req *sg_req; dma_addr_t mem = buf_addr; int ret; if (!buf_len || !period_len) { dev_err(tdc2dev(tdc), "Invalid buffer/period len\n"); return NULL; } if (!tdc->config_init) { dev_err(tdc2dev(tdc), "DMA slave is not configured\n"); return NULL; } ret = tegra_dma_sid_reserve(tdc, direction); if (ret) return NULL; /* * We only support cycle transfer when buf_len is multiple of * period_len. */ if (buf_len % period_len) { dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n"); return NULL; } len = period_len; max_dma_count = tdc->tdma->chip_data->max_dma_count; if ((len & 3) || (buf_addr & 3) || len > max_dma_count) { dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n"); return NULL; } ret = get_transfer_param(tdc, direction, &apb_ptr, &mmio_seq, &csr, &burst_size, &slave_bw); if (ret < 0) return NULL; /* Enable once or continuous mode */ csr &= ~TEGRA_GPCDMA_CSR_ONCE; /* Program the slave id in requestor select */ csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id); /* Enable IRQ mask */ csr |= TEGRA_GPCDMA_CSR_IRQ_MASK; /* Configure default priority weight for the channel*/ csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1); /* Enable the DMA interrupt */ if (flags & DMA_PREP_INTERRUPT) csr |= TEGRA_GPCDMA_CSR_IE_EOC; mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1); mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ); /* retain stream-id and clean rest */ mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK; /* Set the address wrapping on both MC and MMIO side */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1, TEGRA_GPCDMA_MCSEQ_WRAP_NONE); /* Program 2 MC outstanding requests by default. */ mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1); /* Setting MC burst size depending on MMIO burst size */ if (burst_size == 64) mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16; else mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2; period_count = buf_len / period_len; dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count), GFP_NOWAIT); if (!dma_desc) return NULL; dma_desc->bytes_req = buf_len; dma_desc->sg_count = period_count; sg_req = dma_desc->sg_req; /* Split transfer equal to period size */ for (i = 0; i < period_count; i++) { mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len); if (direction == DMA_MEM_TO_DEV) { sg_req[i].ch_regs.src_ptr = mem; sg_req[i].ch_regs.dst_ptr = apb_ptr; sg_req[i].ch_regs.high_addr_ptr = FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32)); } else if (direction == DMA_DEV_TO_MEM) { sg_req[i].ch_regs.src_ptr = apb_ptr; sg_req[i].ch_regs.dst_ptr = mem; sg_req[i].ch_regs.high_addr_ptr = FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32)); } /* * Word count register takes input in words. Writing a value * of N into word count register means a req of (N+1) words. */ sg_req[i].ch_regs.wcount = ((len - 4) >> 2); sg_req[i].ch_regs.csr = csr; sg_req[i].ch_regs.mmio_seq = mmio_seq; sg_req[i].ch_regs.mc_seq = mc_seq; sg_req[i].len = len; mem += len; } dma_desc->cyclic = true; return vchan_tx_prep(&tdc->vc, &dma_desc->vd, flags); } static int tegra_dma_alloc_chan_resources(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); int ret; ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc); if (ret) { dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name); return ret; } dma_cookie_init(&tdc->vc.chan); tdc->config_init = false; return 0; } static void tegra_dma_chan_synchronize(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); synchronize_irq(tdc->irq); vchan_synchronize(&tdc->vc); } static void tegra_dma_free_chan_resources(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id); tegra_dma_terminate_all(dc); synchronize_irq(tdc->irq); tasklet_kill(&tdc->vc.task); tdc->config_init = false; tdc->slave_id = -1; tdc->sid_dir = DMA_TRANS_NONE; free_irq(tdc->irq, tdc); vchan_free_chan_resources(&tdc->vc); } static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct tegra_dma *tdma = ofdma->of_dma_data; struct tegra_dma_channel *tdc; struct dma_chan *chan; chan = dma_get_any_slave_channel(&tdma->dma_dev); if (!chan) return NULL; tdc = to_tegra_dma_chan(chan); tdc->slave_id = dma_spec->args[0]; return chan; } static const struct tegra_dma_chip_data tegra186_dma_chip_data = { .nr_channels = 31, .channel_reg_size = SZ_64K, .max_dma_count = SZ_1G, .hw_support_pause = false, .terminate = tegra_dma_stop_client, }; static const struct tegra_dma_chip_data tegra194_dma_chip_data = { .nr_channels = 31, .channel_reg_size = SZ_64K, .max_dma_count = SZ_1G, .hw_support_pause = true, .terminate = tegra_dma_pause, }; static const struct tegra_dma_chip_data tegra234_dma_chip_data = { .nr_channels = 31, .channel_reg_size = SZ_64K, .max_dma_count = SZ_1G, .hw_support_pause = true, .terminate = tegra_dma_pause_noerr, }; static const struct of_device_id tegra_dma_of_match[] = { { .compatible = "nvidia,tegra186-gpcdma", .data = &tegra186_dma_chip_data, }, { .compatible = "nvidia,tegra194-gpcdma", .data = &tegra194_dma_chip_data, }, { .compatible = "nvidia,tegra234-gpcdma", .data = &tegra234_dma_chip_data, }, { }, }; MODULE_DEVICE_TABLE(of, tegra_dma_of_match); static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id) { unsigned int reg_val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ); reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK); reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK); reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id); reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id); tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, reg_val); return 0; } static int tegra_dma_probe(struct platform_device *pdev) { const struct tegra_dma_chip_data *cdata = NULL; struct iommu_fwspec *iommu_spec; unsigned int stream_id, i; struct tegra_dma *tdma; int ret; cdata = of_device_get_match_data(&pdev->dev); tdma = devm_kzalloc(&pdev->dev, struct_size(tdma, channels, cdata->nr_channels), GFP_KERNEL); if (!tdma) return -ENOMEM; tdma->dev = &pdev->dev; tdma->chip_data = cdata; platform_set_drvdata(pdev, tdma); tdma->base_addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(tdma->base_addr)) return PTR_ERR(tdma->base_addr); tdma->rst = devm_reset_control_get_exclusive(&pdev->dev, "gpcdma"); if (IS_ERR(tdma->rst)) { return dev_err_probe(&pdev->dev, PTR_ERR(tdma->rst), "Missing controller reset\n"); } reset_control_reset(tdma->rst); tdma->dma_dev.dev = &pdev->dev; iommu_spec = dev_iommu_fwspec_get(&pdev->dev); if (!iommu_spec) { dev_err(&pdev->dev, "Missing iommu stream-id\n"); return -EINVAL; } stream_id = iommu_spec->ids[0] & 0xffff; INIT_LIST_HEAD(&tdma->dma_dev.channels); for (i = 0; i < cdata->nr_channels; i++) { struct tegra_dma_channel *tdc = &tdma->channels[i]; tdc->irq = platform_get_irq(pdev, i); if (tdc->irq < 0) return tdc->irq; tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADD_OFFSET + i * cdata->channel_reg_size; snprintf(tdc->name, sizeof(tdc->name), "gpcdma.%d", i); tdc->tdma = tdma; tdc->id = i; tdc->slave_id = -1; vchan_init(&tdc->vc, &tdma->dma_dev); tdc->vc.desc_free = tegra_dma_desc_free; /* program stream-id for this channel */ tegra_dma_program_sid(tdc, stream_id); tdc->stream_id = stream_id; } dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask); dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask); dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask); dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask); dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask); /* * Only word aligned transfers are supported. Set the copy * alignment shift. */ tdma->dma_dev.copy_align = 2; tdma->dma_dev.fill_align = 2; tdma->dma_dev.device_alloc_chan_resources = tegra_dma_alloc_chan_resources; tdma->dma_dev.device_free_chan_resources = tegra_dma_free_chan_resources; tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg; tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy; tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset; tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic; tdma->dma_dev.device_config = tegra_dma_slave_config; tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all; tdma->dma_dev.device_tx_status = tegra_dma_tx_status; tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending; tdma->dma_dev.device_pause = tegra_dma_device_pause; tdma->dma_dev.device_resume = tegra_dma_device_resume; tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize; tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; ret = dma_async_device_register(&tdma->dma_dev); if (ret < 0) { dev_err_probe(&pdev->dev, ret, "GPC DMA driver registration failed\n"); return ret; } ret = of_dma_controller_register(pdev->dev.of_node, tegra_dma_of_xlate, tdma); if (ret < 0) { dev_err_probe(&pdev->dev, ret, "GPC DMA OF registration failed\n"); dma_async_device_unregister(&tdma->dma_dev); return ret; } dev_info(&pdev->dev, "GPC DMA driver register %d channels\n", cdata->nr_channels); return 0; } static int tegra_dma_remove(struct platform_device *pdev) { struct tegra_dma *tdma = platform_get_drvdata(pdev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&tdma->dma_dev); return 0; } static int __maybe_unused tegra_dma_pm_suspend(struct device *dev) { struct tegra_dma *tdma = dev_get_drvdata(dev); unsigned int i; for (i = 0; i < tdma->chip_data->nr_channels; i++) { struct tegra_dma_channel *tdc = &tdma->channels[i]; if (tdc->dma_desc) { dev_err(tdma->dev, "channel %u busy\n", i); return -EBUSY; } } return 0; } static int __maybe_unused tegra_dma_pm_resume(struct device *dev) { struct tegra_dma *tdma = dev_get_drvdata(dev); unsigned int i; reset_control_reset(tdma->rst); for (i = 0; i < tdma->chip_data->nr_channels; i++) { struct tegra_dma_channel *tdc = &tdma->channels[i]; tegra_dma_program_sid(tdc, tdc->stream_id); } return 0; } static const struct dev_pm_ops tegra_dma_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume) }; static struct platform_driver tegra_dma_driver = { .driver = { .name = "tegra-gpcdma", .pm = &tegra_dma_dev_pm_ops, .of_match_table = tegra_dma_of_match, }, .probe = tegra_dma_probe, .remove = tegra_dma_remove, }; module_platform_driver(tegra_dma_driver); MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver"); MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>"); MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1