Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian König | 3383 | 93.97% | 3 | 50.00% |
Philip Yang | 217 | 6.03% | 3 | 50.00% |
Total | 3600 | 6 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <drm/drm_drv.h> #include "amdgpu.h" #include "amdgpu_trace.h" #include "amdgpu_vm.h" /* * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt */ struct amdgpu_vm_pt_cursor { uint64_t pfn; struct amdgpu_vm_bo_base *parent; struct amdgpu_vm_bo_base *entry; unsigned int level; }; /** * amdgpu_vm_pt_level_shift - return the addr shift for each level * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The number of bits the pfn needs to be right shifted for a level. */ static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, unsigned int level) { switch (level) { case AMDGPU_VM_PDB2: case AMDGPU_VM_PDB1: case AMDGPU_VM_PDB0: return 9 * (AMDGPU_VM_PDB0 - level) + adev->vm_manager.block_size; case AMDGPU_VM_PTB: return 0; default: return ~0; } } /** * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The number of entries in a page directory or page table. */ static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, unsigned int level) { unsigned int shift; shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); if (level == adev->vm_manager.root_level) /* For the root directory */ return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; else if (level != AMDGPU_VM_PTB) /* Everything in between */ return 512; /* For the page tables on the leaves */ return AMDGPU_VM_PTE_COUNT(adev); } /** * amdgpu_vm_pt_num_ats_entries - return the number of ATS entries in the root PD * * @adev: amdgpu_device pointer * * Returns: * The number of entries in the root page directory which needs the ATS setting. */ static unsigned int amdgpu_vm_pt_num_ats_entries(struct amdgpu_device *adev) { unsigned int shift; shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); } /** * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The mask to extract the entry number of a PD/PT from an address. */ static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, unsigned int level) { if (level <= adev->vm_manager.root_level) return 0xffffffff; else if (level != AMDGPU_VM_PTB) return 0x1ff; else return AMDGPU_VM_PTE_COUNT(adev) - 1; } /** * amdgpu_vm_pt_size - returns the size of the page table in bytes * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The size of the BO for a page directory or page table in bytes. */ static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, unsigned int level) { return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); } /** * amdgpu_vm_pt_parent - get the parent page directory * * @pt: child page table * * Helper to get the parent entry for the child page table. NULL if we are at * the root page directory. */ static struct amdgpu_vm_bo_base * amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) { struct amdgpu_bo *parent = pt->bo->parent; if (!parent) return NULL; return parent->vm_bo; } /** * amdgpu_vm_pt_start - start PD/PT walk * * @adev: amdgpu_device pointer * @vm: amdgpu_vm structure * @start: start address of the walk * @cursor: state to initialize * * Initialize a amdgpu_vm_pt_cursor to start a walk. */ static void amdgpu_vm_pt_start(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t start, struct amdgpu_vm_pt_cursor *cursor) { cursor->pfn = start; cursor->parent = NULL; cursor->entry = &vm->root; cursor->level = adev->vm_manager.root_level; } /** * amdgpu_vm_pt_descendant - go to child node * * @adev: amdgpu_device pointer * @cursor: current state * * Walk to the child node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { unsigned int mask, shift, idx; if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || !cursor->entry->bo) return false; mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); shift = amdgpu_vm_pt_level_shift(adev, cursor->level); ++cursor->level; idx = (cursor->pfn >> shift) & mask; cursor->parent = cursor->entry; cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; return true; } /** * amdgpu_vm_pt_sibling - go to sibling node * * @adev: amdgpu_device pointer * @cursor: current state * * Walk to the sibling node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { unsigned int shift, num_entries; struct amdgpu_bo_vm *parent; /* Root doesn't have a sibling */ if (!cursor->parent) return false; /* Go to our parents and see if we got a sibling */ shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); parent = to_amdgpu_bo_vm(cursor->parent->bo); if (cursor->entry == &parent->entries[num_entries - 1]) return false; cursor->pfn += 1ULL << shift; cursor->pfn &= ~((1ULL << shift) - 1); ++cursor->entry; return true; } /** * amdgpu_vm_pt_ancestor - go to parent node * * @cursor: current state * * Walk to the parent node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) { if (!cursor->parent) return false; --cursor->level; cursor->entry = cursor->parent; cursor->parent = amdgpu_vm_pt_parent(cursor->parent); return true; } /** * amdgpu_vm_pt_next - get next PD/PT in hieratchy * * @adev: amdgpu_device pointer * @cursor: current state * * Walk the PD/PT tree to the next node. */ static void amdgpu_vm_pt_next(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { /* First try a newborn child */ if (amdgpu_vm_pt_descendant(adev, cursor)) return; /* If that didn't worked try to find a sibling */ while (!amdgpu_vm_pt_sibling(adev, cursor)) { /* No sibling, go to our parents and grandparents */ if (!amdgpu_vm_pt_ancestor(cursor)) { cursor->pfn = ~0ll; return; } } } /** * amdgpu_vm_pt_first_dfs - start a deep first search * * @adev: amdgpu_device structure * @vm: amdgpu_vm structure * @start: optional cursor to start with * @cursor: state to initialize * * Starts a deep first traversal of the PD/PT tree. */ static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *start, struct amdgpu_vm_pt_cursor *cursor) { if (start) *cursor = *start; else amdgpu_vm_pt_start(adev, vm, 0, cursor); while (amdgpu_vm_pt_descendant(adev, cursor)) ; } /** * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue * * @start: starting point for the search * @entry: current entry * * Returns: * True when the search should continue, false otherwise. */ static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, struct amdgpu_vm_bo_base *entry) { return entry && (!start || entry != start->entry); } /** * amdgpu_vm_pt_next_dfs - get the next node for a deep first search * * @adev: amdgpu_device structure * @cursor: current state * * Move the cursor to the next node in a deep first search. */ static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { if (!cursor->entry) return; if (!cursor->parent) cursor->entry = NULL; else if (amdgpu_vm_pt_sibling(adev, cursor)) while (amdgpu_vm_pt_descendant(adev, cursor)) ; else amdgpu_vm_pt_ancestor(cursor); } /* * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs */ #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ amdgpu_vm_pt_continue_dfs((start), (entry)); \ (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) /** * amdgpu_vm_pt_clear - initially clear the PDs/PTs * * @adev: amdgpu_device pointer * @vm: VM to clear BO from * @vmbo: BO to clear * @immediate: use an immediate update * * Root PD needs to be reserved when calling this. * * Returns: * 0 on success, errno otherwise. */ int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo_vm *vmbo, bool immediate) { unsigned int level = adev->vm_manager.root_level; struct ttm_operation_ctx ctx = { true, false }; struct amdgpu_vm_update_params params; struct amdgpu_bo *ancestor = &vmbo->bo; unsigned int entries, ats_entries; struct amdgpu_bo *bo = &vmbo->bo; uint64_t addr; int r, idx; /* Figure out our place in the hierarchy */ if (ancestor->parent) { ++level; while (ancestor->parent->parent) { ++level; ancestor = ancestor->parent; } } entries = amdgpu_bo_size(bo) / 8; if (!vm->pte_support_ats) { ats_entries = 0; } else if (!bo->parent) { ats_entries = amdgpu_vm_pt_num_ats_entries(adev); ats_entries = min(ats_entries, entries); entries -= ats_entries; } else { struct amdgpu_vm_bo_base *pt; pt = ancestor->vm_bo; ats_entries = amdgpu_vm_pt_num_ats_entries(adev); if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { ats_entries = 0; } else { ats_entries = entries; entries = 0; } } r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (r) return r; if (vmbo->shadow) { struct amdgpu_bo *shadow = vmbo->shadow; r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); if (r) return r; } if (!drm_dev_enter(adev_to_drm(adev), &idx)) return -ENODEV; r = vm->update_funcs->map_table(vmbo); if (r) goto exit; memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; params.immediate = immediate; r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); if (r) goto exit; addr = 0; if (ats_entries) { uint64_t value = 0, flags; flags = AMDGPU_PTE_DEFAULT_ATC; if (level != AMDGPU_VM_PTB) { /* Handle leaf PDEs as PTEs */ flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); } r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, value, flags); if (r) goto exit; addr += ats_entries * 8; } if (entries) { uint64_t value = 0, flags = 0; if (adev->asic_type >= CHIP_VEGA10) { if (level != AMDGPU_VM_PTB) { /* Handle leaf PDEs as PTEs */ flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); } else { /* Workaround for fault priority problem on GMC9 */ flags = AMDGPU_PTE_EXECUTABLE; } } r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, value, flags); if (r) goto exit; } r = vm->update_funcs->commit(¶ms, NULL); exit: drm_dev_exit(idx); return r; } /** * amdgpu_vm_pt_create - create bo for PD/PT * * @adev: amdgpu_device pointer * @vm: requesting vm * @level: the page table level * @immediate: use a immediate update * @vmbo: pointer to the buffer object pointer */ int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, int level, bool immediate, struct amdgpu_bo_vm **vmbo) { struct amdgpu_bo_param bp; struct amdgpu_bo *bo; struct dma_resv *resv; unsigned int num_entries; int r; memset(&bp, 0, sizeof(bp)); bp.size = amdgpu_vm_pt_size(adev, level); bp.byte_align = AMDGPU_GPU_PAGE_SIZE; bp.domain = AMDGPU_GEM_DOMAIN_VRAM; bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | AMDGPU_GEM_CREATE_CPU_GTT_USWC; if (level < AMDGPU_VM_PTB) num_entries = amdgpu_vm_pt_num_entries(adev, level); else num_entries = 0; bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); if (vm->use_cpu_for_update) bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; bp.type = ttm_bo_type_kernel; bp.no_wait_gpu = immediate; if (vm->root.bo) bp.resv = vm->root.bo->tbo.base.resv; r = amdgpu_bo_create_vm(adev, &bp, vmbo); if (r) return r; bo = &(*vmbo)->bo; if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { (*vmbo)->shadow = NULL; return 0; } if (!bp.resv) WARN_ON(dma_resv_lock(bo->tbo.base.resv, NULL)); resv = bp.resv; memset(&bp, 0, sizeof(bp)); bp.size = amdgpu_vm_pt_size(adev, level); bp.domain = AMDGPU_GEM_DOMAIN_GTT; bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; bp.type = ttm_bo_type_kernel; bp.resv = bo->tbo.base.resv; bp.bo_ptr_size = sizeof(struct amdgpu_bo); r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); if (!resv) dma_resv_unlock(bo->tbo.base.resv); if (r) { amdgpu_bo_unref(&bo); return r; } (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); amdgpu_bo_add_to_shadow_list(*vmbo); return 0; } /** * amdgpu_vm_pt_alloc - Allocate a specific page table * * @adev: amdgpu_device pointer * @vm: VM to allocate page tables for * @cursor: Which page table to allocate * @immediate: use an immediate update * * Make sure a specific page table or directory is allocated. * * Returns: * 1 if page table needed to be allocated, 0 if page table was already * allocated, negative errno if an error occurred. */ static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *cursor, bool immediate) { struct amdgpu_vm_bo_base *entry = cursor->entry; struct amdgpu_bo *pt_bo; struct amdgpu_bo_vm *pt; int r; if (entry->bo) return 0; amdgpu_vm_eviction_unlock(vm); r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); amdgpu_vm_eviction_lock(vm); if (r) return r; /* Keep a reference to the root directory to avoid * freeing them up in the wrong order. */ pt_bo = &pt->bo; pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); amdgpu_vm_bo_base_init(entry, vm, pt_bo); r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); if (r) goto error_free_pt; return 0; error_free_pt: amdgpu_bo_unref(&pt->shadow); amdgpu_bo_unref(&pt_bo); return r; } /** * amdgpu_vm_pt_free - free one PD/PT * * @entry: PDE to free */ static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) { struct amdgpu_bo *shadow; if (!entry->bo) return; shadow = amdgpu_bo_shadowed(entry->bo); if (shadow) { ttm_bo_set_bulk_move(&shadow->tbo, NULL); amdgpu_bo_unref(&shadow); } ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); entry->bo->vm_bo = NULL; spin_lock(&entry->vm->status_lock); list_del(&entry->vm_status); spin_unlock(&entry->vm->status_lock); amdgpu_bo_unref(&entry->bo); } void amdgpu_vm_pt_free_work(struct work_struct *work) { struct amdgpu_vm_bo_base *entry, *next; struct amdgpu_vm *vm; LIST_HEAD(pt_freed); vm = container_of(work, struct amdgpu_vm, pt_free_work); spin_lock(&vm->status_lock); list_splice_init(&vm->pt_freed, &pt_freed); spin_unlock(&vm->status_lock); /* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */ amdgpu_bo_reserve(vm->root.bo, true); list_for_each_entry_safe(entry, next, &pt_freed, vm_status) amdgpu_vm_pt_free(entry); amdgpu_bo_unreserve(vm->root.bo); } /** * amdgpu_vm_pt_free_dfs - free PD/PT levels * * @adev: amdgpu device structure * @vm: amdgpu vm structure * @start: optional cursor where to start freeing PDs/PTs * * Free the page directory or page table level and all sub levels. */ static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *start, bool unlocked) { struct amdgpu_vm_pt_cursor cursor; struct amdgpu_vm_bo_base *entry; if (unlocked) { spin_lock(&vm->status_lock); for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) list_move(&entry->vm_status, &vm->pt_freed); if (start) list_move(&start->entry->vm_status, &vm->pt_freed); spin_unlock(&vm->status_lock); schedule_work(&vm->pt_free_work); return; } for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) amdgpu_vm_pt_free(entry); if (start) amdgpu_vm_pt_free(start->entry); } /** * amdgpu_vm_pt_free_root - free root PD * @adev: amdgpu device structure * @vm: amdgpu vm structure * * Free the root page directory and everything below it. */ void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) { amdgpu_vm_pt_free_dfs(adev, vm, NULL, false); } /** * amdgpu_vm_pt_is_root_clean - check if a root PD is clean * * @adev: amdgpu_device pointer * @vm: the VM to check * * Check all entries of the root PD, if any subsequent PDs are allocated, * it means there are page table creating and filling, and is no a clean * VM * * Returns: * 0 if this VM is clean */ bool amdgpu_vm_pt_is_root_clean(struct amdgpu_device *adev, struct amdgpu_vm *vm) { enum amdgpu_vm_level root = adev->vm_manager.root_level; unsigned int entries = amdgpu_vm_pt_num_entries(adev, root); unsigned int i = 0; for (i = 0; i < entries; i++) { if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) return false; } return true; } /** * amdgpu_vm_pde_update - update a single level in the hierarchy * * @params: parameters for the update * @entry: entry to update * * Makes sure the requested entry in parent is up to date. */ int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, struct amdgpu_vm_bo_base *entry) { struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); struct amdgpu_bo *bo = parent->bo, *pbo; struct amdgpu_vm *vm = params->vm; uint64_t pde, pt, flags; unsigned int level; for (level = 0, pbo = bo->parent; pbo; ++level) pbo = pbo->parent; level += params->adev->vm_manager.root_level; amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1, 0, flags); } /* * amdgpu_vm_pte_update_flags - figure out flags for PTE updates * * Make sure to set the right flags for the PTEs at the desired level. */ static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, struct amdgpu_bo_vm *pt, unsigned int level, uint64_t pe, uint64_t addr, unsigned int count, uint32_t incr, uint64_t flags) { if (level != AMDGPU_VM_PTB) { flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); } else if (params->adev->asic_type >= CHIP_VEGA10 && !(flags & AMDGPU_PTE_VALID) && !(flags & AMDGPU_PTE_PRT)) { /* Workaround for fault priority problem on GMC9 */ flags |= AMDGPU_PTE_EXECUTABLE; } params->vm->update_funcs->update(params, pt, pe, addr, count, incr, flags); } /** * amdgpu_vm_pte_fragment - get fragment for PTEs * * @params: see amdgpu_vm_update_params definition * @start: first PTE to handle * @end: last PTE to handle * @flags: hw mapping flags * @frag: resulting fragment size * @frag_end: end of this fragment * * Returns the first possible fragment for the start and end address. */ static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, uint64_t start, uint64_t end, uint64_t flags, unsigned int *frag, uint64_t *frag_end) { /** * The MC L1 TLB supports variable sized pages, based on a fragment * field in the PTE. When this field is set to a non-zero value, page * granularity is increased from 4KB to (1 << (12 + frag)). The PTE * flags are considered valid for all PTEs within the fragment range * and corresponding mappings are assumed to be physically contiguous. * * The L1 TLB can store a single PTE for the whole fragment, * significantly increasing the space available for translation * caching. This leads to large improvements in throughput when the * TLB is under pressure. * * The L2 TLB distributes small and large fragments into two * asymmetric partitions. The large fragment cache is significantly * larger. Thus, we try to use large fragments wherever possible. * Userspace can support this by aligning virtual base address and * allocation size to the fragment size. * * Starting with Vega10 the fragment size only controls the L1. The L2 * is now directly feed with small/huge/giant pages from the walker. */ unsigned int max_frag; if (params->adev->asic_type < CHIP_VEGA10) max_frag = params->adev->vm_manager.fragment_size; else max_frag = 31; /* system pages are non continuously */ if (params->pages_addr) { *frag = 0; *frag_end = end; return; } /* This intentionally wraps around if no bit is set */ *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); if (*frag >= max_frag) { *frag = max_frag; *frag_end = end & ~((1ULL << max_frag) - 1); } else { *frag_end = start + (1 << *frag); } } /** * amdgpu_vm_ptes_update - make sure that page tables are valid * * @params: see amdgpu_vm_update_params definition * @start: start of GPU address range * @end: end of GPU address range * @dst: destination address to map to, the next dst inside the function * @flags: mapping flags * * Update the page tables in the range @start - @end. * * Returns: * 0 for success, -EINVAL for failure. */ int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, uint64_t start, uint64_t end, uint64_t dst, uint64_t flags) { struct amdgpu_device *adev = params->adev; struct amdgpu_vm_pt_cursor cursor; uint64_t frag_start = start, frag_end; unsigned int frag; int r; /* figure out the initial fragment */ amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, &frag_end); /* walk over the address space and update the PTs */ amdgpu_vm_pt_start(adev, params->vm, start, &cursor); while (cursor.pfn < end) { unsigned int shift, parent_shift, mask; uint64_t incr, entry_end, pe_start; struct amdgpu_bo *pt; if (!params->unlocked) { /* make sure that the page tables covering the * address range are actually allocated */ r = amdgpu_vm_pt_alloc(params->adev, params->vm, &cursor, params->immediate); if (r) return r; } shift = amdgpu_vm_pt_level_shift(adev, cursor.level); parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); if (params->unlocked) { /* Unlocked updates are only allowed on the leaves */ if (amdgpu_vm_pt_descendant(adev, &cursor)) continue; } else if (adev->asic_type < CHIP_VEGA10 && (flags & AMDGPU_PTE_VALID)) { /* No huge page support before GMC v9 */ if (cursor.level != AMDGPU_VM_PTB) { if (!amdgpu_vm_pt_descendant(adev, &cursor)) return -ENOENT; continue; } } else if (frag < shift) { /* We can't use this level when the fragment size is * smaller than the address shift. Go to the next * child entry and try again. */ if (amdgpu_vm_pt_descendant(adev, &cursor)) continue; } else if (frag >= parent_shift) { /* If the fragment size is even larger than the parent * shift we should go up one level and check it again. */ if (!amdgpu_vm_pt_ancestor(&cursor)) return -EINVAL; continue; } pt = cursor.entry->bo; if (!pt) { /* We need all PDs and PTs for mapping something, */ if (flags & AMDGPU_PTE_VALID) return -ENOENT; /* but unmapping something can happen at a higher * level. */ if (!amdgpu_vm_pt_ancestor(&cursor)) return -EINVAL; pt = cursor.entry->bo; shift = parent_shift; frag_end = max(frag_end, ALIGN(frag_start + 1, 1ULL << shift)); } /* Looks good so far, calculate parameters for the update */ incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); pe_start = ((cursor.pfn >> shift) & mask) * 8; entry_end = ((uint64_t)mask + 1) << shift; entry_end += cursor.pfn & ~(entry_end - 1); entry_end = min(entry_end, end); do { struct amdgpu_vm *vm = params->vm; uint64_t upd_end = min(entry_end, frag_end); unsigned int nptes = (upd_end - frag_start) >> shift; uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); /* This can happen when we set higher level PDs to * silent to stop fault floods. */ nptes = max(nptes, 1u); trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, min(nptes, 32u), dst, incr, upd_flags, vm->task_info.pid, vm->immediate.fence_context); amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), cursor.level, pe_start, dst, nptes, incr, upd_flags); pe_start += nptes * 8; dst += nptes * incr; frag_start = upd_end; if (frag_start >= frag_end) { /* figure out the next fragment */ amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, &frag_end); if (frag < shift) break; } } while (frag_start < entry_end); if (amdgpu_vm_pt_descendant(adev, &cursor)) { /* Free all child entries. * Update the tables with the flags and addresses and free up subsequent * tables in the case of huge pages or freed up areas. * This is the maximum you can free, because all other page tables are not * completely covered by the range and so potentially still in use. */ while (cursor.pfn < frag_start) { /* Make sure previous mapping is freed */ if (cursor.entry->bo) { params->table_freed = true; amdgpu_vm_pt_free_dfs(adev, params->vm, &cursor, params->unlocked); } amdgpu_vm_pt_next(adev, &cursor); } } else if (frag >= shift) { /* or just move on to the next on the same level. */ amdgpu_vm_pt_next(adev, &cursor); } } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1