Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian König | 1270 | 29.24% | 18 | 22.78% |
Alex Deucher | 913 | 21.02% | 6 | 7.59% |
Nirmoy Das | 870 | 20.03% | 11 | 13.92% |
Monk Liu | 219 | 5.04% | 4 | 5.06% |
Emily Deng | 154 | 3.55% | 1 | 1.27% |
Andres Rodriguez | 147 | 3.38% | 4 | 5.06% |
Andrey Grodzovsky | 122 | 2.81% | 7 | 8.86% |
Chunming Zhou | 119 | 2.74% | 6 | 7.59% |
Luben Tuikov | 114 | 2.62% | 2 | 2.53% |
Marek Olšák | 108 | 2.49% | 2 | 2.53% |
Jammy Zhou | 104 | 2.39% | 1 | 1.27% |
Roy Sun | 65 | 1.50% | 1 | 1.27% |
Satyajit Sahu | 46 | 1.06% | 1 | 1.27% |
Chengming Gui | 25 | 0.58% | 1 | 1.27% |
David M Nieto | 17 | 0.39% | 2 | 2.53% |
Arunpravin Pannerslvam | 9 | 0.21% | 1 | 1.27% |
Chris Wilson | 7 | 0.16% | 1 | 1.27% |
Dave Airlie | 6 | 0.14% | 1 | 1.27% |
Tom Rix | 5 | 0.12% | 1 | 1.27% |
James Zhu | 5 | 0.12% | 1 | 1.27% |
Matthew Wilcox | 4 | 0.09% | 1 | 1.27% |
Guchun Chen | 3 | 0.07% | 1 | 1.27% |
xinhui pan | 3 | 0.07% | 1 | 1.27% |
Danilo Krummrich | 3 | 0.07% | 1 | 1.27% |
Gustavo A. R. Silva | 3 | 0.07% | 1 | 1.27% |
Grazvydas Ignotas | 2 | 0.05% | 1 | 1.27% |
Rex Zhu | 1 | 0.02% | 1 | 1.27% |
Total | 4344 | 79 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: monk liu <monk.liu@amd.com> */ #include <drm/drm_auth.h> #include <drm/drm_drv.h> #include "amdgpu.h" #include "amdgpu_sched.h" #include "amdgpu_ras.h" #include <linux/nospec.h> #define to_amdgpu_ctx_entity(e) \ container_of((e), struct amdgpu_ctx_entity, entity) const unsigned int amdgpu_ctx_num_entities[AMDGPU_HW_IP_NUM] = { [AMDGPU_HW_IP_GFX] = 1, [AMDGPU_HW_IP_COMPUTE] = 4, [AMDGPU_HW_IP_DMA] = 2, [AMDGPU_HW_IP_UVD] = 1, [AMDGPU_HW_IP_VCE] = 1, [AMDGPU_HW_IP_UVD_ENC] = 1, [AMDGPU_HW_IP_VCN_DEC] = 1, [AMDGPU_HW_IP_VCN_ENC] = 1, [AMDGPU_HW_IP_VCN_JPEG] = 1, }; bool amdgpu_ctx_priority_is_valid(int32_t ctx_prio) { switch (ctx_prio) { case AMDGPU_CTX_PRIORITY_UNSET: case AMDGPU_CTX_PRIORITY_VERY_LOW: case AMDGPU_CTX_PRIORITY_LOW: case AMDGPU_CTX_PRIORITY_NORMAL: case AMDGPU_CTX_PRIORITY_HIGH: case AMDGPU_CTX_PRIORITY_VERY_HIGH: return true; default: return false; } } static enum drm_sched_priority amdgpu_ctx_to_drm_sched_prio(int32_t ctx_prio) { switch (ctx_prio) { case AMDGPU_CTX_PRIORITY_UNSET: return DRM_SCHED_PRIORITY_UNSET; case AMDGPU_CTX_PRIORITY_VERY_LOW: return DRM_SCHED_PRIORITY_MIN; case AMDGPU_CTX_PRIORITY_LOW: return DRM_SCHED_PRIORITY_MIN; case AMDGPU_CTX_PRIORITY_NORMAL: return DRM_SCHED_PRIORITY_NORMAL; case AMDGPU_CTX_PRIORITY_HIGH: return DRM_SCHED_PRIORITY_HIGH; case AMDGPU_CTX_PRIORITY_VERY_HIGH: return DRM_SCHED_PRIORITY_HIGH; /* This should not happen as we sanitized userspace provided priority * already, WARN if this happens. */ default: WARN(1, "Invalid context priority %d\n", ctx_prio); return DRM_SCHED_PRIORITY_NORMAL; } } static int amdgpu_ctx_priority_permit(struct drm_file *filp, int32_t priority) { if (!amdgpu_ctx_priority_is_valid(priority)) return -EINVAL; /* NORMAL and below are accessible by everyone */ if (priority <= AMDGPU_CTX_PRIORITY_NORMAL) return 0; if (capable(CAP_SYS_NICE)) return 0; if (drm_is_current_master(filp)) return 0; return -EACCES; } static enum amdgpu_gfx_pipe_priority amdgpu_ctx_prio_to_gfx_pipe_prio(int32_t prio) { switch (prio) { case AMDGPU_CTX_PRIORITY_HIGH: case AMDGPU_CTX_PRIORITY_VERY_HIGH: return AMDGPU_GFX_PIPE_PRIO_HIGH; default: return AMDGPU_GFX_PIPE_PRIO_NORMAL; } } static enum amdgpu_ring_priority_level amdgpu_ctx_sched_prio_to_ring_prio(int32_t prio) { switch (prio) { case AMDGPU_CTX_PRIORITY_HIGH: return AMDGPU_RING_PRIO_1; case AMDGPU_CTX_PRIORITY_VERY_HIGH: return AMDGPU_RING_PRIO_2; default: return AMDGPU_RING_PRIO_0; } } static unsigned int amdgpu_ctx_get_hw_prio(struct amdgpu_ctx *ctx, u32 hw_ip) { struct amdgpu_device *adev = ctx->mgr->adev; unsigned int hw_prio; int32_t ctx_prio; ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ? ctx->init_priority : ctx->override_priority; switch (hw_ip) { case AMDGPU_HW_IP_GFX: case AMDGPU_HW_IP_COMPUTE: hw_prio = amdgpu_ctx_prio_to_gfx_pipe_prio(ctx_prio); break; case AMDGPU_HW_IP_VCE: case AMDGPU_HW_IP_VCN_ENC: hw_prio = amdgpu_ctx_sched_prio_to_ring_prio(ctx_prio); break; default: hw_prio = AMDGPU_RING_PRIO_DEFAULT; break; } hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM); if (adev->gpu_sched[hw_ip][hw_prio].num_scheds == 0) hw_prio = AMDGPU_RING_PRIO_DEFAULT; return hw_prio; } /* Calculate the time spend on the hw */ static ktime_t amdgpu_ctx_fence_time(struct dma_fence *fence) { struct drm_sched_fence *s_fence; if (!fence) return ns_to_ktime(0); /* When the fence is not even scheduled it can't have spend time */ s_fence = to_drm_sched_fence(fence); if (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &s_fence->scheduled.flags)) return ns_to_ktime(0); /* When it is still running account how much already spend */ if (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &s_fence->finished.flags)) return ktime_sub(ktime_get(), s_fence->scheduled.timestamp); return ktime_sub(s_fence->finished.timestamp, s_fence->scheduled.timestamp); } static ktime_t amdgpu_ctx_entity_time(struct amdgpu_ctx *ctx, struct amdgpu_ctx_entity *centity) { ktime_t res = ns_to_ktime(0); uint32_t i; spin_lock(&ctx->ring_lock); for (i = 0; i < amdgpu_sched_jobs; i++) { res = ktime_add(res, amdgpu_ctx_fence_time(centity->fences[i])); } spin_unlock(&ctx->ring_lock); return res; } static int amdgpu_ctx_init_entity(struct amdgpu_ctx *ctx, u32 hw_ip, const u32 ring) { struct drm_gpu_scheduler **scheds = NULL, *sched = NULL; struct amdgpu_device *adev = ctx->mgr->adev; struct amdgpu_ctx_entity *entity; enum drm_sched_priority drm_prio; unsigned int hw_prio, num_scheds; int32_t ctx_prio; int r; entity = kzalloc(struct_size(entity, fences, amdgpu_sched_jobs), GFP_KERNEL); if (!entity) return -ENOMEM; ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ? ctx->init_priority : ctx->override_priority; entity->hw_ip = hw_ip; entity->sequence = 1; hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip); drm_prio = amdgpu_ctx_to_drm_sched_prio(ctx_prio); hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM); scheds = adev->gpu_sched[hw_ip][hw_prio].sched; num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds; /* disable load balance if the hw engine retains context among dependent jobs */ if (hw_ip == AMDGPU_HW_IP_VCN_ENC || hw_ip == AMDGPU_HW_IP_VCN_DEC || hw_ip == AMDGPU_HW_IP_UVD_ENC || hw_ip == AMDGPU_HW_IP_UVD) { sched = drm_sched_pick_best(scheds, num_scheds); scheds = &sched; num_scheds = 1; } r = drm_sched_entity_init(&entity->entity, drm_prio, scheds, num_scheds, &ctx->guilty); if (r) goto error_free_entity; /* It's not an error if we fail to install the new entity */ if (cmpxchg(&ctx->entities[hw_ip][ring], NULL, entity)) goto cleanup_entity; return 0; cleanup_entity: drm_sched_entity_fini(&entity->entity); error_free_entity: kfree(entity); return r; } static ktime_t amdgpu_ctx_fini_entity(struct amdgpu_ctx_entity *entity) { ktime_t res = ns_to_ktime(0); int i; if (!entity) return res; for (i = 0; i < amdgpu_sched_jobs; ++i) { res = ktime_add(res, amdgpu_ctx_fence_time(entity->fences[i])); dma_fence_put(entity->fences[i]); } kfree(entity); return res; } static int amdgpu_ctx_get_stable_pstate(struct amdgpu_ctx *ctx, u32 *stable_pstate) { struct amdgpu_device *adev = ctx->mgr->adev; enum amd_dpm_forced_level current_level; current_level = amdgpu_dpm_get_performance_level(adev); switch (current_level) { case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_STANDARD; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_MIN_SCLK; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_MIN_MCLK; break; case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_PEAK; break; default: *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_NONE; break; } return 0; } static int amdgpu_ctx_init(struct amdgpu_ctx_mgr *mgr, int32_t priority, struct drm_file *filp, struct amdgpu_ctx *ctx) { u32 current_stable_pstate; int r; r = amdgpu_ctx_priority_permit(filp, priority); if (r) return r; memset(ctx, 0, sizeof(*ctx)); kref_init(&ctx->refcount); ctx->mgr = mgr; spin_lock_init(&ctx->ring_lock); ctx->reset_counter = atomic_read(&mgr->adev->gpu_reset_counter); ctx->reset_counter_query = ctx->reset_counter; ctx->vram_lost_counter = atomic_read(&mgr->adev->vram_lost_counter); ctx->init_priority = priority; ctx->override_priority = AMDGPU_CTX_PRIORITY_UNSET; r = amdgpu_ctx_get_stable_pstate(ctx, ¤t_stable_pstate); if (r) return r; if (mgr->adev->pm.stable_pstate_ctx) ctx->stable_pstate = mgr->adev->pm.stable_pstate_ctx->stable_pstate; else ctx->stable_pstate = current_stable_pstate; return 0; } static int amdgpu_ctx_set_stable_pstate(struct amdgpu_ctx *ctx, u32 stable_pstate) { struct amdgpu_device *adev = ctx->mgr->adev; enum amd_dpm_forced_level level; u32 current_stable_pstate; int r; mutex_lock(&adev->pm.stable_pstate_ctx_lock); if (adev->pm.stable_pstate_ctx && adev->pm.stable_pstate_ctx != ctx) { r = -EBUSY; goto done; } r = amdgpu_ctx_get_stable_pstate(ctx, ¤t_stable_pstate); if (r || (stable_pstate == current_stable_pstate)) goto done; switch (stable_pstate) { case AMDGPU_CTX_STABLE_PSTATE_NONE: level = AMD_DPM_FORCED_LEVEL_AUTO; break; case AMDGPU_CTX_STABLE_PSTATE_STANDARD: level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; break; case AMDGPU_CTX_STABLE_PSTATE_MIN_SCLK: level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; break; case AMDGPU_CTX_STABLE_PSTATE_MIN_MCLK: level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; break; case AMDGPU_CTX_STABLE_PSTATE_PEAK: level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; break; default: r = -EINVAL; goto done; } r = amdgpu_dpm_force_performance_level(adev, level); if (level == AMD_DPM_FORCED_LEVEL_AUTO) adev->pm.stable_pstate_ctx = NULL; else adev->pm.stable_pstate_ctx = ctx; done: mutex_unlock(&adev->pm.stable_pstate_ctx_lock); return r; } static void amdgpu_ctx_fini(struct kref *ref) { struct amdgpu_ctx *ctx = container_of(ref, struct amdgpu_ctx, refcount); struct amdgpu_ctx_mgr *mgr = ctx->mgr; struct amdgpu_device *adev = mgr->adev; unsigned i, j, idx; if (!adev) return; for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < AMDGPU_MAX_ENTITY_NUM; ++j) { ktime_t spend; spend = amdgpu_ctx_fini_entity(ctx->entities[i][j]); atomic64_add(ktime_to_ns(spend), &mgr->time_spend[i]); } } if (drm_dev_enter(adev_to_drm(adev), &idx)) { amdgpu_ctx_set_stable_pstate(ctx, ctx->stable_pstate); drm_dev_exit(idx); } kfree(ctx); } int amdgpu_ctx_get_entity(struct amdgpu_ctx *ctx, u32 hw_ip, u32 instance, u32 ring, struct drm_sched_entity **entity) { int r; if (hw_ip >= AMDGPU_HW_IP_NUM) { DRM_ERROR("unknown HW IP type: %d\n", hw_ip); return -EINVAL; } /* Right now all IPs have only one instance - multiple rings. */ if (instance != 0) { DRM_DEBUG("invalid ip instance: %d\n", instance); return -EINVAL; } if (ring >= amdgpu_ctx_num_entities[hw_ip]) { DRM_DEBUG("invalid ring: %d %d\n", hw_ip, ring); return -EINVAL; } if (ctx->entities[hw_ip][ring] == NULL) { r = amdgpu_ctx_init_entity(ctx, hw_ip, ring); if (r) return r; } *entity = &ctx->entities[hw_ip][ring]->entity; return 0; } static int amdgpu_ctx_alloc(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, struct drm_file *filp, int32_t priority, uint32_t *id) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; struct amdgpu_ctx *ctx; int r; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; mutex_lock(&mgr->lock); r = idr_alloc(&mgr->ctx_handles, ctx, 1, AMDGPU_VM_MAX_NUM_CTX, GFP_KERNEL); if (r < 0) { mutex_unlock(&mgr->lock); kfree(ctx); return r; } *id = (uint32_t)r; r = amdgpu_ctx_init(mgr, priority, filp, ctx); if (r) { idr_remove(&mgr->ctx_handles, *id); *id = 0; kfree(ctx); } mutex_unlock(&mgr->lock); return r; } static void amdgpu_ctx_do_release(struct kref *ref) { struct amdgpu_ctx *ctx; u32 i, j; ctx = container_of(ref, struct amdgpu_ctx, refcount); for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { if (!ctx->entities[i][j]) continue; drm_sched_entity_destroy(&ctx->entities[i][j]->entity); } } amdgpu_ctx_fini(ref); } static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; struct amdgpu_ctx *ctx; mutex_lock(&mgr->lock); ctx = idr_remove(&mgr->ctx_handles, id); if (ctx) kref_put(&ctx->refcount, amdgpu_ctx_do_release); mutex_unlock(&mgr->lock); return ctx ? 0 : -EINVAL; } static int amdgpu_ctx_query(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, union drm_amdgpu_ctx_out *out) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; unsigned reset_counter; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } /* TODO: these two are always zero */ out->state.flags = 0x0; out->state.hangs = 0x0; /* determine if a GPU reset has occured since the last call */ reset_counter = atomic_read(&adev->gpu_reset_counter); /* TODO: this should ideally return NO, GUILTY, or INNOCENT. */ if (ctx->reset_counter_query == reset_counter) out->state.reset_status = AMDGPU_CTX_NO_RESET; else out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET; ctx->reset_counter_query = reset_counter; mutex_unlock(&mgr->lock); return 0; } #define AMDGPU_RAS_COUNTE_DELAY_MS 3000 static int amdgpu_ctx_query2(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, union drm_amdgpu_ctx_out *out) { struct amdgpu_ras *con = amdgpu_ras_get_context(adev); struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } out->state.flags = 0x0; out->state.hangs = 0x0; if (ctx->reset_counter != atomic_read(&adev->gpu_reset_counter)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RESET; if (ctx->vram_lost_counter != atomic_read(&adev->vram_lost_counter)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_VRAMLOST; if (atomic_read(&ctx->guilty)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_GUILTY; if (adev->ras_enabled && con) { /* Return the cached values in O(1), * and schedule delayed work to cache * new vaues. */ int ce_count, ue_count; ce_count = atomic_read(&con->ras_ce_count); ue_count = atomic_read(&con->ras_ue_count); if (ce_count != ctx->ras_counter_ce) { ctx->ras_counter_ce = ce_count; out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_CE; } if (ue_count != ctx->ras_counter_ue) { ctx->ras_counter_ue = ue_count; out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_UE; } schedule_delayed_work(&con->ras_counte_delay_work, msecs_to_jiffies(AMDGPU_RAS_COUNTE_DELAY_MS)); } mutex_unlock(&mgr->lock); return 0; } static int amdgpu_ctx_stable_pstate(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, bool set, u32 *stable_pstate) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; int r; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } if (set) r = amdgpu_ctx_set_stable_pstate(ctx, *stable_pstate); else r = amdgpu_ctx_get_stable_pstate(ctx, stable_pstate); mutex_unlock(&mgr->lock); return r; } int amdgpu_ctx_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { int r; uint32_t id, stable_pstate; int32_t priority; union drm_amdgpu_ctx *args = data; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_fpriv *fpriv = filp->driver_priv; id = args->in.ctx_id; priority = args->in.priority; /* For backwards compatibility reasons, we need to accept * ioctls with garbage in the priority field */ if (!amdgpu_ctx_priority_is_valid(priority)) priority = AMDGPU_CTX_PRIORITY_NORMAL; switch (args->in.op) { case AMDGPU_CTX_OP_ALLOC_CTX: r = amdgpu_ctx_alloc(adev, fpriv, filp, priority, &id); args->out.alloc.ctx_id = id; break; case AMDGPU_CTX_OP_FREE_CTX: r = amdgpu_ctx_free(fpriv, id); break; case AMDGPU_CTX_OP_QUERY_STATE: r = amdgpu_ctx_query(adev, fpriv, id, &args->out); break; case AMDGPU_CTX_OP_QUERY_STATE2: r = amdgpu_ctx_query2(adev, fpriv, id, &args->out); break; case AMDGPU_CTX_OP_GET_STABLE_PSTATE: if (args->in.flags) return -EINVAL; r = amdgpu_ctx_stable_pstate(adev, fpriv, id, false, &stable_pstate); if (!r) args->out.pstate.flags = stable_pstate; break; case AMDGPU_CTX_OP_SET_STABLE_PSTATE: if (args->in.flags & ~AMDGPU_CTX_STABLE_PSTATE_FLAGS_MASK) return -EINVAL; stable_pstate = args->in.flags & AMDGPU_CTX_STABLE_PSTATE_FLAGS_MASK; if (stable_pstate > AMDGPU_CTX_STABLE_PSTATE_PEAK) return -EINVAL; r = amdgpu_ctx_stable_pstate(adev, fpriv, id, true, &stable_pstate); break; default: return -EINVAL; } return r; } struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; if (!fpriv) return NULL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (ctx) kref_get(&ctx->refcount); mutex_unlock(&mgr->lock); return ctx; } int amdgpu_ctx_put(struct amdgpu_ctx *ctx) { if (ctx == NULL) return -EINVAL; kref_put(&ctx->refcount, amdgpu_ctx_do_release); return 0; } uint64_t amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity, struct dma_fence *fence) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); uint64_t seq = centity->sequence; struct dma_fence *other = NULL; unsigned idx = 0; idx = seq & (amdgpu_sched_jobs - 1); other = centity->fences[idx]; WARN_ON(other && !dma_fence_is_signaled(other)); dma_fence_get(fence); spin_lock(&ctx->ring_lock); centity->fences[idx] = fence; centity->sequence++; spin_unlock(&ctx->ring_lock); atomic64_add(ktime_to_ns(amdgpu_ctx_fence_time(other)), &ctx->mgr->time_spend[centity->hw_ip]); dma_fence_put(other); return seq; } struct dma_fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity, uint64_t seq) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); struct dma_fence *fence; spin_lock(&ctx->ring_lock); if (seq == ~0ull) seq = centity->sequence - 1; if (seq >= centity->sequence) { spin_unlock(&ctx->ring_lock); return ERR_PTR(-EINVAL); } if (seq + amdgpu_sched_jobs < centity->sequence) { spin_unlock(&ctx->ring_lock); return NULL; } fence = dma_fence_get(centity->fences[seq & (amdgpu_sched_jobs - 1)]); spin_unlock(&ctx->ring_lock); return fence; } static void amdgpu_ctx_set_entity_priority(struct amdgpu_ctx *ctx, struct amdgpu_ctx_entity *aentity, int hw_ip, int32_t priority) { struct amdgpu_device *adev = ctx->mgr->adev; unsigned int hw_prio; struct drm_gpu_scheduler **scheds = NULL; unsigned num_scheds; /* set sw priority */ drm_sched_entity_set_priority(&aentity->entity, amdgpu_ctx_to_drm_sched_prio(priority)); /* set hw priority */ if (hw_ip == AMDGPU_HW_IP_COMPUTE || hw_ip == AMDGPU_HW_IP_GFX) { hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip); hw_prio = array_index_nospec(hw_prio, AMDGPU_RING_PRIO_MAX); scheds = adev->gpu_sched[hw_ip][hw_prio].sched; num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds; drm_sched_entity_modify_sched(&aentity->entity, scheds, num_scheds); } } void amdgpu_ctx_priority_override(struct amdgpu_ctx *ctx, int32_t priority) { int32_t ctx_prio; unsigned i, j; ctx->override_priority = priority; ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ? ctx->init_priority : ctx->override_priority; for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { if (!ctx->entities[i][j]) continue; amdgpu_ctx_set_entity_priority(ctx, ctx->entities[i][j], i, ctx_prio); } } } int amdgpu_ctx_wait_prev_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); struct dma_fence *other; unsigned idx; long r; spin_lock(&ctx->ring_lock); idx = centity->sequence & (amdgpu_sched_jobs - 1); other = dma_fence_get(centity->fences[idx]); spin_unlock(&ctx->ring_lock); if (!other) return 0; r = dma_fence_wait(other, true); if (r < 0 && r != -ERESTARTSYS) DRM_ERROR("Error (%ld) waiting for fence!\n", r); dma_fence_put(other); return r; } void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr, struct amdgpu_device *adev) { unsigned int i; mgr->adev = adev; mutex_init(&mgr->lock); idr_init_base(&mgr->ctx_handles, 1); for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) atomic64_set(&mgr->time_spend[i], 0); } long amdgpu_ctx_mgr_entity_flush(struct amdgpu_ctx_mgr *mgr, long timeout) { struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id, i, j; idp = &mgr->ctx_handles; mutex_lock(&mgr->lock); idr_for_each_entry(idp, ctx, id) { for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { struct drm_sched_entity *entity; if (!ctx->entities[i][j]) continue; entity = &ctx->entities[i][j]->entity; timeout = drm_sched_entity_flush(entity, timeout); } } } mutex_unlock(&mgr->lock); return timeout; } void amdgpu_ctx_mgr_entity_fini(struct amdgpu_ctx_mgr *mgr) { struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id, i, j; idp = &mgr->ctx_handles; idr_for_each_entry(idp, ctx, id) { if (kref_read(&ctx->refcount) != 1) { DRM_ERROR("ctx %p is still alive\n", ctx); continue; } for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { struct drm_sched_entity *entity; if (!ctx->entities[i][j]) continue; entity = &ctx->entities[i][j]->entity; drm_sched_entity_fini(entity); } } } } void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr) { struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id; amdgpu_ctx_mgr_entity_fini(mgr); idp = &mgr->ctx_handles; idr_for_each_entry(idp, ctx, id) { if (kref_put(&ctx->refcount, amdgpu_ctx_fini) != 1) DRM_ERROR("ctx %p is still alive\n", ctx); } idr_destroy(&mgr->ctx_handles); mutex_destroy(&mgr->lock); } void amdgpu_ctx_mgr_usage(struct amdgpu_ctx_mgr *mgr, ktime_t usage[AMDGPU_HW_IP_NUM]) { struct amdgpu_ctx *ctx; unsigned int hw_ip, i; uint32_t id; /* * This is a little bit racy because it can be that a ctx or a fence are * destroyed just in the moment we try to account them. But that is ok * since exactly that case is explicitely allowed by the interface. */ mutex_lock(&mgr->lock); for (hw_ip = 0; hw_ip < AMDGPU_HW_IP_NUM; ++hw_ip) { uint64_t ns = atomic64_read(&mgr->time_spend[hw_ip]); usage[hw_ip] = ns_to_ktime(ns); } idr_for_each_entry(&mgr->ctx_handles, ctx, id) { for (hw_ip = 0; hw_ip < AMDGPU_HW_IP_NUM; ++hw_ip) { for (i = 0; i < amdgpu_ctx_num_entities[hw_ip]; ++i) { struct amdgpu_ctx_entity *centity; ktime_t spend; centity = ctx->entities[hw_ip][i]; if (!centity) continue; spend = amdgpu_ctx_entity_time(ctx, centity); usage[hw_ip] = ktime_add(usage[hw_ip], spend); } } } mutex_unlock(&mgr->lock); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1