Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hawking Zhang | 1915 | 48.48% | 22 | 46.81% |
Alex Deucher | 1549 | 39.22% | 10 | 21.28% |
John Clements | 128 | 3.24% | 1 | 2.13% |
Aaron Liu | 89 | 2.25% | 1 | 2.13% |
Monk Liu | 86 | 2.18% | 1 | 2.13% |
Huang Rui | 79 | 2.00% | 4 | 8.51% |
Ori Messinger | 49 | 1.24% | 1 | 2.13% |
tianci yin | 24 | 0.61% | 1 | 2.13% |
Luben Tuikov | 18 | 0.46% | 1 | 2.13% |
Feifei Xu | 5 | 0.13% | 2 | 4.26% |
Likun Gao | 4 | 0.10% | 1 | 2.13% |
Shaoyun Liu | 3 | 0.08% | 1 | 2.13% |
Isabella Basso | 1 | 0.03% | 1 | 2.13% |
Total | 3950 | 47 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <drm/amdgpu_drm.h> #include "amdgpu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "atom.h" #include "atombios.h" #include "soc15_hw_ip.h" union firmware_info { struct atom_firmware_info_v3_1 v31; struct atom_firmware_info_v3_2 v32; struct atom_firmware_info_v3_3 v33; struct atom_firmware_info_v3_4 v34; }; /* * Helper function to query firmware capability * * @adev: amdgpu_device pointer * * Return firmware_capability in firmwareinfo table on success or 0 if not */ uint32_t amdgpu_atomfirmware_query_firmware_capability(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index; u16 data_offset, size; union firmware_info *firmware_info; u8 frev, crev; u32 fw_cap = 0; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { /* support firmware_info 3.1 + */ if ((frev == 3 && crev >=1) || (frev > 3)) { firmware_info = (union firmware_info *) (mode_info->atom_context->bios + data_offset); fw_cap = le32_to_cpu(firmware_info->v31.firmware_capability); } } return fw_cap; } /* * Helper function to query gpu virtualizaiton capability * * @adev: amdgpu_device pointer * * Return true if gpu virtualization is supported or false if not */ bool amdgpu_atomfirmware_gpu_virtualization_supported(struct amdgpu_device *adev) { u32 fw_cap; fw_cap = adev->mode_info.firmware_flags; return (fw_cap & ATOM_FIRMWARE_CAP_GPU_VIRTUALIZATION) ? true : false; } void amdgpu_atomfirmware_scratch_regs_init(struct amdgpu_device *adev) { int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); uint16_t data_offset; if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, NULL, NULL, NULL, &data_offset)) { struct atom_firmware_info_v3_1 *firmware_info = (struct atom_firmware_info_v3_1 *)(adev->mode_info.atom_context->bios + data_offset); adev->bios_scratch_reg_offset = le32_to_cpu(firmware_info->bios_scratch_reg_startaddr); } } int amdgpu_atomfirmware_allocate_fb_scratch(struct amdgpu_device *adev) { struct atom_context *ctx = adev->mode_info.atom_context; int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, vram_usagebyfirmware); struct vram_usagebyfirmware_v2_1 *firmware_usage; uint32_t start_addr, size; uint16_t data_offset; int usage_bytes = 0; if (amdgpu_atom_parse_data_header(ctx, index, NULL, NULL, NULL, &data_offset)) { firmware_usage = (struct vram_usagebyfirmware_v2_1 *)(ctx->bios + data_offset); DRM_DEBUG("atom firmware requested %08x %dkb fw %dkb drv\n", le32_to_cpu(firmware_usage->start_address_in_kb), le16_to_cpu(firmware_usage->used_by_firmware_in_kb), le16_to_cpu(firmware_usage->used_by_driver_in_kb)); start_addr = le32_to_cpu(firmware_usage->start_address_in_kb); size = le16_to_cpu(firmware_usage->used_by_firmware_in_kb); if ((uint32_t)(start_addr & ATOM_VRAM_OPERATION_FLAGS_MASK) == (uint32_t)(ATOM_VRAM_BLOCK_SRIOV_MSG_SHARE_RESERVATION << ATOM_VRAM_OPERATION_FLAGS_SHIFT)) { /* Firmware request VRAM reservation for SR-IOV */ adev->mman.fw_vram_usage_start_offset = (start_addr & (~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10; adev->mman.fw_vram_usage_size = size << 10; /* Use the default scratch size */ usage_bytes = 0; } else { usage_bytes = le16_to_cpu(firmware_usage->used_by_driver_in_kb) << 10; } } ctx->scratch_size_bytes = 0; if (usage_bytes == 0) usage_bytes = 20 * 1024; /* allocate some scratch memory */ ctx->scratch = kzalloc(usage_bytes, GFP_KERNEL); if (!ctx->scratch) return -ENOMEM; ctx->scratch_size_bytes = usage_bytes; return 0; } union igp_info { struct atom_integrated_system_info_v1_11 v11; struct atom_integrated_system_info_v1_12 v12; struct atom_integrated_system_info_v2_1 v21; }; union umc_info { struct atom_umc_info_v3_1 v31; struct atom_umc_info_v3_2 v32; struct atom_umc_info_v3_3 v33; }; union vram_info { struct atom_vram_info_header_v2_3 v23; struct atom_vram_info_header_v2_4 v24; struct atom_vram_info_header_v2_5 v25; struct atom_vram_info_header_v2_6 v26; struct atom_vram_info_header_v3_0 v30; }; union vram_module { struct atom_vram_module_v9 v9; struct atom_vram_module_v10 v10; struct atom_vram_module_v11 v11; struct atom_vram_module_v3_0 v30; }; static int convert_atom_mem_type_to_vram_type(struct amdgpu_device *adev, int atom_mem_type) { int vram_type; if (adev->flags & AMD_IS_APU) { switch (atom_mem_type) { case Ddr2MemType: case LpDdr2MemType: vram_type = AMDGPU_VRAM_TYPE_DDR2; break; case Ddr3MemType: case LpDdr3MemType: vram_type = AMDGPU_VRAM_TYPE_DDR3; break; case Ddr4MemType: vram_type = AMDGPU_VRAM_TYPE_DDR4; break; case LpDdr4MemType: vram_type = AMDGPU_VRAM_TYPE_LPDDR4; break; case Ddr5MemType: vram_type = AMDGPU_VRAM_TYPE_DDR5; break; case LpDdr5MemType: vram_type = AMDGPU_VRAM_TYPE_LPDDR5; break; default: vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; break; } } else { switch (atom_mem_type) { case ATOM_DGPU_VRAM_TYPE_GDDR5: vram_type = AMDGPU_VRAM_TYPE_GDDR5; break; case ATOM_DGPU_VRAM_TYPE_HBM2: case ATOM_DGPU_VRAM_TYPE_HBM2E: vram_type = AMDGPU_VRAM_TYPE_HBM; break; case ATOM_DGPU_VRAM_TYPE_GDDR6: vram_type = AMDGPU_VRAM_TYPE_GDDR6; break; default: vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; break; } } return vram_type; } int amdgpu_atomfirmware_get_vram_info(struct amdgpu_device *adev, int *vram_width, int *vram_type, int *vram_vendor) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index, i = 0; u16 data_offset, size; union igp_info *igp_info; union vram_info *vram_info; union vram_module *vram_module; u8 frev, crev; u8 mem_type; u8 mem_vendor; u32 mem_channel_number; u32 mem_channel_width; u32 module_id; if (adev->flags & AMD_IS_APU) index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, integratedsysteminfo); else index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, vram_info); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { if (adev->flags & AMD_IS_APU) { igp_info = (union igp_info *) (mode_info->atom_context->bios + data_offset); switch (frev) { case 1: switch (crev) { case 11: case 12: mem_channel_number = igp_info->v11.umachannelnumber; if (!mem_channel_number) mem_channel_number = 1; /* channel width is 64 */ if (vram_width) *vram_width = mem_channel_number * 64; mem_type = igp_info->v11.memorytype; if (vram_type) *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); break; default: return -EINVAL; } break; case 2: switch (crev) { case 1: case 2: mem_channel_number = igp_info->v21.umachannelnumber; if (!mem_channel_number) mem_channel_number = 1; /* channel width is 64 */ if (vram_width) *vram_width = mem_channel_number * 64; mem_type = igp_info->v21.memorytype; if (vram_type) *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); break; default: return -EINVAL; } break; default: return -EINVAL; } } else { vram_info = (union vram_info *) (mode_info->atom_context->bios + data_offset); module_id = (RREG32(adev->bios_scratch_reg_offset + 4) & 0x00ff0000) >> 16; if (frev == 3) { switch (crev) { /* v30 */ case 0: vram_module = (union vram_module *)vram_info->v30.vram_module; mem_vendor = (vram_module->v30.dram_vendor_id) & 0xF; if (vram_vendor) *vram_vendor = mem_vendor; mem_type = vram_info->v30.memory_type; if (vram_type) *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); mem_channel_number = vram_info->v30.channel_num; mem_channel_width = vram_info->v30.channel_width; if (vram_width) *vram_width = mem_channel_number * (1 << mem_channel_width); break; default: return -EINVAL; } } else if (frev == 2) { switch (crev) { /* v23 */ case 3: if (module_id > vram_info->v23.vram_module_num) module_id = 0; vram_module = (union vram_module *)vram_info->v23.vram_module; while (i < module_id) { vram_module = (union vram_module *) ((u8 *)vram_module + vram_module->v9.vram_module_size); i++; } mem_type = vram_module->v9.memory_type; if (vram_type) *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); mem_channel_number = vram_module->v9.channel_num; mem_channel_width = vram_module->v9.channel_width; if (vram_width) *vram_width = mem_channel_number * (1 << mem_channel_width); mem_vendor = (vram_module->v9.vender_rev_id) & 0xF; if (vram_vendor) *vram_vendor = mem_vendor; break; /* v24 */ case 4: if (module_id > vram_info->v24.vram_module_num) module_id = 0; vram_module = (union vram_module *)vram_info->v24.vram_module; while (i < module_id) { vram_module = (union vram_module *) ((u8 *)vram_module + vram_module->v10.vram_module_size); i++; } mem_type = vram_module->v10.memory_type; if (vram_type) *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); mem_channel_number = vram_module->v10.channel_num; mem_channel_width = vram_module->v10.channel_width; if (vram_width) *vram_width = mem_channel_number * (1 << mem_channel_width); mem_vendor = (vram_module->v10.vender_rev_id) & 0xF; if (vram_vendor) *vram_vendor = mem_vendor; break; /* v25 */ case 5: if (module_id > vram_info->v25.vram_module_num) module_id = 0; vram_module = (union vram_module *)vram_info->v25.vram_module; while (i < module_id) { vram_module = (union vram_module *) ((u8 *)vram_module + vram_module->v11.vram_module_size); i++; } mem_type = vram_module->v11.memory_type; if (vram_type) *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); mem_channel_number = vram_module->v11.channel_num; mem_channel_width = vram_module->v11.channel_width; if (vram_width) *vram_width = mem_channel_number * (1 << mem_channel_width); mem_vendor = (vram_module->v11.vender_rev_id) & 0xF; if (vram_vendor) *vram_vendor = mem_vendor; break; /* v26 */ case 6: if (module_id > vram_info->v26.vram_module_num) module_id = 0; vram_module = (union vram_module *)vram_info->v26.vram_module; while (i < module_id) { vram_module = (union vram_module *) ((u8 *)vram_module + vram_module->v9.vram_module_size); i++; } mem_type = vram_module->v9.memory_type; if (vram_type) *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); mem_channel_number = vram_module->v9.channel_num; mem_channel_width = vram_module->v9.channel_width; if (vram_width) *vram_width = mem_channel_number * (1 << mem_channel_width); mem_vendor = (vram_module->v9.vender_rev_id) & 0xF; if (vram_vendor) *vram_vendor = mem_vendor; break; default: return -EINVAL; } } else { /* invalid frev */ return -EINVAL; } } } return 0; } /* * Return true if vbios enabled ecc by default, if umc info table is available * or false if ecc is not enabled or umc info table is not available */ bool amdgpu_atomfirmware_mem_ecc_supported(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index; u16 data_offset, size; union umc_info *umc_info; u8 frev, crev; bool ecc_default_enabled = false; u8 umc_config; u32 umc_config1; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, umc_info); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { if (frev == 3) { umc_info = (union umc_info *) (mode_info->atom_context->bios + data_offset); switch (crev) { case 1: umc_config = le32_to_cpu(umc_info->v31.umc_config); ecc_default_enabled = (umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false; break; case 2: umc_config = le32_to_cpu(umc_info->v32.umc_config); ecc_default_enabled = (umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false; break; case 3: umc_config = le32_to_cpu(umc_info->v33.umc_config); umc_config1 = le32_to_cpu(umc_info->v33.umc_config1); ecc_default_enabled = ((umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) || (umc_config1 & UMC_CONFIG1__ENABLE_ECC_CAPABLE)) ? true : false; break; default: /* unsupported crev */ return false; } } } return ecc_default_enabled; } /* * Helper function to query sram ecc capablity * * @adev: amdgpu_device pointer * * Return true if vbios supports sram ecc or false if not */ bool amdgpu_atomfirmware_sram_ecc_supported(struct amdgpu_device *adev) { u32 fw_cap; fw_cap = adev->mode_info.firmware_flags; return (fw_cap & ATOM_FIRMWARE_CAP_SRAM_ECC) ? true : false; } /* * Helper function to query dynamic boot config capability * * @adev: amdgpu_device pointer * * Return true if vbios supports dynamic boot config or false if not */ bool amdgpu_atomfirmware_dynamic_boot_config_supported(struct amdgpu_device *adev) { u32 fw_cap; fw_cap = adev->mode_info.firmware_flags; return (fw_cap & ATOM_FIRMWARE_CAP_DYNAMIC_BOOT_CFG_ENABLE) ? true : false; } /** * amdgpu_atomfirmware_ras_rom_addr -- Get the RAS EEPROM addr from VBIOS * @adev: amdgpu_device pointer * @i2c_address: pointer to u8; if not NULL, will contain * the RAS EEPROM address if the function returns true * * Return true if VBIOS supports RAS EEPROM address reporting, * else return false. If true and @i2c_address is not NULL, * will contain the RAS ROM address. */ bool amdgpu_atomfirmware_ras_rom_addr(struct amdgpu_device *adev, u8 *i2c_address) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index; u16 data_offset, size; union firmware_info *firmware_info; u8 frev, crev; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { /* support firmware_info 3.4 + */ if ((frev == 3 && crev >=4) || (frev > 3)) { firmware_info = (union firmware_info *) (mode_info->atom_context->bios + data_offset); /* The ras_rom_i2c_slave_addr should ideally * be a 19-bit EEPROM address, which would be * used as is by the driver; see top of * amdgpu_eeprom.c. * * When this is the case, 0 is of course a * valid RAS EEPROM address, in which case, * we'll drop the first "if (firm...)" and only * leave the check for the pointer. * * The reason this works right now is because * ras_rom_i2c_slave_addr contains the EEPROM * device type qualifier 1010b in the top 4 * bits. */ if (firmware_info->v34.ras_rom_i2c_slave_addr) { if (i2c_address) *i2c_address = firmware_info->v34.ras_rom_i2c_slave_addr; return true; } } } return false; } union smu_info { struct atom_smu_info_v3_1 v31; struct atom_smu_info_v4_0 v40; }; union gfx_info { struct atom_gfx_info_v2_2 v22; struct atom_gfx_info_v2_4 v24; struct atom_gfx_info_v2_7 v27; struct atom_gfx_info_v3_0 v30; }; int amdgpu_atomfirmware_get_clock_info(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; struct amdgpu_pll *spll = &adev->clock.spll; struct amdgpu_pll *mpll = &adev->clock.mpll; uint8_t frev, crev; uint16_t data_offset; int ret = -EINVAL, index; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { union firmware_info *firmware_info = (union firmware_info *)(mode_info->atom_context->bios + data_offset); adev->clock.default_sclk = le32_to_cpu(firmware_info->v31.bootup_sclk_in10khz); adev->clock.default_mclk = le32_to_cpu(firmware_info->v31.bootup_mclk_in10khz); adev->pm.current_sclk = adev->clock.default_sclk; adev->pm.current_mclk = adev->clock.default_mclk; ret = 0; } index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smu_info); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { union smu_info *smu_info = (union smu_info *)(mode_info->atom_context->bios + data_offset); /* system clock */ if (frev == 3) spll->reference_freq = le32_to_cpu(smu_info->v31.core_refclk_10khz); else if (frev == 4) spll->reference_freq = le32_to_cpu(smu_info->v40.core_refclk_10khz); spll->reference_div = 0; spll->min_post_div = 1; spll->max_post_div = 1; spll->min_ref_div = 2; spll->max_ref_div = 0xff; spll->min_feedback_div = 4; spll->max_feedback_div = 0xff; spll->best_vco = 0; ret = 0; } index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, umc_info); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { union umc_info *umc_info = (union umc_info *)(mode_info->atom_context->bios + data_offset); /* memory clock */ mpll->reference_freq = le32_to_cpu(umc_info->v31.mem_refclk_10khz); mpll->reference_div = 0; mpll->min_post_div = 1; mpll->max_post_div = 1; mpll->min_ref_div = 2; mpll->max_ref_div = 0xff; mpll->min_feedback_div = 4; mpll->max_feedback_div = 0xff; mpll->best_vco = 0; ret = 0; } /* if asic is Navi+, the rlc reference clock is used for system clock * from vbios gfx_info table */ if (adev->asic_type >= CHIP_NAVI10) { index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, gfx_info); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { union gfx_info *gfx_info = (union gfx_info *) (mode_info->atom_context->bios + data_offset); if ((frev == 3) || (frev == 2 && crev == 6)) { spll->reference_freq = le32_to_cpu(gfx_info->v30.golden_tsc_count_lower_refclk); ret = 0; } else if ((frev == 2) && (crev >= 2) && (crev != 6)) { spll->reference_freq = le32_to_cpu(gfx_info->v22.rlc_gpu_timer_refclk); ret = 0; } else { BUG(); } } } return ret; } int amdgpu_atomfirmware_get_gfx_info(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; int index; uint8_t frev, crev; uint16_t data_offset; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, gfx_info); if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { union gfx_info *gfx_info = (union gfx_info *) (mode_info->atom_context->bios + data_offset); if (frev == 2) { switch (crev) { case 4: adev->gfx.config.max_shader_engines = gfx_info->v24.max_shader_engines; adev->gfx.config.max_cu_per_sh = gfx_info->v24.max_cu_per_sh; adev->gfx.config.max_sh_per_se = gfx_info->v24.max_sh_per_se; adev->gfx.config.max_backends_per_se = gfx_info->v24.max_backends_per_se; adev->gfx.config.max_texture_channel_caches = gfx_info->v24.max_texture_channel_caches; adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v24.gc_num_gprs); adev->gfx.config.max_gs_threads = gfx_info->v24.gc_num_max_gs_thds; adev->gfx.config.gs_vgt_table_depth = gfx_info->v24.gc_gs_table_depth; adev->gfx.config.gs_prim_buffer_depth = le16_to_cpu(gfx_info->v24.gc_gsprim_buff_depth); adev->gfx.config.double_offchip_lds_buf = gfx_info->v24.gc_double_offchip_lds_buffer; adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v24.gc_wave_size); adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v24.gc_max_waves_per_simd); adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v24.gc_max_scratch_slots_per_cu; adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v24.gc_lds_size); return 0; case 7: adev->gfx.config.max_shader_engines = gfx_info->v27.max_shader_engines; adev->gfx.config.max_cu_per_sh = gfx_info->v27.max_cu_per_sh; adev->gfx.config.max_sh_per_se = gfx_info->v27.max_sh_per_se; adev->gfx.config.max_backends_per_se = gfx_info->v27.max_backends_per_se; adev->gfx.config.max_texture_channel_caches = gfx_info->v27.max_texture_channel_caches; adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v27.gc_num_gprs); adev->gfx.config.max_gs_threads = gfx_info->v27.gc_num_max_gs_thds; adev->gfx.config.gs_vgt_table_depth = gfx_info->v27.gc_gs_table_depth; adev->gfx.config.gs_prim_buffer_depth = le16_to_cpu(gfx_info->v27.gc_gsprim_buff_depth); adev->gfx.config.double_offchip_lds_buf = gfx_info->v27.gc_double_offchip_lds_buffer; adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v27.gc_wave_size); adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v27.gc_max_waves_per_simd); adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v27.gc_max_scratch_slots_per_cu; adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v27.gc_lds_size); return 0; default: return -EINVAL; } } else if (frev == 3) { switch (crev) { case 0: adev->gfx.config.max_shader_engines = gfx_info->v30.max_shader_engines; adev->gfx.config.max_cu_per_sh = gfx_info->v30.max_cu_per_sh; adev->gfx.config.max_sh_per_se = gfx_info->v30.max_sh_per_se; adev->gfx.config.max_backends_per_se = gfx_info->v30.max_backends_per_se; adev->gfx.config.max_texture_channel_caches = gfx_info->v30.max_texture_channel_caches; return 0; default: return -EINVAL; } } else { return -EINVAL; } } return -EINVAL; } /* * Helper function to query two stage mem training capability * * @adev: amdgpu_device pointer * * Return true if two stage mem training is supported or false if not */ bool amdgpu_atomfirmware_mem_training_supported(struct amdgpu_device *adev) { u32 fw_cap; fw_cap = adev->mode_info.firmware_flags; return (fw_cap & ATOM_FIRMWARE_CAP_ENABLE_2STAGE_BIST_TRAINING) ? true : false; } int amdgpu_atomfirmware_get_fw_reserved_fb_size(struct amdgpu_device *adev) { struct atom_context *ctx = adev->mode_info.atom_context; union firmware_info *firmware_info; int index; u16 data_offset, size; u8 frev, crev; int fw_reserved_fb_size; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); if (!amdgpu_atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) /* fail to parse data_header */ return 0; firmware_info = (union firmware_info *)(ctx->bios + data_offset); if (frev !=3) return -EINVAL; switch (crev) { case 4: fw_reserved_fb_size = (firmware_info->v34.fw_reserved_size_in_kb << 10); break; default: fw_reserved_fb_size = 0; break; } return fw_reserved_fb_size; } /* * Helper function to execute asic_init table * * @adev: amdgpu_device pointer * @fb_reset: flag to indicate whether fb is reset or not * * Return 0 if succeed, otherwise failed */ int amdgpu_atomfirmware_asic_init(struct amdgpu_device *adev, bool fb_reset) { struct amdgpu_mode_info *mode_info = &adev->mode_info; struct atom_context *ctx; uint8_t frev, crev; uint16_t data_offset; uint32_t bootup_sclk_in10khz, bootup_mclk_in10khz; struct asic_init_ps_allocation_v2_1 asic_init_ps_v2_1; int index; if (!mode_info) return -EINVAL; ctx = mode_info->atom_context; if (!ctx) return -EINVAL; /* query bootup sclk/mclk from firmware_info table */ index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); if (amdgpu_atom_parse_data_header(ctx, index, NULL, &frev, &crev, &data_offset)) { union firmware_info *firmware_info = (union firmware_info *)(ctx->bios + data_offset); bootup_sclk_in10khz = le32_to_cpu(firmware_info->v31.bootup_sclk_in10khz); bootup_mclk_in10khz = le32_to_cpu(firmware_info->v31.bootup_mclk_in10khz); } else { return -EINVAL; } index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, asic_init); if (amdgpu_atom_parse_cmd_header(mode_info->atom_context, index, &frev, &crev)) { if (frev == 2 && crev >= 1) { memset(&asic_init_ps_v2_1, 0, sizeof(asic_init_ps_v2_1)); asic_init_ps_v2_1.param.engineparam.sclkfreqin10khz = bootup_sclk_in10khz; asic_init_ps_v2_1.param.memparam.mclkfreqin10khz = bootup_mclk_in10khz; asic_init_ps_v2_1.param.engineparam.engineflag = b3NORMAL_ENGINE_INIT; if (!fb_reset) asic_init_ps_v2_1.param.memparam.memflag = b3DRAM_SELF_REFRESH_EXIT; else asic_init_ps_v2_1.param.memparam.memflag = 0; } else { return -EINVAL; } } else { return -EINVAL; } return amdgpu_atom_execute_table(ctx, ATOM_CMD_INIT, (uint32_t *)&asic_init_ps_v2_1); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1