Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 3538 | 55.77% | 12 | 11.54% |
Christian König | 662 | 10.44% | 35 | 33.65% |
Leo Liu | 439 | 6.92% | 6 | 5.77% |
xinhui pan | 378 | 5.96% | 3 | 2.88% |
Sonny Jiang | 329 | 5.19% | 4 | 3.85% |
James Zhu | 306 | 4.82% | 7 | 6.73% |
Arindam Nath | 137 | 2.16% | 2 | 1.92% |
Boyuan Zhang | 98 | 1.54% | 1 | 0.96% |
Emily Deng | 77 | 1.21% | 1 | 0.96% |
Andrey Grodzovsky | 58 | 0.91% | 1 | 0.96% |
Monk Liu | 55 | 0.87% | 3 | 2.88% |
Le Ma | 42 | 0.66% | 2 | 1.92% |
Rex Zhu | 33 | 0.52% | 1 | 0.96% |
Junwei (Martin) Zhang | 26 | 0.41% | 2 | 1.92% |
Chunming Zhou | 25 | 0.39% | 3 | 2.88% |
Feifei Xu | 17 | 0.27% | 1 | 0.96% |
Samuel Li | 17 | 0.27% | 1 | 0.96% |
David Zhang | 17 | 0.27% | 1 | 0.96% |
Chris Wilson | 11 | 0.17% | 1 | 0.96% |
jimqu | 11 | 0.17% | 1 | 0.96% |
Flora Cui | 10 | 0.16% | 1 | 0.96% |
zhanglianjie | 10 | 0.16% | 1 | 0.96% |
Guchun Chen | 9 | 0.14% | 1 | 0.96% |
Guttula, Suresh | 9 | 0.14% | 1 | 0.96% |
Nirmoy Das | 6 | 0.09% | 1 | 0.96% |
Jammy Zhou | 6 | 0.09% | 2 | 1.92% |
Gerd Hoffmann | 4 | 0.06% | 1 | 0.96% |
Michel Dänzer | 3 | 0.05% | 1 | 0.96% |
Lee Jones | 3 | 0.05% | 2 | 1.92% |
Jay Cornwall | 2 | 0.03% | 1 | 0.96% |
Tom Rix | 2 | 0.03% | 1 | 0.96% |
Xiangliang Yu | 2 | 0.03% | 1 | 0.96% |
Arnd Bergmann | 1 | 0.02% | 1 | 0.96% |
yanyang1 | 1 | 0.02% | 1 | 0.96% |
Total | 6344 | 104 |
/* * Copyright 2011 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* * Authors: * Christian König <deathsimple@vodafone.de> */ #include <linux/firmware.h> #include <linux/module.h> #include <drm/drm.h> #include <drm/drm_drv.h> #include "amdgpu.h" #include "amdgpu_pm.h" #include "amdgpu_uvd.h" #include "amdgpu_cs.h" #include "cikd.h" #include "uvd/uvd_4_2_d.h" #include "amdgpu_ras.h" /* 1 second timeout */ #define UVD_IDLE_TIMEOUT msecs_to_jiffies(1000) /* Firmware versions for VI */ #define FW_1_65_10 ((1 << 24) | (65 << 16) | (10 << 8)) #define FW_1_87_11 ((1 << 24) | (87 << 16) | (11 << 8)) #define FW_1_87_12 ((1 << 24) | (87 << 16) | (12 << 8)) #define FW_1_37_15 ((1 << 24) | (37 << 16) | (15 << 8)) /* Polaris10/11 firmware version */ #define FW_1_66_16 ((1 << 24) | (66 << 16) | (16 << 8)) /* Firmware Names */ #ifdef CONFIG_DRM_AMDGPU_SI #define FIRMWARE_TAHITI "amdgpu/tahiti_uvd.bin" #define FIRMWARE_VERDE "amdgpu/verde_uvd.bin" #define FIRMWARE_PITCAIRN "amdgpu/pitcairn_uvd.bin" #define FIRMWARE_OLAND "amdgpu/oland_uvd.bin" #endif #ifdef CONFIG_DRM_AMDGPU_CIK #define FIRMWARE_BONAIRE "amdgpu/bonaire_uvd.bin" #define FIRMWARE_KABINI "amdgpu/kabini_uvd.bin" #define FIRMWARE_KAVERI "amdgpu/kaveri_uvd.bin" #define FIRMWARE_HAWAII "amdgpu/hawaii_uvd.bin" #define FIRMWARE_MULLINS "amdgpu/mullins_uvd.bin" #endif #define FIRMWARE_TONGA "amdgpu/tonga_uvd.bin" #define FIRMWARE_CARRIZO "amdgpu/carrizo_uvd.bin" #define FIRMWARE_FIJI "amdgpu/fiji_uvd.bin" #define FIRMWARE_STONEY "amdgpu/stoney_uvd.bin" #define FIRMWARE_POLARIS10 "amdgpu/polaris10_uvd.bin" #define FIRMWARE_POLARIS11 "amdgpu/polaris11_uvd.bin" #define FIRMWARE_POLARIS12 "amdgpu/polaris12_uvd.bin" #define FIRMWARE_VEGAM "amdgpu/vegam_uvd.bin" #define FIRMWARE_VEGA10 "amdgpu/vega10_uvd.bin" #define FIRMWARE_VEGA12 "amdgpu/vega12_uvd.bin" #define FIRMWARE_VEGA20 "amdgpu/vega20_uvd.bin" /* These are common relative offsets for all asics, from uvd_7_0_offset.h, */ #define UVD_GPCOM_VCPU_CMD 0x03c3 #define UVD_GPCOM_VCPU_DATA0 0x03c4 #define UVD_GPCOM_VCPU_DATA1 0x03c5 #define UVD_NO_OP 0x03ff #define UVD_BASE_SI 0x3800 /* * amdgpu_uvd_cs_ctx - Command submission parser context * * Used for emulating virtual memory support on UVD 4.2. */ struct amdgpu_uvd_cs_ctx { struct amdgpu_cs_parser *parser; unsigned reg, count; unsigned data0, data1; unsigned idx; struct amdgpu_ib *ib; /* does the IB has a msg command */ bool has_msg_cmd; /* minimum buffer sizes */ unsigned *buf_sizes; }; #ifdef CONFIG_DRM_AMDGPU_SI MODULE_FIRMWARE(FIRMWARE_TAHITI); MODULE_FIRMWARE(FIRMWARE_VERDE); MODULE_FIRMWARE(FIRMWARE_PITCAIRN); MODULE_FIRMWARE(FIRMWARE_OLAND); #endif #ifdef CONFIG_DRM_AMDGPU_CIK MODULE_FIRMWARE(FIRMWARE_BONAIRE); MODULE_FIRMWARE(FIRMWARE_KABINI); MODULE_FIRMWARE(FIRMWARE_KAVERI); MODULE_FIRMWARE(FIRMWARE_HAWAII); MODULE_FIRMWARE(FIRMWARE_MULLINS); #endif MODULE_FIRMWARE(FIRMWARE_TONGA); MODULE_FIRMWARE(FIRMWARE_CARRIZO); MODULE_FIRMWARE(FIRMWARE_FIJI); MODULE_FIRMWARE(FIRMWARE_STONEY); MODULE_FIRMWARE(FIRMWARE_POLARIS10); MODULE_FIRMWARE(FIRMWARE_POLARIS11); MODULE_FIRMWARE(FIRMWARE_POLARIS12); MODULE_FIRMWARE(FIRMWARE_VEGAM); MODULE_FIRMWARE(FIRMWARE_VEGA10); MODULE_FIRMWARE(FIRMWARE_VEGA12); MODULE_FIRMWARE(FIRMWARE_VEGA20); static void amdgpu_uvd_idle_work_handler(struct work_struct *work); static void amdgpu_uvd_force_into_uvd_segment(struct amdgpu_bo *abo); static int amdgpu_uvd_create_msg_bo_helper(struct amdgpu_device *adev, uint32_t size, struct amdgpu_bo **bo_ptr) { struct ttm_operation_ctx ctx = { true, false }; struct amdgpu_bo *bo = NULL; void *addr; int r; r = amdgpu_bo_create_reserved(adev, size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &bo, NULL, &addr); if (r) return r; if (adev->uvd.address_64_bit) goto succ; amdgpu_bo_kunmap(bo); amdgpu_bo_unpin(bo); amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); amdgpu_uvd_force_into_uvd_segment(bo); r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (r) goto err; r = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_VRAM); if (r) goto err_pin; r = amdgpu_bo_kmap(bo, &addr); if (r) goto err_kmap; succ: amdgpu_bo_unreserve(bo); *bo_ptr = bo; return 0; err_kmap: amdgpu_bo_unpin(bo); err_pin: err: amdgpu_bo_unreserve(bo); amdgpu_bo_unref(&bo); return r; } int amdgpu_uvd_sw_init(struct amdgpu_device *adev) { unsigned long bo_size; const char *fw_name; const struct common_firmware_header *hdr; unsigned family_id; int i, j, r; INIT_DELAYED_WORK(&adev->uvd.idle_work, amdgpu_uvd_idle_work_handler); switch (adev->asic_type) { #ifdef CONFIG_DRM_AMDGPU_SI case CHIP_TAHITI: fw_name = FIRMWARE_TAHITI; break; case CHIP_VERDE: fw_name = FIRMWARE_VERDE; break; case CHIP_PITCAIRN: fw_name = FIRMWARE_PITCAIRN; break; case CHIP_OLAND: fw_name = FIRMWARE_OLAND; break; #endif #ifdef CONFIG_DRM_AMDGPU_CIK case CHIP_BONAIRE: fw_name = FIRMWARE_BONAIRE; break; case CHIP_KABINI: fw_name = FIRMWARE_KABINI; break; case CHIP_KAVERI: fw_name = FIRMWARE_KAVERI; break; case CHIP_HAWAII: fw_name = FIRMWARE_HAWAII; break; case CHIP_MULLINS: fw_name = FIRMWARE_MULLINS; break; #endif case CHIP_TONGA: fw_name = FIRMWARE_TONGA; break; case CHIP_FIJI: fw_name = FIRMWARE_FIJI; break; case CHIP_CARRIZO: fw_name = FIRMWARE_CARRIZO; break; case CHIP_STONEY: fw_name = FIRMWARE_STONEY; break; case CHIP_POLARIS10: fw_name = FIRMWARE_POLARIS10; break; case CHIP_POLARIS11: fw_name = FIRMWARE_POLARIS11; break; case CHIP_POLARIS12: fw_name = FIRMWARE_POLARIS12; break; case CHIP_VEGA10: fw_name = FIRMWARE_VEGA10; break; case CHIP_VEGA12: fw_name = FIRMWARE_VEGA12; break; case CHIP_VEGAM: fw_name = FIRMWARE_VEGAM; break; case CHIP_VEGA20: fw_name = FIRMWARE_VEGA20; break; default: return -EINVAL; } r = request_firmware(&adev->uvd.fw, fw_name, adev->dev); if (r) { dev_err(adev->dev, "amdgpu_uvd: Can't load firmware \"%s\"\n", fw_name); return r; } r = amdgpu_ucode_validate(adev->uvd.fw); if (r) { dev_err(adev->dev, "amdgpu_uvd: Can't validate firmware \"%s\"\n", fw_name); release_firmware(adev->uvd.fw); adev->uvd.fw = NULL; return r; } /* Set the default UVD handles that the firmware can handle */ adev->uvd.max_handles = AMDGPU_DEFAULT_UVD_HANDLES; hdr = (const struct common_firmware_header *)adev->uvd.fw->data; family_id = le32_to_cpu(hdr->ucode_version) & 0xff; if (adev->asic_type < CHIP_VEGA20) { unsigned version_major, version_minor; version_major = (le32_to_cpu(hdr->ucode_version) >> 24) & 0xff; version_minor = (le32_to_cpu(hdr->ucode_version) >> 8) & 0xff; DRM_INFO("Found UVD firmware Version: %u.%u Family ID: %u\n", version_major, version_minor, family_id); /* * Limit the number of UVD handles depending on microcode major * and minor versions. The firmware version which has 40 UVD * instances support is 1.80. So all subsequent versions should * also have the same support. */ if ((version_major > 0x01) || ((version_major == 0x01) && (version_minor >= 0x50))) adev->uvd.max_handles = AMDGPU_MAX_UVD_HANDLES; adev->uvd.fw_version = ((version_major << 24) | (version_minor << 16) | (family_id << 8)); if ((adev->asic_type == CHIP_POLARIS10 || adev->asic_type == CHIP_POLARIS11) && (adev->uvd.fw_version < FW_1_66_16)) DRM_ERROR("POLARIS10/11 UVD firmware version %u.%u is too old.\n", version_major, version_minor); } else { unsigned int enc_major, enc_minor, dec_minor; dec_minor = (le32_to_cpu(hdr->ucode_version) >> 8) & 0xff; enc_minor = (le32_to_cpu(hdr->ucode_version) >> 24) & 0x3f; enc_major = (le32_to_cpu(hdr->ucode_version) >> 30) & 0x3; DRM_INFO("Found UVD firmware ENC: %u.%u DEC: .%u Family ID: %u\n", enc_major, enc_minor, dec_minor, family_id); adev->uvd.max_handles = AMDGPU_MAX_UVD_HANDLES; adev->uvd.fw_version = le32_to_cpu(hdr->ucode_version); } bo_size = AMDGPU_UVD_STACK_SIZE + AMDGPU_UVD_HEAP_SIZE + AMDGPU_UVD_SESSION_SIZE * adev->uvd.max_handles; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) bo_size += AMDGPU_GPU_PAGE_ALIGN(le32_to_cpu(hdr->ucode_size_bytes) + 8); for (j = 0; j < adev->uvd.num_uvd_inst; j++) { if (adev->uvd.harvest_config & (1 << j)) continue; r = amdgpu_bo_create_kernel(adev, bo_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->uvd.inst[j].vcpu_bo, &adev->uvd.inst[j].gpu_addr, &adev->uvd.inst[j].cpu_addr); if (r) { dev_err(adev->dev, "(%d) failed to allocate UVD bo\n", r); return r; } } for (i = 0; i < adev->uvd.max_handles; ++i) { atomic_set(&adev->uvd.handles[i], 0); adev->uvd.filp[i] = NULL; } /* from uvd v5.0 HW addressing capacity increased to 64 bits */ if (!amdgpu_device_ip_block_version_cmp(adev, AMD_IP_BLOCK_TYPE_UVD, 5, 0)) adev->uvd.address_64_bit = true; r = amdgpu_uvd_create_msg_bo_helper(adev, 128 << 10, &adev->uvd.ib_bo); if (r) return r; switch (adev->asic_type) { case CHIP_TONGA: adev->uvd.use_ctx_buf = adev->uvd.fw_version >= FW_1_65_10; break; case CHIP_CARRIZO: adev->uvd.use_ctx_buf = adev->uvd.fw_version >= FW_1_87_11; break; case CHIP_FIJI: adev->uvd.use_ctx_buf = adev->uvd.fw_version >= FW_1_87_12; break; case CHIP_STONEY: adev->uvd.use_ctx_buf = adev->uvd.fw_version >= FW_1_37_15; break; default: adev->uvd.use_ctx_buf = adev->asic_type >= CHIP_POLARIS10; } return 0; } int amdgpu_uvd_sw_fini(struct amdgpu_device *adev) { void *addr = amdgpu_bo_kptr(adev->uvd.ib_bo); int i, j; drm_sched_entity_destroy(&adev->uvd.entity); for (j = 0; j < adev->uvd.num_uvd_inst; ++j) { if (adev->uvd.harvest_config & (1 << j)) continue; kvfree(adev->uvd.inst[j].saved_bo); amdgpu_bo_free_kernel(&adev->uvd.inst[j].vcpu_bo, &adev->uvd.inst[j].gpu_addr, (void **)&adev->uvd.inst[j].cpu_addr); amdgpu_ring_fini(&adev->uvd.inst[j].ring); for (i = 0; i < AMDGPU_MAX_UVD_ENC_RINGS; ++i) amdgpu_ring_fini(&adev->uvd.inst[j].ring_enc[i]); } amdgpu_bo_free_kernel(&adev->uvd.ib_bo, NULL, &addr); release_firmware(adev->uvd.fw); return 0; } /** * amdgpu_uvd_entity_init - init entity * * @adev: amdgpu_device pointer * */ int amdgpu_uvd_entity_init(struct amdgpu_device *adev) { struct amdgpu_ring *ring; struct drm_gpu_scheduler *sched; int r; ring = &adev->uvd.inst[0].ring; sched = &ring->sched; r = drm_sched_entity_init(&adev->uvd.entity, DRM_SCHED_PRIORITY_NORMAL, &sched, 1, NULL); if (r) { DRM_ERROR("Failed setting up UVD kernel entity.\n"); return r; } return 0; } int amdgpu_uvd_suspend(struct amdgpu_device *adev) { unsigned size; void *ptr; int i, j, idx; bool in_ras_intr = amdgpu_ras_intr_triggered(); cancel_delayed_work_sync(&adev->uvd.idle_work); /* only valid for physical mode */ if (adev->asic_type < CHIP_POLARIS10) { for (i = 0; i < adev->uvd.max_handles; ++i) if (atomic_read(&adev->uvd.handles[i])) break; if (i == adev->uvd.max_handles) return 0; } for (j = 0; j < adev->uvd.num_uvd_inst; ++j) { if (adev->uvd.harvest_config & (1 << j)) continue; if (adev->uvd.inst[j].vcpu_bo == NULL) continue; size = amdgpu_bo_size(adev->uvd.inst[j].vcpu_bo); ptr = adev->uvd.inst[j].cpu_addr; adev->uvd.inst[j].saved_bo = kvmalloc(size, GFP_KERNEL); if (!adev->uvd.inst[j].saved_bo) return -ENOMEM; if (drm_dev_enter(adev_to_drm(adev), &idx)) { /* re-write 0 since err_event_athub will corrupt VCPU buffer */ if (in_ras_intr) memset(adev->uvd.inst[j].saved_bo, 0, size); else memcpy_fromio(adev->uvd.inst[j].saved_bo, ptr, size); drm_dev_exit(idx); } } if (in_ras_intr) DRM_WARN("UVD VCPU state may lost due to RAS ERREVENT_ATHUB_INTERRUPT\n"); return 0; } int amdgpu_uvd_resume(struct amdgpu_device *adev) { unsigned size; void *ptr; int i, idx; for (i = 0; i < adev->uvd.num_uvd_inst; i++) { if (adev->uvd.harvest_config & (1 << i)) continue; if (adev->uvd.inst[i].vcpu_bo == NULL) return -EINVAL; size = amdgpu_bo_size(adev->uvd.inst[i].vcpu_bo); ptr = adev->uvd.inst[i].cpu_addr; if (adev->uvd.inst[i].saved_bo != NULL) { if (drm_dev_enter(adev_to_drm(adev), &idx)) { memcpy_toio(ptr, adev->uvd.inst[i].saved_bo, size); drm_dev_exit(idx); } kvfree(adev->uvd.inst[i].saved_bo); adev->uvd.inst[i].saved_bo = NULL; } else { const struct common_firmware_header *hdr; unsigned offset; hdr = (const struct common_firmware_header *)adev->uvd.fw->data; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { offset = le32_to_cpu(hdr->ucode_array_offset_bytes); if (drm_dev_enter(adev_to_drm(adev), &idx)) { memcpy_toio(adev->uvd.inst[i].cpu_addr, adev->uvd.fw->data + offset, le32_to_cpu(hdr->ucode_size_bytes)); drm_dev_exit(idx); } size -= le32_to_cpu(hdr->ucode_size_bytes); ptr += le32_to_cpu(hdr->ucode_size_bytes); } memset_io(ptr, 0, size); /* to restore uvd fence seq */ amdgpu_fence_driver_force_completion(&adev->uvd.inst[i].ring); } } return 0; } void amdgpu_uvd_free_handles(struct amdgpu_device *adev, struct drm_file *filp) { struct amdgpu_ring *ring = &adev->uvd.inst[0].ring; int i, r; for (i = 0; i < adev->uvd.max_handles; ++i) { uint32_t handle = atomic_read(&adev->uvd.handles[i]); if (handle != 0 && adev->uvd.filp[i] == filp) { struct dma_fence *fence; r = amdgpu_uvd_get_destroy_msg(ring, handle, false, &fence); if (r) { DRM_ERROR("Error destroying UVD %d!\n", r); continue; } dma_fence_wait(fence, false); dma_fence_put(fence); adev->uvd.filp[i] = NULL; atomic_set(&adev->uvd.handles[i], 0); } } } static void amdgpu_uvd_force_into_uvd_segment(struct amdgpu_bo *abo) { int i; for (i = 0; i < abo->placement.num_placement; ++i) { abo->placements[i].fpfn = 0 >> PAGE_SHIFT; abo->placements[i].lpfn = (256 * 1024 * 1024) >> PAGE_SHIFT; } } static u64 amdgpu_uvd_get_addr_from_ctx(struct amdgpu_uvd_cs_ctx *ctx) { uint32_t lo, hi; uint64_t addr; lo = amdgpu_ib_get_value(ctx->ib, ctx->data0); hi = amdgpu_ib_get_value(ctx->ib, ctx->data1); addr = ((uint64_t)lo) | (((uint64_t)hi) << 32); return addr; } /** * amdgpu_uvd_cs_pass1 - first parsing round * * @ctx: UVD parser context * * Make sure UVD message and feedback buffers are in VRAM and * nobody is violating an 256MB boundary. */ static int amdgpu_uvd_cs_pass1(struct amdgpu_uvd_cs_ctx *ctx) { struct ttm_operation_ctx tctx = { false, false }; struct amdgpu_bo_va_mapping *mapping; struct amdgpu_bo *bo; uint32_t cmd; uint64_t addr = amdgpu_uvd_get_addr_from_ctx(ctx); int r = 0; r = amdgpu_cs_find_mapping(ctx->parser, addr, &bo, &mapping); if (r) { DRM_ERROR("Can't find BO for addr 0x%08Lx\n", addr); return r; } if (!ctx->parser->adev->uvd.address_64_bit) { /* check if it's a message or feedback command */ cmd = amdgpu_ib_get_value(ctx->ib, ctx->idx) >> 1; if (cmd == 0x0 || cmd == 0x3) { /* yes, force it into VRAM */ uint32_t domain = AMDGPU_GEM_DOMAIN_VRAM; amdgpu_bo_placement_from_domain(bo, domain); } amdgpu_uvd_force_into_uvd_segment(bo); r = ttm_bo_validate(&bo->tbo, &bo->placement, &tctx); } return r; } /** * amdgpu_uvd_cs_msg_decode - handle UVD decode message * * @adev: amdgpu_device pointer * @msg: pointer to message structure * @buf_sizes: placeholder to put the different buffer lengths * * Peek into the decode message and calculate the necessary buffer sizes. */ static int amdgpu_uvd_cs_msg_decode(struct amdgpu_device *adev, uint32_t *msg, unsigned buf_sizes[]) { unsigned stream_type = msg[4]; unsigned width = msg[6]; unsigned height = msg[7]; unsigned dpb_size = msg[9]; unsigned pitch = msg[28]; unsigned level = msg[57]; unsigned width_in_mb = width / 16; unsigned height_in_mb = ALIGN(height / 16, 2); unsigned fs_in_mb = width_in_mb * height_in_mb; unsigned image_size, tmp, min_dpb_size, num_dpb_buffer; unsigned min_ctx_size = ~0; image_size = width * height; image_size += image_size / 2; image_size = ALIGN(image_size, 1024); switch (stream_type) { case 0: /* H264 */ switch(level) { case 30: num_dpb_buffer = 8100 / fs_in_mb; break; case 31: num_dpb_buffer = 18000 / fs_in_mb; break; case 32: num_dpb_buffer = 20480 / fs_in_mb; break; case 41: num_dpb_buffer = 32768 / fs_in_mb; break; case 42: num_dpb_buffer = 34816 / fs_in_mb; break; case 50: num_dpb_buffer = 110400 / fs_in_mb; break; case 51: num_dpb_buffer = 184320 / fs_in_mb; break; default: num_dpb_buffer = 184320 / fs_in_mb; break; } num_dpb_buffer++; if (num_dpb_buffer > 17) num_dpb_buffer = 17; /* reference picture buffer */ min_dpb_size = image_size * num_dpb_buffer; /* macroblock context buffer */ min_dpb_size += width_in_mb * height_in_mb * num_dpb_buffer * 192; /* IT surface buffer */ min_dpb_size += width_in_mb * height_in_mb * 32; break; case 1: /* VC1 */ /* reference picture buffer */ min_dpb_size = image_size * 3; /* CONTEXT_BUFFER */ min_dpb_size += width_in_mb * height_in_mb * 128; /* IT surface buffer */ min_dpb_size += width_in_mb * 64; /* DB surface buffer */ min_dpb_size += width_in_mb * 128; /* BP */ tmp = max(width_in_mb, height_in_mb); min_dpb_size += ALIGN(tmp * 7 * 16, 64); break; case 3: /* MPEG2 */ /* reference picture buffer */ min_dpb_size = image_size * 3; break; case 4: /* MPEG4 */ /* reference picture buffer */ min_dpb_size = image_size * 3; /* CM */ min_dpb_size += width_in_mb * height_in_mb * 64; /* IT surface buffer */ min_dpb_size += ALIGN(width_in_mb * height_in_mb * 32, 64); break; case 7: /* H264 Perf */ switch(level) { case 30: num_dpb_buffer = 8100 / fs_in_mb; break; case 31: num_dpb_buffer = 18000 / fs_in_mb; break; case 32: num_dpb_buffer = 20480 / fs_in_mb; break; case 41: num_dpb_buffer = 32768 / fs_in_mb; break; case 42: num_dpb_buffer = 34816 / fs_in_mb; break; case 50: num_dpb_buffer = 110400 / fs_in_mb; break; case 51: num_dpb_buffer = 184320 / fs_in_mb; break; default: num_dpb_buffer = 184320 / fs_in_mb; break; } num_dpb_buffer++; if (num_dpb_buffer > 17) num_dpb_buffer = 17; /* reference picture buffer */ min_dpb_size = image_size * num_dpb_buffer; if (!adev->uvd.use_ctx_buf){ /* macroblock context buffer */ min_dpb_size += width_in_mb * height_in_mb * num_dpb_buffer * 192; /* IT surface buffer */ min_dpb_size += width_in_mb * height_in_mb * 32; } else { /* macroblock context buffer */ min_ctx_size = width_in_mb * height_in_mb * num_dpb_buffer * 192; } break; case 8: /* MJPEG */ min_dpb_size = 0; break; case 16: /* H265 */ image_size = (ALIGN(width, 16) * ALIGN(height, 16) * 3) / 2; image_size = ALIGN(image_size, 256); num_dpb_buffer = (le32_to_cpu(msg[59]) & 0xff) + 2; min_dpb_size = image_size * num_dpb_buffer; min_ctx_size = ((width + 255) / 16) * ((height + 255) / 16) * 16 * num_dpb_buffer + 52 * 1024; break; default: DRM_ERROR("UVD codec not handled %d!\n", stream_type); return -EINVAL; } if (width > pitch) { DRM_ERROR("Invalid UVD decoding target pitch!\n"); return -EINVAL; } if (dpb_size < min_dpb_size) { DRM_ERROR("Invalid dpb_size in UVD message (%d / %d)!\n", dpb_size, min_dpb_size); return -EINVAL; } buf_sizes[0x1] = dpb_size; buf_sizes[0x2] = image_size; buf_sizes[0x4] = min_ctx_size; /* store image width to adjust nb memory pstate */ adev->uvd.decode_image_width = width; return 0; } /** * amdgpu_uvd_cs_msg - handle UVD message * * @ctx: UVD parser context * @bo: buffer object containing the message * @offset: offset into the buffer object * * Peek into the UVD message and extract the session id. * Make sure that we don't open up to many sessions. */ static int amdgpu_uvd_cs_msg(struct amdgpu_uvd_cs_ctx *ctx, struct amdgpu_bo *bo, unsigned offset) { struct amdgpu_device *adev = ctx->parser->adev; int32_t *msg, msg_type, handle; void *ptr; long r; int i; if (offset & 0x3F) { DRM_ERROR("UVD messages must be 64 byte aligned!\n"); return -EINVAL; } r = amdgpu_bo_kmap(bo, &ptr); if (r) { DRM_ERROR("Failed mapping the UVD) message (%ld)!\n", r); return r; } msg = ptr + offset; msg_type = msg[1]; handle = msg[2]; if (handle == 0) { amdgpu_bo_kunmap(bo); DRM_ERROR("Invalid UVD handle!\n"); return -EINVAL; } switch (msg_type) { case 0: /* it's a create msg, calc image size (width * height) */ amdgpu_bo_kunmap(bo); /* try to alloc a new handle */ for (i = 0; i < adev->uvd.max_handles; ++i) { if (atomic_read(&adev->uvd.handles[i]) == handle) { DRM_ERROR(")Handle 0x%x already in use!\n", handle); return -EINVAL; } if (!atomic_cmpxchg(&adev->uvd.handles[i], 0, handle)) { adev->uvd.filp[i] = ctx->parser->filp; return 0; } } DRM_ERROR("No more free UVD handles!\n"); return -ENOSPC; case 1: /* it's a decode msg, calc buffer sizes */ r = amdgpu_uvd_cs_msg_decode(adev, msg, ctx->buf_sizes); amdgpu_bo_kunmap(bo); if (r) return r; /* validate the handle */ for (i = 0; i < adev->uvd.max_handles; ++i) { if (atomic_read(&adev->uvd.handles[i]) == handle) { if (adev->uvd.filp[i] != ctx->parser->filp) { DRM_ERROR("UVD handle collision detected!\n"); return -EINVAL; } return 0; } } DRM_ERROR("Invalid UVD handle 0x%x!\n", handle); return -ENOENT; case 2: /* it's a destroy msg, free the handle */ for (i = 0; i < adev->uvd.max_handles; ++i) atomic_cmpxchg(&adev->uvd.handles[i], handle, 0); amdgpu_bo_kunmap(bo); return 0; default: DRM_ERROR("Illegal UVD message type (%d)!\n", msg_type); } amdgpu_bo_kunmap(bo); return -EINVAL; } /** * amdgpu_uvd_cs_pass2 - second parsing round * * @ctx: UVD parser context * * Patch buffer addresses, make sure buffer sizes are correct. */ static int amdgpu_uvd_cs_pass2(struct amdgpu_uvd_cs_ctx *ctx) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_bo *bo; uint32_t cmd; uint64_t start, end; uint64_t addr = amdgpu_uvd_get_addr_from_ctx(ctx); int r; r = amdgpu_cs_find_mapping(ctx->parser, addr, &bo, &mapping); if (r) { DRM_ERROR("Can't find BO for addr 0x%08Lx\n", addr); return r; } start = amdgpu_bo_gpu_offset(bo); end = (mapping->last + 1 - mapping->start); end = end * AMDGPU_GPU_PAGE_SIZE + start; addr -= mapping->start * AMDGPU_GPU_PAGE_SIZE; start += addr; amdgpu_ib_set_value(ctx->ib, ctx->data0, lower_32_bits(start)); amdgpu_ib_set_value(ctx->ib, ctx->data1, upper_32_bits(start)); cmd = amdgpu_ib_get_value(ctx->ib, ctx->idx) >> 1; if (cmd < 0x4) { if ((end - start) < ctx->buf_sizes[cmd]) { DRM_ERROR("buffer (%d) to small (%d / %d)!\n", cmd, (unsigned)(end - start), ctx->buf_sizes[cmd]); return -EINVAL; } } else if (cmd == 0x206) { if ((end - start) < ctx->buf_sizes[4]) { DRM_ERROR("buffer (%d) to small (%d / %d)!\n", cmd, (unsigned)(end - start), ctx->buf_sizes[4]); return -EINVAL; } } else if ((cmd != 0x100) && (cmd != 0x204)) { DRM_ERROR("invalid UVD command %X!\n", cmd); return -EINVAL; } if (!ctx->parser->adev->uvd.address_64_bit) { if ((start >> 28) != ((end - 1) >> 28)) { DRM_ERROR("reloc %LX-%LX crossing 256MB boundary!\n", start, end); return -EINVAL; } if ((cmd == 0 || cmd == 0x3) && (start >> 28) != (ctx->parser->adev->uvd.inst->gpu_addr >> 28)) { DRM_ERROR("msg/fb buffer %LX-%LX out of 256MB segment!\n", start, end); return -EINVAL; } } if (cmd == 0) { ctx->has_msg_cmd = true; r = amdgpu_uvd_cs_msg(ctx, bo, addr); if (r) return r; } else if (!ctx->has_msg_cmd) { DRM_ERROR("Message needed before other commands are send!\n"); return -EINVAL; } return 0; } /** * amdgpu_uvd_cs_reg - parse register writes * * @ctx: UVD parser context * @cb: callback function * * Parse the register writes, call cb on each complete command. */ static int amdgpu_uvd_cs_reg(struct amdgpu_uvd_cs_ctx *ctx, int (*cb)(struct amdgpu_uvd_cs_ctx *ctx)) { int i, r; ctx->idx++; for (i = 0; i <= ctx->count; ++i) { unsigned reg = ctx->reg + i; if (ctx->idx >= ctx->ib->length_dw) { DRM_ERROR("Register command after end of CS!\n"); return -EINVAL; } switch (reg) { case mmUVD_GPCOM_VCPU_DATA0: ctx->data0 = ctx->idx; break; case mmUVD_GPCOM_VCPU_DATA1: ctx->data1 = ctx->idx; break; case mmUVD_GPCOM_VCPU_CMD: r = cb(ctx); if (r) return r; break; case mmUVD_ENGINE_CNTL: case mmUVD_NO_OP: break; default: DRM_ERROR("Invalid reg 0x%X!\n", reg); return -EINVAL; } ctx->idx++; } return 0; } /** * amdgpu_uvd_cs_packets - parse UVD packets * * @ctx: UVD parser context * @cb: callback function * * Parse the command stream packets. */ static int amdgpu_uvd_cs_packets(struct amdgpu_uvd_cs_ctx *ctx, int (*cb)(struct amdgpu_uvd_cs_ctx *ctx)) { int r; for (ctx->idx = 0 ; ctx->idx < ctx->ib->length_dw; ) { uint32_t cmd = amdgpu_ib_get_value(ctx->ib, ctx->idx); unsigned type = CP_PACKET_GET_TYPE(cmd); switch (type) { case PACKET_TYPE0: ctx->reg = CP_PACKET0_GET_REG(cmd); ctx->count = CP_PACKET_GET_COUNT(cmd); r = amdgpu_uvd_cs_reg(ctx, cb); if (r) return r; break; case PACKET_TYPE2: ++ctx->idx; break; default: DRM_ERROR("Unknown packet type %d !\n", type); return -EINVAL; } } return 0; } /** * amdgpu_uvd_ring_parse_cs - UVD command submission parser * * @parser: Command submission parser context * @job: the job to parse * @ib: the IB to patch * * Parse the command stream, patch in addresses as necessary. */ int amdgpu_uvd_ring_parse_cs(struct amdgpu_cs_parser *parser, struct amdgpu_job *job, struct amdgpu_ib *ib) { struct amdgpu_uvd_cs_ctx ctx = {}; unsigned buf_sizes[] = { [0x00000000] = 2048, [0x00000001] = 0xFFFFFFFF, [0x00000002] = 0xFFFFFFFF, [0x00000003] = 2048, [0x00000004] = 0xFFFFFFFF, }; int r; job->vm = NULL; ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); if (ib->length_dw % 16) { DRM_ERROR("UVD IB length (%d) not 16 dwords aligned!\n", ib->length_dw); return -EINVAL; } ctx.parser = parser; ctx.buf_sizes = buf_sizes; ctx.ib = ib; /* first round only required on chips without UVD 64 bit address support */ if (!parser->adev->uvd.address_64_bit) { /* first round, make sure the buffers are actually in the UVD segment */ r = amdgpu_uvd_cs_packets(&ctx, amdgpu_uvd_cs_pass1); if (r) return r; } /* second round, patch buffer addresses into the command stream */ r = amdgpu_uvd_cs_packets(&ctx, amdgpu_uvd_cs_pass2); if (r) return r; if (!ctx.has_msg_cmd) { DRM_ERROR("UVD-IBs need a msg command!\n"); return -EINVAL; } return 0; } static int amdgpu_uvd_send_msg(struct amdgpu_ring *ring, struct amdgpu_bo *bo, bool direct, struct dma_fence **fence) { struct amdgpu_device *adev = ring->adev; struct dma_fence *f = NULL; struct amdgpu_job *job; struct amdgpu_ib *ib; uint32_t data[4]; uint64_t addr; long r; int i; unsigned offset_idx = 0; unsigned offset[3] = { UVD_BASE_SI, 0, 0 }; r = amdgpu_job_alloc_with_ib(adev, 64, direct ? AMDGPU_IB_POOL_DIRECT : AMDGPU_IB_POOL_DELAYED, &job); if (r) return r; if (adev->asic_type >= CHIP_VEGA10) { offset_idx = 1 + ring->me; offset[1] = adev->reg_offset[UVD_HWIP][0][1]; offset[2] = adev->reg_offset[UVD_HWIP][1][1]; } data[0] = PACKET0(offset[offset_idx] + UVD_GPCOM_VCPU_DATA0, 0); data[1] = PACKET0(offset[offset_idx] + UVD_GPCOM_VCPU_DATA1, 0); data[2] = PACKET0(offset[offset_idx] + UVD_GPCOM_VCPU_CMD, 0); data[3] = PACKET0(offset[offset_idx] + UVD_NO_OP, 0); ib = &job->ibs[0]; addr = amdgpu_bo_gpu_offset(bo); ib->ptr[0] = data[0]; ib->ptr[1] = addr; ib->ptr[2] = data[1]; ib->ptr[3] = addr >> 32; ib->ptr[4] = data[2]; ib->ptr[5] = 0; for (i = 6; i < 16; i += 2) { ib->ptr[i] = data[3]; ib->ptr[i+1] = 0; } ib->length_dw = 16; if (direct) { r = dma_resv_wait_timeout(bo->tbo.base.resv, DMA_RESV_USAGE_KERNEL, false, msecs_to_jiffies(10)); if (r == 0) r = -ETIMEDOUT; if (r < 0) goto err_free; r = amdgpu_job_submit_direct(job, ring, &f); if (r) goto err_free; } else { r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.base.resv, AMDGPU_SYNC_ALWAYS, AMDGPU_FENCE_OWNER_UNDEFINED); if (r) goto err_free; r = amdgpu_job_submit(job, &adev->uvd.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &f); if (r) goto err_free; } amdgpu_bo_reserve(bo, true); amdgpu_bo_fence(bo, f, false); amdgpu_bo_unreserve(bo); if (fence) *fence = dma_fence_get(f); dma_fence_put(f); return 0; err_free: amdgpu_job_free(job); return r; } /* multiple fence commands without any stream commands in between can crash the vcpu so just try to emmit a dummy create/destroy msg to avoid this */ int amdgpu_uvd_get_create_msg(struct amdgpu_ring *ring, uint32_t handle, struct dma_fence **fence) { struct amdgpu_device *adev = ring->adev; struct amdgpu_bo *bo = adev->uvd.ib_bo; uint32_t *msg; int i; msg = amdgpu_bo_kptr(bo); /* stitch together an UVD create msg */ msg[0] = cpu_to_le32(0x00000de4); msg[1] = cpu_to_le32(0x00000000); msg[2] = cpu_to_le32(handle); msg[3] = cpu_to_le32(0x00000000); msg[4] = cpu_to_le32(0x00000000); msg[5] = cpu_to_le32(0x00000000); msg[6] = cpu_to_le32(0x00000000); msg[7] = cpu_to_le32(0x00000780); msg[8] = cpu_to_le32(0x00000440); msg[9] = cpu_to_le32(0x00000000); msg[10] = cpu_to_le32(0x01b37000); for (i = 11; i < 1024; ++i) msg[i] = cpu_to_le32(0x0); return amdgpu_uvd_send_msg(ring, bo, true, fence); } int amdgpu_uvd_get_destroy_msg(struct amdgpu_ring *ring, uint32_t handle, bool direct, struct dma_fence **fence) { struct amdgpu_device *adev = ring->adev; struct amdgpu_bo *bo = NULL; uint32_t *msg; int r, i; if (direct) { bo = adev->uvd.ib_bo; } else { r = amdgpu_uvd_create_msg_bo_helper(adev, 4096, &bo); if (r) return r; } msg = amdgpu_bo_kptr(bo); /* stitch together an UVD destroy msg */ msg[0] = cpu_to_le32(0x00000de4); msg[1] = cpu_to_le32(0x00000002); msg[2] = cpu_to_le32(handle); msg[3] = cpu_to_le32(0x00000000); for (i = 4; i < 1024; ++i) msg[i] = cpu_to_le32(0x0); r = amdgpu_uvd_send_msg(ring, bo, direct, fence); if (!direct) amdgpu_bo_free_kernel(&bo, NULL, (void **)&msg); return r; } static void amdgpu_uvd_idle_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, uvd.idle_work.work); unsigned fences = 0, i, j; for (i = 0; i < adev->uvd.num_uvd_inst; ++i) { if (adev->uvd.harvest_config & (1 << i)) continue; fences += amdgpu_fence_count_emitted(&adev->uvd.inst[i].ring); for (j = 0; j < adev->uvd.num_enc_rings; ++j) { fences += amdgpu_fence_count_emitted(&adev->uvd.inst[i].ring_enc[j]); } } if (fences == 0) { if (adev->pm.dpm_enabled) { amdgpu_dpm_enable_uvd(adev, false); } else { amdgpu_asic_set_uvd_clocks(adev, 0, 0); /* shutdown the UVD block */ amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_GATE); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD, AMD_CG_STATE_GATE); } } else { schedule_delayed_work(&adev->uvd.idle_work, UVD_IDLE_TIMEOUT); } } void amdgpu_uvd_ring_begin_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; bool set_clocks; if (amdgpu_sriov_vf(adev)) return; set_clocks = !cancel_delayed_work_sync(&adev->uvd.idle_work); if (set_clocks) { if (adev->pm.dpm_enabled) { amdgpu_dpm_enable_uvd(adev, true); } else { amdgpu_asic_set_uvd_clocks(adev, 53300, 40000); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD, AMD_CG_STATE_UNGATE); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_UNGATE); } } } void amdgpu_uvd_ring_end_use(struct amdgpu_ring *ring) { if (!amdgpu_sriov_vf(ring->adev)) schedule_delayed_work(&ring->adev->uvd.idle_work, UVD_IDLE_TIMEOUT); } /** * amdgpu_uvd_ring_test_ib - test ib execution * * @ring: amdgpu_ring pointer * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT * * Test if we can successfully execute an IB */ int amdgpu_uvd_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct dma_fence *fence; long r; r = amdgpu_uvd_get_create_msg(ring, 1, &fence); if (r) goto error; r = dma_fence_wait_timeout(fence, false, timeout); dma_fence_put(fence); if (r == 0) r = -ETIMEDOUT; if (r < 0) goto error; r = amdgpu_uvd_get_destroy_msg(ring, 1, true, &fence); if (r) goto error; r = dma_fence_wait_timeout(fence, false, timeout); if (r == 0) r = -ETIMEDOUT; else if (r > 0) r = 0; dma_fence_put(fence); error: return r; } /** * amdgpu_uvd_used_handles - returns used UVD handles * * @adev: amdgpu_device pointer * * Returns the number of UVD handles in use */ uint32_t amdgpu_uvd_used_handles(struct amdgpu_device *adev) { unsigned i; uint32_t used_handles = 0; for (i = 0; i < adev->uvd.max_handles; ++i) { /* * Handles can be freed in any order, and not * necessarily linear. So we need to count * all non-zero handles. */ if (atomic_read(&adev->uvd.handles[i])) used_handles++; } return used_handles; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1