Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jerry (Fangzhi) Zuo | 4341 | 20.08% | 4 | 1.22% |
Harry Wentland | 4086 | 18.90% | 16 | 4.89% |
Wenjing Liu | 2762 | 12.78% | 36 | 11.01% |
Zeyu Fan | 1880 | 8.70% | 2 | 0.61% |
Bhawanpreet Lakha | 680 | 3.15% | 10 | 3.06% |
Charlene Liu | 640 | 2.96% | 9 | 2.75% |
Anthony Koo | 530 | 2.45% | 15 | 4.59% |
Leo (Hanghong) Ma | 386 | 1.79% | 3 | 0.92% |
Hersen Wu | 355 | 1.64% | 8 | 2.45% |
Eric Yang | 348 | 1.61% | 8 | 2.45% |
Chris Park | 338 | 1.56% | 1 | 0.31% |
Samson Tam | 304 | 1.41% | 7 | 2.14% |
Jimmy Kizito | 303 | 1.40% | 14 | 4.28% |
Meenakshikumar Somasundaram | 299 | 1.38% | 4 | 1.22% |
George Shen | 290 | 1.34% | 4 | 1.22% |
Martin Leung | 259 | 1.20% | 5 | 1.53% |
Dingchen Zhang | 223 | 1.03% | 5 | 1.53% |
Mark Morra | 188 | 0.87% | 1 | 0.31% |
Lucy Li | 159 | 0.74% | 1 | 0.31% |
Yongqiang Sun | 157 | 0.73% | 8 | 2.45% |
Andrew Jiang | 151 | 0.70% | 4 | 1.22% |
David Galiffi | 148 | 0.68% | 2 | 0.61% |
Alex Deucher | 146 | 0.68% | 2 | 0.61% |
Roman Li | 143 | 0.66% | 3 | 0.92% |
John Barberiz | 140 | 0.65% | 3 | 0.92% |
Duncan Ma | 115 | 0.53% | 1 | 0.31% |
Derek Lai | 107 | 0.50% | 2 | 0.61% |
Chiawen Huang | 100 | 0.46% | 2 | 0.61% |
Po-Ting Chen | 98 | 0.45% | 1 | 0.31% |
Muhammad Ansari | 91 | 0.42% | 1 | 0.31% |
Ahmad Othman | 88 | 0.41% | 3 | 0.92% |
Lewis Huang | 88 | 0.41% | 5 | 1.53% |
Ian Chen | 85 | 0.39% | 4 | 1.22% |
Iswara Nagulendran | 71 | 0.33% | 3 | 0.92% |
Michael Strauss | 68 | 0.31% | 1 | 0.31% |
rodrigosiqueira | 68 | 0.31% | 1 | 0.31% |
Paul Hsieh | 65 | 0.30% | 3 | 0.92% |
Anthony Wang | 56 | 0.26% | 1 | 0.31% |
Wyatt Wood | 56 | 0.26% | 4 | 1.22% |
Nikola Cornij | 54 | 0.25% | 5 | 1.53% |
Evgenii Krasnikov | 49 | 0.23% | 2 | 0.61% |
Jun Lei | 47 | 0.22% | 2 | 0.61% |
Andrey Grodzovsky | 44 | 0.20% | 2 | 0.61% |
Jinze Xu | 44 | 0.20% | 4 | 1.22% |
Mikita Lipski | 44 | 0.20% | 4 | 1.22% |
Nicholas Kazlauskas | 40 | 0.19% | 4 | 1.22% |
Ilya Bakoulin | 40 | 0.19% | 1 | 0.31% |
Lee Jones | 37 | 0.17% | 2 | 0.61% |
Martin Tsai | 37 | 0.17% | 5 | 1.53% |
Ken Chalmers | 37 | 0.17% | 2 | 0.61% |
Dale Zhao | 35 | 0.16% | 3 | 0.92% |
Dmytro Laktyushkin | 35 | 0.16% | 3 | 0.92% |
Joseph Gravenor | 31 | 0.14% | 1 | 0.31% |
Mustapha Ghaddar | 30 | 0.14% | 1 | 0.31% |
Bing Guo | 30 | 0.14% | 3 | 0.92% |
Sung Joon Kim | 29 | 0.13% | 2 | 0.61% |
Jaehyun Chung | 28 | 0.13% | 3 | 0.92% |
abdoulaye berthe | 26 | 0.12% | 1 | 0.31% |
Yu-ting Shen | 25 | 0.12% | 1 | 0.31% |
Jingwen Zhu | 25 | 0.12% | 1 | 0.31% |
Mike Hsieh | 25 | 0.12% | 2 | 0.61% |
Yi-Ling Chen | 24 | 0.11% | 1 | 0.31% |
Qingqing Zhuo | 24 | 0.11% | 1 | 0.31% |
Dillon Varone | 22 | 0.10% | 1 | 0.31% |
Joshua Aberback | 21 | 0.10% | 3 | 0.92% |
David Francis | 21 | 0.10% | 4 | 1.22% |
Roy Chan | 18 | 0.08% | 1 | 0.31% |
Melissa Wen | 18 | 0.08% | 5 | 1.53% |
Eric Bernstein | 18 | 0.08% | 4 | 1.22% |
Dan Carpenter | 17 | 0.08% | 1 | 0.31% |
Igor Kravchenko | 17 | 0.08% | 1 | 0.31% |
Nathan Chancellor | 16 | 0.07% | 2 | 0.61% |
Brandon Syu | 16 | 0.07% | 1 | 0.31% |
Max Erenberg | 16 | 0.07% | 1 | 0.31% |
Jake Wang | 16 | 0.07% | 2 | 0.61% |
yzhai003 at ucr.edu | 13 | 0.06% | 1 | 0.31% |
Rajib Mahapatra | 12 | 0.06% | 1 | 0.31% |
SivapiriyanKumarasamy | 12 | 0.06% | 2 | 0.61% |
Amy Zhang | 11 | 0.05% | 1 | 0.31% |
Kevin Wang | 10 | 0.05% | 1 | 0.31% |
Krunoslav Kovac | 9 | 0.04% | 1 | 0.31% |
Zhan Liu | 9 | 0.04% | 1 | 0.31% |
Ding Wang | 8 | 0.04% | 1 | 0.31% |
Colin Ian King | 6 | 0.03% | 1 | 0.31% |
Stephen Chandler Paul | 5 | 0.02% | 1 | 0.31% |
Josip Pavic | 5 | 0.02% | 3 | 0.92% |
sungwang | 5 | 0.02% | 1 | 0.31% |
Victor Lu | 5 | 0.02% | 1 | 0.31% |
Huang Rui | 4 | 0.02% | 1 | 0.31% |
Wesley Chalmers | 3 | 0.01% | 1 | 0.31% |
Sam Ravnborg | 3 | 0.01% | 1 | 0.31% |
Dave Airlie | 3 | 0.01% | 2 | 0.61% |
Yifan Zhang | 3 | 0.01% | 2 | 0.61% |
Camille Cho | 2 | 0.01% | 1 | 0.31% |
Mario Kleiner | 2 | 0.01% | 1 | 0.31% |
Alvin lee | 2 | 0.01% | 1 | 0.31% |
Shaokun Zhang | 2 | 0.01% | 1 | 0.31% |
Aurabindo Pillai | 2 | 0.01% | 1 | 0.31% |
Evan Quan | 2 | 0.01% | 1 | 0.31% |
Jordan Lazare | 1 | 0.00% | 1 | 0.31% |
Isabella Basso | 1 | 0.00% | 1 | 0.31% |
Anson Jacob | 1 | 0.00% | 1 | 0.31% |
Sylvia Tsai | 1 | 0.00% | 1 | 0.31% |
Gustavo A. R. Silva | 1 | 0.00% | 1 | 0.31% |
Yue haibing | 1 | 0.00% | 1 | 0.31% |
Mathias Fröhlich | 1 | 0.00% | 1 | 0.31% |
zhengbin | 1 | 0.00% | 1 | 0.31% |
zhang songyi | 1 | 0.00% | 1 | 0.31% |
Total | 21615 | 327 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include <linux/slab.h> #include "dm_services.h" #include "atomfirmware.h" #include "dm_helpers.h" #include "dc.h" #include "grph_object_id.h" #include "gpio_service_interface.h" #include "core_status.h" #include "dc_link_dp.h" #include "dc_link_dpia.h" #include "dc_link_ddc.h" #include "link_hwss.h" #include "opp.h" #include "link_encoder.h" #include "hw_sequencer.h" #include "resource.h" #include "abm.h" #include "fixed31_32.h" #include "dpcd_defs.h" #include "dmcu.h" #include "hw/clk_mgr.h" #include "dce/dmub_psr.h" #include "dmub/dmub_srv.h" #include "inc/hw/panel_cntl.h" #include "inc/link_enc_cfg.h" #include "inc/link_dpcd.h" #include "link/link_dp_trace.h" #include "dc/dcn30/dcn30_vpg.h" #define DC_LOGGER_INIT(logger) #define LINK_INFO(...) \ DC_LOG_HW_HOTPLUG( \ __VA_ARGS__) #define RETIMER_REDRIVER_INFO(...) \ DC_LOG_RETIMER_REDRIVER( \ __VA_ARGS__) /******************************************************************************* * Private functions ******************************************************************************/ static void dc_link_destruct(struct dc_link *link) { int i; if (link->hpd_gpio) { dal_gpio_destroy_irq(&link->hpd_gpio); link->hpd_gpio = NULL; } if (link->ddc) dal_ddc_service_destroy(&link->ddc); if (link->panel_cntl) link->panel_cntl->funcs->destroy(&link->panel_cntl); if (link->link_enc) { /* Update link encoder resource tracking variables. These are used for * the dynamic assignment of link encoders to streams. Virtual links * are not assigned encoder resources on creation. */ if (link->link_id.id != CONNECTOR_ID_VIRTUAL) { link->dc->res_pool->link_encoders[link->eng_id - ENGINE_ID_DIGA] = NULL; link->dc->res_pool->dig_link_enc_count--; } link->link_enc->funcs->destroy(&link->link_enc); } if (link->local_sink) dc_sink_release(link->local_sink); for (i = 0; i < link->sink_count; ++i) dc_sink_release(link->remote_sinks[i]); } struct gpio *get_hpd_gpio(struct dc_bios *dcb, struct graphics_object_id link_id, struct gpio_service *gpio_service) { enum bp_result bp_result; struct graphics_object_hpd_info hpd_info; struct gpio_pin_info pin_info; if (dcb->funcs->get_hpd_info(dcb, link_id, &hpd_info) != BP_RESULT_OK) return NULL; bp_result = dcb->funcs->get_gpio_pin_info(dcb, hpd_info.hpd_int_gpio_uid, &pin_info); if (bp_result != BP_RESULT_OK) { ASSERT(bp_result == BP_RESULT_NORECORD); return NULL; } return dal_gpio_service_create_irq(gpio_service, pin_info.offset, pin_info.mask); } /* * Function: program_hpd_filter * * @brief * Programs HPD filter on associated HPD line * * @param [in] delay_on_connect_in_ms: Connect filter timeout * @param [in] delay_on_disconnect_in_ms: Disconnect filter timeout * * @return * true on success, false otherwise */ static bool program_hpd_filter(const struct dc_link *link) { bool result = false; struct gpio *hpd; int delay_on_connect_in_ms = 0; int delay_on_disconnect_in_ms = 0; if (link->is_hpd_filter_disabled) return false; /* Verify feature is supported */ switch (link->connector_signal) { case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: /* Program hpd filter */ delay_on_connect_in_ms = 500; delay_on_disconnect_in_ms = 100; break; case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_DISPLAY_PORT_MST: /* Program hpd filter to allow DP signal to settle */ /* 500: not able to detect MST <-> SST switch as HPD is low for * only 100ms on DELL U2413 * 0: some passive dongle still show aux mode instead of i2c * 20-50: not enough to hide bouncing HPD with passive dongle. * also see intermittent i2c read issues. */ delay_on_connect_in_ms = 80; delay_on_disconnect_in_ms = 0; break; case SIGNAL_TYPE_LVDS: case SIGNAL_TYPE_EDP: default: /* Don't program hpd filter */ return false; } /* Obtain HPD handle */ hpd = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (!hpd) return result; /* Setup HPD filtering */ if (dal_gpio_open(hpd, GPIO_MODE_INTERRUPT) == GPIO_RESULT_OK) { struct gpio_hpd_config config; config.delay_on_connect = delay_on_connect_in_ms; config.delay_on_disconnect = delay_on_disconnect_in_ms; dal_irq_setup_hpd_filter(hpd, &config); dal_gpio_close(hpd); result = true; } else { ASSERT_CRITICAL(false); } /* Release HPD handle */ dal_gpio_destroy_irq(&hpd); return result; } bool dc_link_wait_for_t12(struct dc_link *link) { if (link->connector_signal == SIGNAL_TYPE_EDP && link->dc->hwss.edp_wait_for_T12) { link->dc->hwss.edp_wait_for_T12(link); return true; } return false; } /** * dc_link_detect_sink() - Determine if there is a sink connected * * @link: pointer to the dc link * @type: Returned connection type * Does not detect downstream devices, such as MST sinks * or display connected through active dongles */ bool dc_link_detect_sink(struct dc_link *link, enum dc_connection_type *type) { uint32_t is_hpd_high = 0; struct gpio *hpd_pin; if (link->connector_signal == SIGNAL_TYPE_LVDS) { *type = dc_connection_single; return true; } if (link->connector_signal == SIGNAL_TYPE_EDP) { /*in case it is not on*/ if (!link->dc->config.edp_no_power_sequencing) link->dc->hwss.edp_power_control(link, true); link->dc->hwss.edp_wait_for_hpd_ready(link, true); } /* Link may not have physical HPD pin. */ if (link->ep_type != DISPLAY_ENDPOINT_PHY) { if (link->is_hpd_pending || !dc_link_dpia_query_hpd_status(link)) *type = dc_connection_none; else *type = dc_connection_single; return true; } /* todo: may need to lock gpio access */ hpd_pin = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (!hpd_pin) goto hpd_gpio_failure; dal_gpio_open(hpd_pin, GPIO_MODE_INTERRUPT); dal_gpio_get_value(hpd_pin, &is_hpd_high); dal_gpio_close(hpd_pin); dal_gpio_destroy_irq(&hpd_pin); if (is_hpd_high) { *type = dc_connection_single; /* TODO: need to do the actual detection */ } else { *type = dc_connection_none; } return true; hpd_gpio_failure: return false; } static enum ddc_transaction_type get_ddc_transaction_type(enum signal_type sink_signal) { enum ddc_transaction_type transaction_type = DDC_TRANSACTION_TYPE_NONE; switch (sink_signal) { case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: case SIGNAL_TYPE_LVDS: case SIGNAL_TYPE_RGB: transaction_type = DDC_TRANSACTION_TYPE_I2C; break; case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_EDP: transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; break; case SIGNAL_TYPE_DISPLAY_PORT_MST: /* MST does not use I2COverAux, but there is the * SPECIAL use case for "immediate dwnstrm device * access" (EPR#370830). */ transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; break; default: break; } return transaction_type; } static enum signal_type get_basic_signal_type(struct graphics_object_id encoder, struct graphics_object_id downstream) { if (downstream.type == OBJECT_TYPE_CONNECTOR) { switch (downstream.id) { case CONNECTOR_ID_SINGLE_LINK_DVII: switch (encoder.id) { case ENCODER_ID_INTERNAL_DAC1: case ENCODER_ID_INTERNAL_KLDSCP_DAC1: case ENCODER_ID_INTERNAL_DAC2: case ENCODER_ID_INTERNAL_KLDSCP_DAC2: return SIGNAL_TYPE_RGB; default: return SIGNAL_TYPE_DVI_SINGLE_LINK; } break; case CONNECTOR_ID_DUAL_LINK_DVII: { switch (encoder.id) { case ENCODER_ID_INTERNAL_DAC1: case ENCODER_ID_INTERNAL_KLDSCP_DAC1: case ENCODER_ID_INTERNAL_DAC2: case ENCODER_ID_INTERNAL_KLDSCP_DAC2: return SIGNAL_TYPE_RGB; default: return SIGNAL_TYPE_DVI_DUAL_LINK; } } break; case CONNECTOR_ID_SINGLE_LINK_DVID: return SIGNAL_TYPE_DVI_SINGLE_LINK; case CONNECTOR_ID_DUAL_LINK_DVID: return SIGNAL_TYPE_DVI_DUAL_LINK; case CONNECTOR_ID_VGA: return SIGNAL_TYPE_RGB; case CONNECTOR_ID_HDMI_TYPE_A: return SIGNAL_TYPE_HDMI_TYPE_A; case CONNECTOR_ID_LVDS: return SIGNAL_TYPE_LVDS; case CONNECTOR_ID_DISPLAY_PORT: case CONNECTOR_ID_USBC: return SIGNAL_TYPE_DISPLAY_PORT; case CONNECTOR_ID_EDP: return SIGNAL_TYPE_EDP; default: return SIGNAL_TYPE_NONE; } } else if (downstream.type == OBJECT_TYPE_ENCODER) { switch (downstream.id) { case ENCODER_ID_EXTERNAL_NUTMEG: case ENCODER_ID_EXTERNAL_TRAVIS: return SIGNAL_TYPE_DISPLAY_PORT; default: return SIGNAL_TYPE_NONE; } } return SIGNAL_TYPE_NONE; } /* * dc_link_is_dp_sink_present() - Check if there is a native DP * or passive DP-HDMI dongle connected */ bool dc_link_is_dp_sink_present(struct dc_link *link) { enum gpio_result gpio_result; uint32_t clock_pin = 0; uint8_t retry = 0; struct ddc *ddc; enum connector_id connector_id = dal_graphics_object_id_get_connector_id(link->link_id); bool present = ((connector_id == CONNECTOR_ID_DISPLAY_PORT) || (connector_id == CONNECTOR_ID_EDP) || (connector_id == CONNECTOR_ID_USBC)); ddc = dal_ddc_service_get_ddc_pin(link->ddc); if (!ddc) { BREAK_TO_DEBUGGER(); return present; } /* Open GPIO and set it to I2C mode */ /* Note: this GpioMode_Input will be converted * to GpioConfigType_I2cAuxDualMode in GPIO component, * which indicates we need additional delay */ if (dal_ddc_open(ddc, GPIO_MODE_INPUT, GPIO_DDC_CONFIG_TYPE_MODE_I2C) != GPIO_RESULT_OK) { dal_ddc_close(ddc); return present; } /* * Read GPIO: DP sink is present if both clock and data pins are zero * * [W/A] plug-unplug DP cable, sometimes customer board has * one short pulse on clk_pin(1V, < 1ms). DP will be config to HDMI/DVI * then monitor can't br light up. Add retry 3 times * But in real passive dongle, it need additional 3ms to detect */ do { gpio_result = dal_gpio_get_value(ddc->pin_clock, &clock_pin); ASSERT(gpio_result == GPIO_RESULT_OK); if (clock_pin) udelay(1000); else break; } while (retry++ < 3); present = (gpio_result == GPIO_RESULT_OK) && !clock_pin; dal_ddc_close(ddc); return present; } /* * @brief * Detect output sink type */ static enum signal_type link_detect_sink(struct dc_link *link, enum dc_detect_reason reason) { enum signal_type result; struct graphics_object_id enc_id; if (link->is_dig_mapping_flexible) enc_id = (struct graphics_object_id){.id = ENCODER_ID_UNKNOWN}; else enc_id = link->link_enc->id; result = get_basic_signal_type(enc_id, link->link_id); /* Use basic signal type for link without physical connector. */ if (link->ep_type != DISPLAY_ENDPOINT_PHY) return result; /* Internal digital encoder will detect only dongles * that require digital signal */ /* Detection mechanism is different * for different native connectors. * LVDS connector supports only LVDS signal; * PCIE is a bus slot, the actual connector needs to be detected first; * eDP connector supports only eDP signal; * HDMI should check straps for audio */ /* PCIE detects the actual connector on add-on board */ if (link->link_id.id == CONNECTOR_ID_PCIE) { /* ZAZTODO implement PCIE add-on card detection */ } switch (link->link_id.id) { case CONNECTOR_ID_HDMI_TYPE_A: { /* check audio support: * if native HDMI is not supported, switch to DVI */ struct audio_support *aud_support = &link->dc->res_pool->audio_support; if (!aud_support->hdmi_audio_native) if (link->link_id.id == CONNECTOR_ID_HDMI_TYPE_A) result = SIGNAL_TYPE_DVI_SINGLE_LINK; } break; case CONNECTOR_ID_DISPLAY_PORT: case CONNECTOR_ID_USBC: { /* DP HPD short pulse. Passive DP dongle will not * have short pulse */ if (reason != DETECT_REASON_HPDRX) { /* Check whether DP signal detected: if not - * we assume signal is DVI; it could be corrected * to HDMI after dongle detection */ if (!dm_helpers_is_dp_sink_present(link)) result = SIGNAL_TYPE_DVI_SINGLE_LINK; } } break; default: break; } return result; } static enum signal_type decide_signal_from_strap_and_dongle_type(enum display_dongle_type dongle_type, struct audio_support *audio_support) { enum signal_type signal = SIGNAL_TYPE_NONE; switch (dongle_type) { case DISPLAY_DONGLE_DP_HDMI_DONGLE: if (audio_support->hdmi_audio_on_dongle) signal = SIGNAL_TYPE_HDMI_TYPE_A; else signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; case DISPLAY_DONGLE_DP_DVI_DONGLE: signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; case DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE: if (audio_support->hdmi_audio_native) signal = SIGNAL_TYPE_HDMI_TYPE_A; else signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; default: signal = SIGNAL_TYPE_NONE; break; } return signal; } static enum signal_type dp_passive_dongle_detection(struct ddc_service *ddc, struct display_sink_capability *sink_cap, struct audio_support *audio_support) { dal_ddc_service_i2c_query_dp_dual_mode_adaptor(ddc, sink_cap); return decide_signal_from_strap_and_dongle_type(sink_cap->dongle_type, audio_support); } static void link_disconnect_sink(struct dc_link *link) { if (link->local_sink) { dc_sink_release(link->local_sink); link->local_sink = NULL; } link->dpcd_sink_count = 0; //link->dpcd_caps.dpcd_rev.raw = 0; } static void link_disconnect_remap(struct dc_sink *prev_sink, struct dc_link *link) { dc_sink_release(link->local_sink); link->local_sink = prev_sink; } #if defined(CONFIG_DRM_AMD_DC_HDCP) bool dc_link_is_hdcp14(struct dc_link *link, enum signal_type signal) { bool ret = false; switch (signal) { case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_DISPLAY_PORT_MST: ret = link->hdcp_caps.bcaps.bits.HDCP_CAPABLE; break; case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: /* HDMI doesn't tell us its HDCP(1.4) capability, so assume to always be capable, * we can poll for bksv but some displays have an issue with this. Since its so rare * for a display to not be 1.4 capable, this assumtion is ok */ ret = true; break; default: break; } return ret; } bool dc_link_is_hdcp22(struct dc_link *link, enum signal_type signal) { bool ret = false; switch (signal) { case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_DISPLAY_PORT_MST: ret = (link->hdcp_caps.bcaps.bits.HDCP_CAPABLE && link->hdcp_caps.rx_caps.fields.byte0.hdcp_capable && (link->hdcp_caps.rx_caps.fields.version == 0x2)) ? 1 : 0; break; case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: ret = (link->hdcp_caps.rx_caps.fields.version == 0x4) ? 1:0; break; default: break; } return ret; } static void query_hdcp_capability(enum signal_type signal, struct dc_link *link) { struct hdcp_protection_message msg22; struct hdcp_protection_message msg14; memset(&msg22, 0, sizeof(struct hdcp_protection_message)); memset(&msg14, 0, sizeof(struct hdcp_protection_message)); memset(link->hdcp_caps.rx_caps.raw, 0, sizeof(link->hdcp_caps.rx_caps.raw)); if ((link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT && link->ddc->transaction_type == DDC_TRANSACTION_TYPE_I2C_OVER_AUX) || link->connector_signal == SIGNAL_TYPE_EDP) { msg22.data = link->hdcp_caps.rx_caps.raw; msg22.length = sizeof(link->hdcp_caps.rx_caps.raw); msg22.msg_id = HDCP_MESSAGE_ID_RX_CAPS; } else { msg22.data = &link->hdcp_caps.rx_caps.fields.version; msg22.length = sizeof(link->hdcp_caps.rx_caps.fields.version); msg22.msg_id = HDCP_MESSAGE_ID_HDCP2VERSION; } msg22.version = HDCP_VERSION_22; msg22.link = HDCP_LINK_PRIMARY; msg22.max_retries = 5; dc_process_hdcp_msg(signal, link, &msg22); if (signal == SIGNAL_TYPE_DISPLAY_PORT || signal == SIGNAL_TYPE_DISPLAY_PORT_MST) { msg14.data = &link->hdcp_caps.bcaps.raw; msg14.length = sizeof(link->hdcp_caps.bcaps.raw); msg14.msg_id = HDCP_MESSAGE_ID_READ_BCAPS; msg14.version = HDCP_VERSION_14; msg14.link = HDCP_LINK_PRIMARY; msg14.max_retries = 5; dc_process_hdcp_msg(signal, link, &msg14); } } #endif static void read_current_link_settings_on_detect(struct dc_link *link) { union lane_count_set lane_count_set = {0}; uint8_t link_bw_set; uint8_t link_rate_set; uint32_t read_dpcd_retry_cnt = 10; enum dc_status status = DC_ERROR_UNEXPECTED; int i; union max_down_spread max_down_spread = {0}; // Read DPCD 00101h to find out the number of lanes currently set for (i = 0; i < read_dpcd_retry_cnt; i++) { status = core_link_read_dpcd(link, DP_LANE_COUNT_SET, &lane_count_set.raw, sizeof(lane_count_set)); /* First DPCD read after VDD ON can fail if the particular board * does not have HPD pin wired correctly. So if DPCD read fails, * which it should never happen, retry a few times. Target worst * case scenario of 80 ms. */ if (status == DC_OK) { link->cur_link_settings.lane_count = lane_count_set.bits.LANE_COUNT_SET; break; } msleep(8); } // Read DPCD 00100h to find if standard link rates are set core_link_read_dpcd(link, DP_LINK_BW_SET, &link_bw_set, sizeof(link_bw_set)); if (link_bw_set == 0) { if (link->connector_signal == SIGNAL_TYPE_EDP) { /* If standard link rates are not being used, * Read DPCD 00115h to find the edp link rate set used */ core_link_read_dpcd(link, DP_LINK_RATE_SET, &link_rate_set, sizeof(link_rate_set)); // edp_supported_link_rates_count = 0 for DP if (link_rate_set < link->dpcd_caps.edp_supported_link_rates_count) { link->cur_link_settings.link_rate = link->dpcd_caps.edp_supported_link_rates[link_rate_set]; link->cur_link_settings.link_rate_set = link_rate_set; link->cur_link_settings.use_link_rate_set = true; } } else { // Link Rate not found. Seamless boot may not work. ASSERT(false); } } else { link->cur_link_settings.link_rate = link_bw_set; link->cur_link_settings.use_link_rate_set = false; } // Read DPCD 00003h to find the max down spread. core_link_read_dpcd(link, DP_MAX_DOWNSPREAD, &max_down_spread.raw, sizeof(max_down_spread)); link->cur_link_settings.link_spread = max_down_spread.bits.MAX_DOWN_SPREAD ? LINK_SPREAD_05_DOWNSPREAD_30KHZ : LINK_SPREAD_DISABLED; } static bool detect_dp(struct dc_link *link, struct display_sink_capability *sink_caps, enum dc_detect_reason reason) { struct audio_support *audio_support = &link->dc->res_pool->audio_support; sink_caps->signal = link_detect_sink(link, reason); sink_caps->transaction_type = get_ddc_transaction_type(sink_caps->signal); if (sink_caps->transaction_type == DDC_TRANSACTION_TYPE_I2C_OVER_AUX) { sink_caps->signal = SIGNAL_TYPE_DISPLAY_PORT; if (!detect_dp_sink_caps(link)) return false; if (is_dp_branch_device(link)) /* DP SST branch */ link->type = dc_connection_sst_branch; } else { /* DP passive dongles */ sink_caps->signal = dp_passive_dongle_detection(link->ddc, sink_caps, audio_support); link->dpcd_caps.dongle_type = sink_caps->dongle_type; link->dpcd_caps.is_dongle_type_one = sink_caps->is_dongle_type_one; link->dpcd_caps.dpcd_rev.raw = 0; } return true; } static bool is_same_edid(struct dc_edid *old_edid, struct dc_edid *new_edid) { if (old_edid->length != new_edid->length) return false; if (new_edid->length == 0) return false; return (memcmp(old_edid->raw_edid, new_edid->raw_edid, new_edid->length) == 0); } static bool wait_for_entering_dp_alt_mode(struct dc_link *link) { /** * something is terribly wrong if time out is > 200ms. (5Hz) * 500 microseconds * 400 tries us 200 ms **/ unsigned int sleep_time_in_microseconds = 500; unsigned int tries_allowed = 400; bool is_in_alt_mode; unsigned long long enter_timestamp; unsigned long long finish_timestamp; unsigned long long time_taken_in_ns; int tries_taken; DC_LOGGER_INIT(link->ctx->logger); if (!link->link_enc->funcs->is_in_alt_mode) return true; is_in_alt_mode = link->link_enc->funcs->is_in_alt_mode(link->link_enc); DC_LOG_WARNING("DP Alt mode state on HPD: %d\n", is_in_alt_mode); if (is_in_alt_mode) return true; enter_timestamp = dm_get_timestamp(link->ctx); for (tries_taken = 0; tries_taken < tries_allowed; tries_taken++) { udelay(sleep_time_in_microseconds); /* ask the link if alt mode is enabled, if so return ok */ if (link->link_enc->funcs->is_in_alt_mode(link->link_enc)) { finish_timestamp = dm_get_timestamp(link->ctx); time_taken_in_ns = dm_get_elapse_time_in_ns(link->ctx, finish_timestamp, enter_timestamp); DC_LOG_WARNING("Alt mode entered finished after %llu ms\n", div_u64(time_taken_in_ns, 1000000)); return true; } } finish_timestamp = dm_get_timestamp(link->ctx); time_taken_in_ns = dm_get_elapse_time_in_ns(link->ctx, finish_timestamp, enter_timestamp); DC_LOG_WARNING("Alt mode has timed out after %llu ms\n", div_u64(time_taken_in_ns, 1000000)); return false; } static void apply_dpia_mst_dsc_always_on_wa(struct dc_link *link) { /* Apply work around for tunneled MST on certain USB4 docks. Always use DSC if dock * reports DSC support. */ if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA && link->type == dc_connection_mst_branch && link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_90CC24 && link->dpcd_caps.branch_hw_revision == DP_BRANCH_HW_REV_20 && link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_SUPPORT && !link->dc->debug.dpia_debug.bits.disable_mst_dsc_work_around) link->wa_flags.dpia_mst_dsc_always_on = true; } static void revert_dpia_mst_dsc_always_on_wa(struct dc_link *link) { /* Disable work around which keeps DSC on for tunneled MST on certain USB4 docks. */ if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) link->wa_flags.dpia_mst_dsc_always_on = false; } static bool discover_dp_mst_topology(struct dc_link *link, enum dc_detect_reason reason) { DC_LOGGER_INIT(link->ctx->logger); LINK_INFO("link=%d, mst branch is now Connected\n", link->link_index); link->type = dc_connection_mst_branch; apply_dpia_mst_dsc_always_on_wa(link); dm_helpers_dp_update_branch_info(link->ctx, link); if (dm_helpers_dp_mst_start_top_mgr(link->ctx, link, (reason == DETECT_REASON_BOOT || reason == DETECT_REASON_RESUMEFROMS3S4))) { link_disconnect_sink(link); } else { link->type = dc_connection_sst_branch; } return link->type == dc_connection_mst_branch; } bool reset_cur_dp_mst_topology(struct dc_link *link) { DC_LOGGER_INIT(link->ctx->logger); LINK_INFO("link=%d, mst branch is now Disconnected\n", link->link_index); revert_dpia_mst_dsc_always_on_wa(link); return dm_helpers_dp_mst_stop_top_mgr(link->ctx, link); } static bool should_prepare_phy_clocks_for_link_verification(const struct dc *dc, enum dc_detect_reason reason) { int i; bool can_apply_seamless_boot = false; for (i = 0; i < dc->current_state->stream_count; i++) { if (dc->current_state->streams[i]->apply_seamless_boot_optimization) { can_apply_seamless_boot = true; break; } } return !can_apply_seamless_boot && reason != DETECT_REASON_BOOT; } static void prepare_phy_clocks_for_destructive_link_verification(const struct dc *dc) { dc_z10_restore(dc); clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr); } static void restore_phy_clocks_for_destructive_link_verification(const struct dc *dc) { clk_mgr_optimize_pwr_state(dc, dc->clk_mgr); } static void set_all_streams_dpms_off_for_link(struct dc_link *link) { int i; struct pipe_ctx *pipe_ctx; struct dc_stream_update stream_update; bool dpms_off = true; struct link_resource link_res = {0}; memset(&stream_update, 0, sizeof(stream_update)); stream_update.dpms_off = &dpms_off; for (i = 0; i < MAX_PIPES; i++) { pipe_ctx = &link->dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx && pipe_ctx->stream && !pipe_ctx->stream->dpms_off && pipe_ctx->stream->link == link && !pipe_ctx->prev_odm_pipe) { stream_update.stream = pipe_ctx->stream; dc_commit_updates_for_stream(link->ctx->dc, NULL, 0, pipe_ctx->stream, &stream_update, link->ctx->dc->current_state); } } /* link can be also enabled by vbios. In this case it is not recorded * in pipe_ctx. Disable link phy here to make sure it is completely off */ dp_disable_link_phy(link, &link_res, link->connector_signal); } static void verify_link_capability_destructive(struct dc_link *link, struct dc_sink *sink, enum dc_detect_reason reason) { bool should_prepare_phy_clocks = should_prepare_phy_clocks_for_link_verification(link->dc, reason); if (should_prepare_phy_clocks) prepare_phy_clocks_for_destructive_link_verification(link->dc); if (dc_is_dp_signal(link->local_sink->sink_signal)) { struct dc_link_settings known_limit_link_setting = dp_get_max_link_cap(link); set_all_streams_dpms_off_for_link(link); dp_verify_link_cap_with_retries( link, &known_limit_link_setting, LINK_TRAINING_MAX_VERIFY_RETRY); } else { ASSERT(0); } if (should_prepare_phy_clocks) restore_phy_clocks_for_destructive_link_verification(link->dc); } static void verify_link_capability_non_destructive(struct dc_link *link) { if (dc_is_dp_signal(link->local_sink->sink_signal)) { if (dc_is_embedded_signal(link->local_sink->sink_signal) || link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) /* TODO - should we check link encoder's max link caps here? * How do we know which link encoder to check from? */ link->verified_link_cap = link->reported_link_cap; else link->verified_link_cap = dp_get_max_link_cap(link); } } static bool should_verify_link_capability_destructively(struct dc_link *link, enum dc_detect_reason reason) { bool destrictive = false; struct dc_link_settings max_link_cap; bool is_link_enc_unavailable = link->link_enc && link->dc->res_pool->funcs->link_encs_assign && !link_enc_cfg_is_link_enc_avail( link->ctx->dc, link->link_enc->preferred_engine, link); if (dc_is_dp_signal(link->local_sink->sink_signal)) { max_link_cap = dp_get_max_link_cap(link); destrictive = true; if (link->dc->debug.skip_detection_link_training || dc_is_embedded_signal(link->local_sink->sink_signal) || link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) { destrictive = false; } else if (dp_get_link_encoding_format(&max_link_cap) == DP_8b_10b_ENCODING) { if (link->dpcd_caps.is_mst_capable || is_link_enc_unavailable) { destrictive = false; } } } return destrictive; } static void verify_link_capability(struct dc_link *link, struct dc_sink *sink, enum dc_detect_reason reason) { if (should_verify_link_capability_destructively(link, reason)) verify_link_capability_destructive(link, sink, reason); else verify_link_capability_non_destructive(link); } /** * detect_link_and_local_sink() - Detect if a sink is attached to a given link * * link->local_sink is created or destroyed as needed. * * This does not create remote sinks. */ static bool detect_link_and_local_sink(struct dc_link *link, enum dc_detect_reason reason) { struct dc_sink_init_data sink_init_data = { 0 }; struct display_sink_capability sink_caps = { 0 }; uint32_t i; bool converter_disable_audio = false; struct audio_support *aud_support = &link->dc->res_pool->audio_support; bool same_edid = false; enum dc_edid_status edid_status; struct dc_context *dc_ctx = link->ctx; struct dc *dc = dc_ctx->dc; struct dc_sink *sink = NULL; struct dc_sink *prev_sink = NULL; struct dpcd_caps prev_dpcd_caps; enum dc_connection_type new_connection_type = dc_connection_none; const uint32_t post_oui_delay = 30; // 30ms DC_LOGGER_INIT(link->ctx->logger); if (dc_is_virtual_signal(link->connector_signal)) return false; if (((link->connector_signal == SIGNAL_TYPE_LVDS || link->connector_signal == SIGNAL_TYPE_EDP) && (!link->dc->config.allow_edp_hotplug_detection)) && link->local_sink) { // need to re-write OUI and brightness in resume case if (link->connector_signal == SIGNAL_TYPE_EDP && (link->dpcd_sink_ext_caps.bits.oled == 1)) { dpcd_set_source_specific_data(link); msleep(post_oui_delay); dc_link_set_default_brightness_aux(link); //TODO: use cached } return true; } if (!dc_link_detect_sink(link, &new_connection_type)) { BREAK_TO_DEBUGGER(); return false; } prev_sink = link->local_sink; if (prev_sink) { dc_sink_retain(prev_sink); memcpy(&prev_dpcd_caps, &link->dpcd_caps, sizeof(struct dpcd_caps)); } link_disconnect_sink(link); if (new_connection_type != dc_connection_none) { link->type = new_connection_type; link->link_state_valid = false; /* From Disconnected-to-Connected. */ switch (link->connector_signal) { case SIGNAL_TYPE_HDMI_TYPE_A: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; if (aud_support->hdmi_audio_native) sink_caps.signal = SIGNAL_TYPE_HDMI_TYPE_A; else sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; } case SIGNAL_TYPE_DVI_SINGLE_LINK: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; } case SIGNAL_TYPE_DVI_DUAL_LINK: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_DVI_DUAL_LINK; break; } case SIGNAL_TYPE_LVDS: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_LVDS; break; } case SIGNAL_TYPE_EDP: { read_current_link_settings_on_detect(link); detect_edp_sink_caps(link); read_current_link_settings_on_detect(link); /* Disable power sequence on MIPI panel + converter */ if (dc->config.enable_mipi_converter_optimization && dc_ctx->dce_version == DCN_VERSION_3_01 && link->dpcd_caps.sink_dev_id == DP_BRANCH_DEVICE_ID_0022B9 && memcmp(&link->dpcd_caps.branch_dev_name, DP_SINK_BRANCH_DEV_NAME_7580, sizeof(link->dpcd_caps.branch_dev_name)) == 0) { dc->config.edp_no_power_sequencing = true; if (!link->dpcd_caps.set_power_state_capable_edp) link->wa_flags.dp_keep_receiver_powered = true; } sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; sink_caps.signal = SIGNAL_TYPE_EDP; break; } case SIGNAL_TYPE_DISPLAY_PORT: { /* wa HPD high coming too early*/ if (link->ep_type == DISPLAY_ENDPOINT_PHY && link->link_enc->features.flags.bits.DP_IS_USB_C == 1) { /* if alt mode times out, return false */ if (!wait_for_entering_dp_alt_mode(link)) return false; } if (!detect_dp(link, &sink_caps, reason)) { if (prev_sink) dc_sink_release(prev_sink); return false; } /* Active SST downstream branch device unplug*/ if (link->type == dc_connection_sst_branch && link->dpcd_caps.sink_count.bits.SINK_COUNT == 0) { if (prev_sink) /* Downstream unplug */ dc_sink_release(prev_sink); return true; } /* disable audio for non DP to HDMI active sst converter */ if (link->type == dc_connection_sst_branch && is_dp_active_dongle(link) && (link->dpcd_caps.dongle_type != DISPLAY_DONGLE_DP_HDMI_CONVERTER)) converter_disable_audio = true; break; } default: DC_ERROR("Invalid connector type! signal:%d\n", link->connector_signal); if (prev_sink) dc_sink_release(prev_sink); return false; } /* switch() */ if (link->dpcd_caps.sink_count.bits.SINK_COUNT) link->dpcd_sink_count = link->dpcd_caps.sink_count.bits.SINK_COUNT; else link->dpcd_sink_count = 1; dal_ddc_service_set_transaction_type(link->ddc, sink_caps.transaction_type); link->aux_mode = dal_ddc_service_is_in_aux_transaction_mode(link->ddc); sink_init_data.link = link; sink_init_data.sink_signal = sink_caps.signal; sink = dc_sink_create(&sink_init_data); if (!sink) { DC_ERROR("Failed to create sink!\n"); if (prev_sink) dc_sink_release(prev_sink); return false; } sink->link->dongle_max_pix_clk = sink_caps.max_hdmi_pixel_clock; sink->converter_disable_audio = converter_disable_audio; /* dc_sink_create returns a new reference */ link->local_sink = sink; edid_status = dm_helpers_read_local_edid(link->ctx, link, sink); switch (edid_status) { case EDID_BAD_CHECKSUM: DC_LOG_ERROR("EDID checksum invalid.\n"); break; case EDID_PARTIAL_VALID: DC_LOG_ERROR("Partial EDID valid, abandon invalid blocks.\n"); break; case EDID_NO_RESPONSE: DC_LOG_ERROR("No EDID read.\n"); /* * Abort detection for non-DP connectors if we have * no EDID * * DP needs to report as connected if HDP is high * even if we have no EDID in order to go to * fail-safe mode */ if (dc_is_hdmi_signal(link->connector_signal) || dc_is_dvi_signal(link->connector_signal)) { if (prev_sink) dc_sink_release(prev_sink); return false; } if (link->type == dc_connection_sst_branch && link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_VGA_CONVERTER && reason == DETECT_REASON_HPDRX) { /* Abort detection for DP-VGA adapters when EDID * can't be read and detection reason is VGA-side * hotplug */ if (prev_sink) dc_sink_release(prev_sink); link_disconnect_sink(link); return true; } break; default: break; } // Check if edid is the same if ((prev_sink) && (edid_status == EDID_THE_SAME || edid_status == EDID_OK)) same_edid = is_same_edid(&prev_sink->dc_edid, &sink->dc_edid); if (sink->edid_caps.panel_patch.skip_scdc_overwrite) link->ctx->dc->debug.hdmi20_disable = true; if (link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT && sink_caps.transaction_type == DDC_TRANSACTION_TYPE_I2C_OVER_AUX) { /* * TODO debug why Dell 2413 doesn't like * two link trainings */ #if defined(CONFIG_DRM_AMD_DC_HDCP) query_hdcp_capability(sink->sink_signal, link); #endif } else { // If edid is the same, then discard new sink and revert back to original sink if (same_edid) { link_disconnect_remap(prev_sink, link); sink = prev_sink; prev_sink = NULL; } #if defined(CONFIG_DRM_AMD_DC_HDCP) query_hdcp_capability(sink->sink_signal, link); #endif } /* HDMI-DVI Dongle */ if (sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A && !sink->edid_caps.edid_hdmi) sink->sink_signal = SIGNAL_TYPE_DVI_SINGLE_LINK; if (link->local_sink && dc_is_dp_signal(sink_caps.signal)) dp_trace_init(link); /* Connectivity log: detection */ for (i = 0; i < sink->dc_edid.length / DC_EDID_BLOCK_SIZE; i++) { CONN_DATA_DETECT(link, &sink->dc_edid.raw_edid[i * DC_EDID_BLOCK_SIZE], DC_EDID_BLOCK_SIZE, "%s: [Block %d] ", sink->edid_caps.display_name, i); } DC_LOG_DETECTION_EDID_PARSER("%s: " "manufacturer_id = %X, " "product_id = %X, " "serial_number = %X, " "manufacture_week = %d, " "manufacture_year = %d, " "display_name = %s, " "speaker_flag = %d, " "audio_mode_count = %d\n", __func__, sink->edid_caps.manufacturer_id, sink->edid_caps.product_id, sink->edid_caps.serial_number, sink->edid_caps.manufacture_week, sink->edid_caps.manufacture_year, sink->edid_caps.display_name, sink->edid_caps.speaker_flags, sink->edid_caps.audio_mode_count); for (i = 0; i < sink->edid_caps.audio_mode_count; i++) { DC_LOG_DETECTION_EDID_PARSER("%s: mode number = %d, " "format_code = %d, " "channel_count = %d, " "sample_rate = %d, " "sample_size = %d\n", __func__, i, sink->edid_caps.audio_modes[i].format_code, sink->edid_caps.audio_modes[i].channel_count, sink->edid_caps.audio_modes[i].sample_rate, sink->edid_caps.audio_modes[i].sample_size); } if (link->connector_signal == SIGNAL_TYPE_EDP) { /* Init dc_panel_config by HW config */ if (dc_ctx->dc->res_pool->funcs->get_panel_config_defaults) dc_ctx->dc->res_pool->funcs->get_panel_config_defaults(&link->panel_config); /* Pickup base DM settings */ dm_helpers_init_panel_settings(dc_ctx, &link->panel_config, sink); // Override dc_panel_config if system has specific settings dm_helpers_override_panel_settings(dc_ctx, &link->panel_config); } } else { /* From Connected-to-Disconnected. */ link->type = dc_connection_none; sink_caps.signal = SIGNAL_TYPE_NONE; /* When we unplug a passive DP-HDMI dongle connection, dongle_max_pix_clk * is not cleared. If we emulate a DP signal on this connection, it thinks * the dongle is still there and limits the number of modes we can emulate. * Clear dongle_max_pix_clk on disconnect to fix this */ link->dongle_max_pix_clk = 0; dc_link_clear_dprx_states(link); dp_trace_reset(link); } LINK_INFO("link=%d, dc_sink_in=%p is now %s prev_sink=%p edid same=%d\n", link->link_index, sink, (sink_caps.signal == SIGNAL_TYPE_NONE ? "Disconnected" : "Connected"), prev_sink, same_edid); if (prev_sink) dc_sink_release(prev_sink); return true; } bool dc_link_detect(struct dc_link *link, enum dc_detect_reason reason) { bool is_local_sink_detect_success; bool is_delegated_to_mst_top_mgr = false; enum dc_connection_type pre_link_type = link->type; is_local_sink_detect_success = detect_link_and_local_sink(link, reason); if (is_local_sink_detect_success && link->local_sink) verify_link_capability(link, link->local_sink, reason); if (is_local_sink_detect_success && link->local_sink && dc_is_dp_signal(link->local_sink->sink_signal) && link->dpcd_caps.is_mst_capable) is_delegated_to_mst_top_mgr = discover_dp_mst_topology(link, reason); if (is_local_sink_detect_success && pre_link_type == dc_connection_mst_branch && link->type != dc_connection_mst_branch) is_delegated_to_mst_top_mgr = reset_cur_dp_mst_topology(link); return is_local_sink_detect_success && !is_delegated_to_mst_top_mgr; } bool dc_link_get_hpd_state(struct dc_link *dc_link) { uint32_t state; dal_gpio_lock_pin(dc_link->hpd_gpio); dal_gpio_get_value(dc_link->hpd_gpio, &state); dal_gpio_unlock_pin(dc_link->hpd_gpio); return state; } static enum hpd_source_id get_hpd_line(struct dc_link *link) { struct gpio *hpd; enum hpd_source_id hpd_id; hpd_id = HPD_SOURCEID_UNKNOWN; hpd = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (hpd) { switch (dal_irq_get_source(hpd)) { case DC_IRQ_SOURCE_HPD1: hpd_id = HPD_SOURCEID1; break; case DC_IRQ_SOURCE_HPD2: hpd_id = HPD_SOURCEID2; break; case DC_IRQ_SOURCE_HPD3: hpd_id = HPD_SOURCEID3; break; case DC_IRQ_SOURCE_HPD4: hpd_id = HPD_SOURCEID4; break; case DC_IRQ_SOURCE_HPD5: hpd_id = HPD_SOURCEID5; break; case DC_IRQ_SOURCE_HPD6: hpd_id = HPD_SOURCEID6; break; default: BREAK_TO_DEBUGGER(); break; } dal_gpio_destroy_irq(&hpd); } return hpd_id; } static enum channel_id get_ddc_line(struct dc_link *link) { struct ddc *ddc; enum channel_id channel; channel = CHANNEL_ID_UNKNOWN; ddc = dal_ddc_service_get_ddc_pin(link->ddc); if (ddc) { switch (dal_ddc_get_line(ddc)) { case GPIO_DDC_LINE_DDC1: channel = CHANNEL_ID_DDC1; break; case GPIO_DDC_LINE_DDC2: channel = CHANNEL_ID_DDC2; break; case GPIO_DDC_LINE_DDC3: channel = CHANNEL_ID_DDC3; break; case GPIO_DDC_LINE_DDC4: channel = CHANNEL_ID_DDC4; break; case GPIO_DDC_LINE_DDC5: channel = CHANNEL_ID_DDC5; break; case GPIO_DDC_LINE_DDC6: channel = CHANNEL_ID_DDC6; break; case GPIO_DDC_LINE_DDC_VGA: channel = CHANNEL_ID_DDC_VGA; break; case GPIO_DDC_LINE_I2C_PAD: channel = CHANNEL_ID_I2C_PAD; break; default: BREAK_TO_DEBUGGER(); break; } } return channel; } static enum transmitter translate_encoder_to_transmitter(struct graphics_object_id encoder) { switch (encoder.id) { case ENCODER_ID_INTERNAL_UNIPHY: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_A; case ENUM_ID_2: return TRANSMITTER_UNIPHY_B; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_INTERNAL_UNIPHY1: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_C; case ENUM_ID_2: return TRANSMITTER_UNIPHY_D; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_INTERNAL_UNIPHY2: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_E; case ENUM_ID_2: return TRANSMITTER_UNIPHY_F; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_INTERNAL_UNIPHY3: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_UNIPHY_G; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_EXTERNAL_NUTMEG: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_NUTMEG_CRT; default: return TRANSMITTER_UNKNOWN; } break; case ENCODER_ID_EXTERNAL_TRAVIS: switch (encoder.enum_id) { case ENUM_ID_1: return TRANSMITTER_TRAVIS_CRT; case ENUM_ID_2: return TRANSMITTER_TRAVIS_LCD; default: return TRANSMITTER_UNKNOWN; } break; default: return TRANSMITTER_UNKNOWN; } } static bool dc_link_construct_legacy(struct dc_link *link, const struct link_init_data *init_params) { uint8_t i; struct ddc_service_init_data ddc_service_init_data = { 0 }; struct dc_context *dc_ctx = init_params->ctx; struct encoder_init_data enc_init_data = { 0 }; struct panel_cntl_init_data panel_cntl_init_data = { 0 }; struct integrated_info *info; struct dc_bios *bios = init_params->dc->ctx->dc_bios; const struct dc_vbios_funcs *bp_funcs = bios->funcs; struct bp_disp_connector_caps_info disp_connect_caps_info = { 0 }; DC_LOGGER_INIT(dc_ctx->logger); info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) goto create_fail; link->irq_source_hpd = DC_IRQ_SOURCE_INVALID; link->irq_source_hpd_rx = DC_IRQ_SOURCE_INVALID; link->link_status.dpcd_caps = &link->dpcd_caps; link->dc = init_params->dc; link->ctx = dc_ctx; link->link_index = init_params->link_index; memset(&link->preferred_training_settings, 0, sizeof(struct dc_link_training_overrides)); memset(&link->preferred_link_setting, 0, sizeof(struct dc_link_settings)); link->link_id = bios->funcs->get_connector_id(bios, init_params->connector_index); link->ep_type = DISPLAY_ENDPOINT_PHY; DC_LOG_DC("BIOS object table - link_id: %d", link->link_id.id); if (bios->funcs->get_disp_connector_caps_info) { bios->funcs->get_disp_connector_caps_info(bios, link->link_id, &disp_connect_caps_info); link->is_internal_display = disp_connect_caps_info.INTERNAL_DISPLAY; DC_LOG_DC("BIOS object table - is_internal_display: %d", link->is_internal_display); } if (link->link_id.type != OBJECT_TYPE_CONNECTOR) { dm_output_to_console("%s: Invalid Connector ObjectID from Adapter Service for connector index:%d! type %d expected %d\n", __func__, init_params->connector_index, link->link_id.type, OBJECT_TYPE_CONNECTOR); goto create_fail; } if (link->dc->res_pool->funcs->link_init) link->dc->res_pool->funcs->link_init(link); link->hpd_gpio = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (link->hpd_gpio) { dal_gpio_open(link->hpd_gpio, GPIO_MODE_INTERRUPT); dal_gpio_unlock_pin(link->hpd_gpio); link->irq_source_hpd = dal_irq_get_source(link->hpd_gpio); DC_LOG_DC("BIOS object table - hpd_gpio id: %d", link->hpd_gpio->id); DC_LOG_DC("BIOS object table - hpd_gpio en: %d", link->hpd_gpio->en); } switch (link->link_id.id) { case CONNECTOR_ID_HDMI_TYPE_A: link->connector_signal = SIGNAL_TYPE_HDMI_TYPE_A; break; case CONNECTOR_ID_SINGLE_LINK_DVID: case CONNECTOR_ID_SINGLE_LINK_DVII: link->connector_signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; case CONNECTOR_ID_DUAL_LINK_DVID: case CONNECTOR_ID_DUAL_LINK_DVII: link->connector_signal = SIGNAL_TYPE_DVI_DUAL_LINK; break; case CONNECTOR_ID_DISPLAY_PORT: case CONNECTOR_ID_USBC: link->connector_signal = SIGNAL_TYPE_DISPLAY_PORT; if (link->hpd_gpio) link->irq_source_hpd_rx = dal_irq_get_rx_source(link->hpd_gpio); break; case CONNECTOR_ID_EDP: link->connector_signal = SIGNAL_TYPE_EDP; if (link->hpd_gpio) { if (!link->dc->config.allow_edp_hotplug_detection) link->irq_source_hpd = DC_IRQ_SOURCE_INVALID; switch (link->dc->config.allow_edp_hotplug_detection) { case 1: // only the 1st eDP handles hotplug if (link->link_index == 0) link->irq_source_hpd_rx = dal_irq_get_rx_source(link->hpd_gpio); else link->irq_source_hpd = DC_IRQ_SOURCE_INVALID; break; case 2: // only the 2nd eDP handles hotplug if (link->link_index == 1) link->irq_source_hpd_rx = dal_irq_get_rx_source(link->hpd_gpio); else link->irq_source_hpd = DC_IRQ_SOURCE_INVALID; break; default: break; } } break; case CONNECTOR_ID_LVDS: link->connector_signal = SIGNAL_TYPE_LVDS; break; default: DC_LOG_WARNING("Unsupported Connector type:%d!\n", link->link_id.id); goto create_fail; } /* TODO: #DAL3 Implement id to str function.*/ LINK_INFO("Connector[%d] description:" "signal %d\n", init_params->connector_index, link->connector_signal); ddc_service_init_data.ctx = link->ctx; ddc_service_init_data.id = link->link_id; ddc_service_init_data.link = link; link->ddc = dal_ddc_service_create(&ddc_service_init_data); if (!link->ddc) { DC_ERROR("Failed to create ddc_service!\n"); goto ddc_create_fail; } if (!link->ddc->ddc_pin) { DC_ERROR("Failed to get I2C info for connector!\n"); goto ddc_create_fail; } link->ddc_hw_inst = dal_ddc_get_line(dal_ddc_service_get_ddc_pin(link->ddc)); if (link->dc->res_pool->funcs->panel_cntl_create && (link->link_id.id == CONNECTOR_ID_EDP || link->link_id.id == CONNECTOR_ID_LVDS)) { panel_cntl_init_data.ctx = dc_ctx; panel_cntl_init_data.inst = panel_cntl_init_data.ctx->dc_edp_id_count; link->panel_cntl = link->dc->res_pool->funcs->panel_cntl_create( &panel_cntl_init_data); panel_cntl_init_data.ctx->dc_edp_id_count++; if (link->panel_cntl == NULL) { DC_ERROR("Failed to create link panel_cntl!\n"); goto panel_cntl_create_fail; } } enc_init_data.ctx = dc_ctx; bp_funcs->get_src_obj(dc_ctx->dc_bios, link->link_id, 0, &enc_init_data.encoder); enc_init_data.connector = link->link_id; enc_init_data.channel = get_ddc_line(link); enc_init_data.hpd_source = get_hpd_line(link); link->hpd_src = enc_init_data.hpd_source; enc_init_data.transmitter = translate_encoder_to_transmitter(enc_init_data.encoder); link->link_enc = link->dc->res_pool->funcs->link_enc_create(dc_ctx, &enc_init_data); if (!link->link_enc) { DC_ERROR("Failed to create link encoder!\n"); goto link_enc_create_fail; } DC_LOG_DC("BIOS object table - DP_IS_USB_C: %d", link->link_enc->features.flags.bits.DP_IS_USB_C); DC_LOG_DC("BIOS object table - IS_DP2_CAPABLE: %d", link->link_enc->features.flags.bits.IS_DP2_CAPABLE); /* Update link encoder tracking variables. These are used for the dynamic * assignment of link encoders to streams. */ link->eng_id = link->link_enc->preferred_engine; link->dc->res_pool->link_encoders[link->eng_id - ENGINE_ID_DIGA] = link->link_enc; link->dc->res_pool->dig_link_enc_count++; link->link_enc_hw_inst = link->link_enc->transmitter; for (i = 0; i < 4; i++) { if (bp_funcs->get_device_tag(dc_ctx->dc_bios, link->link_id, i, &link->device_tag) != BP_RESULT_OK) { DC_ERROR("Failed to find device tag!\n"); goto device_tag_fail; } /* Look for device tag that matches connector signal, * CRT for rgb, LCD for other supported signal tyes */ if (!bp_funcs->is_device_id_supported(dc_ctx->dc_bios, link->device_tag.dev_id)) continue; if (link->device_tag.dev_id.device_type == DEVICE_TYPE_CRT && link->connector_signal != SIGNAL_TYPE_RGB) continue; if (link->device_tag.dev_id.device_type == DEVICE_TYPE_LCD && link->connector_signal == SIGNAL_TYPE_RGB) continue; DC_LOG_DC("BIOS object table - device_tag.acpi_device: %d", link->device_tag.acpi_device); DC_LOG_DC("BIOS object table - device_tag.dev_id.device_type: %d", link->device_tag.dev_id.device_type); DC_LOG_DC("BIOS object table - device_tag.dev_id.enum_id: %d", link->device_tag.dev_id.enum_id); break; } if (bios->integrated_info) memcpy(info, bios->integrated_info, sizeof(*info)); /* Look for channel mapping corresponding to connector and device tag */ for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; i++) { struct external_display_path *path = &info->ext_disp_conn_info.path[i]; if (path->device_connector_id.enum_id == link->link_id.enum_id && path->device_connector_id.id == link->link_id.id && path->device_connector_id.type == link->link_id.type) { if (link->device_tag.acpi_device != 0 && path->device_acpi_enum == link->device_tag.acpi_device) { link->ddi_channel_mapping = path->channel_mapping; link->chip_caps = path->caps; DC_LOG_DC("BIOS object table - ddi_channel_mapping: 0x%04X", link->ddi_channel_mapping.raw); DC_LOG_DC("BIOS object table - chip_caps: %d", link->chip_caps); } else if (path->device_tag == link->device_tag.dev_id.raw_device_tag) { link->ddi_channel_mapping = path->channel_mapping; link->chip_caps = path->caps; DC_LOG_DC("BIOS object table - ddi_channel_mapping: 0x%04X", link->ddi_channel_mapping.raw); DC_LOG_DC("BIOS object table - chip_caps: %d", link->chip_caps); } if (link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) { link->bios_forced_drive_settings.VOLTAGE_SWING = (info->ext_disp_conn_info.fixdpvoltageswing & 0x3); link->bios_forced_drive_settings.PRE_EMPHASIS = ((info->ext_disp_conn_info.fixdpvoltageswing >> 2) & 0x3); } break; } } if (bios->funcs->get_atom_dc_golden_table) bios->funcs->get_atom_dc_golden_table(bios); /* * TODO check if GPIO programmed correctly * * If GPIO isn't programmed correctly HPD might not rise or drain * fast enough, leading to bounces. */ program_hpd_filter(link); link->psr_settings.psr_vtotal_control_support = false; link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED; DC_LOG_DC("BIOS object table - %s finished successfully.\n", __func__); kfree(info); return true; device_tag_fail: link->link_enc->funcs->destroy(&link->link_enc); link_enc_create_fail: if (link->panel_cntl != NULL) link->panel_cntl->funcs->destroy(&link->panel_cntl); panel_cntl_create_fail: dal_ddc_service_destroy(&link->ddc); ddc_create_fail: create_fail: if (link->hpd_gpio) { dal_gpio_destroy_irq(&link->hpd_gpio); link->hpd_gpio = NULL; } DC_LOG_DC("BIOS object table - %s failed.\n", __func__); kfree(info); return false; } static bool dc_link_construct_dpia(struct dc_link *link, const struct link_init_data *init_params) { struct ddc_service_init_data ddc_service_init_data = { 0 }; struct dc_context *dc_ctx = init_params->ctx; DC_LOGGER_INIT(dc_ctx->logger); /* Initialized irq source for hpd and hpd rx */ link->irq_source_hpd = DC_IRQ_SOURCE_INVALID; link->irq_source_hpd_rx = DC_IRQ_SOURCE_INVALID; link->link_status.dpcd_caps = &link->dpcd_caps; link->dc = init_params->dc; link->ctx = dc_ctx; link->link_index = init_params->link_index; memset(&link->preferred_training_settings, 0, sizeof(struct dc_link_training_overrides)); memset(&link->preferred_link_setting, 0, sizeof(struct dc_link_settings)); /* Dummy Init for linkid */ link->link_id.type = OBJECT_TYPE_CONNECTOR; link->link_id.id = CONNECTOR_ID_DISPLAY_PORT; link->link_id.enum_id = ENUM_ID_1 + init_params->connector_index; link->is_internal_display = false; link->connector_signal = SIGNAL_TYPE_DISPLAY_PORT; LINK_INFO("Connector[%d] description:signal %d\n", init_params->connector_index, link->connector_signal); link->ep_type = DISPLAY_ENDPOINT_USB4_DPIA; link->is_dig_mapping_flexible = true; /* TODO: Initialize link : funcs->link_init */ ddc_service_init_data.ctx = link->ctx; ddc_service_init_data.id = link->link_id; ddc_service_init_data.link = link; /* Set indicator for dpia link so that ddc won't be created */ ddc_service_init_data.is_dpia_link = true; link->ddc = dal_ddc_service_create(&ddc_service_init_data); if (!link->ddc) { DC_ERROR("Failed to create ddc_service!\n"); goto ddc_create_fail; } /* Set dpia port index : 0 to number of dpia ports */ link->ddc_hw_inst = init_params->connector_index; /* TODO: Create link encoder */ link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED; /* Some docks seem to NAK I2C writes to segment pointer with mot=0. */ link->wa_flags.dp_mot_reset_segment = true; return true; ddc_create_fail: return false; } static bool dc_link_construct(struct dc_link *link, const struct link_init_data *init_params) { /* Handle dpia case */ if (init_params->is_dpia_link) return dc_link_construct_dpia(link, init_params); else return dc_link_construct_legacy(link, init_params); } /******************************************************************************* * Public functions ******************************************************************************/ struct dc_link *link_create(const struct link_init_data *init_params) { struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL); if (NULL == link) goto alloc_fail; if (false == dc_link_construct(link, init_params)) goto construct_fail; /* * Must use preferred_link_setting, not reported_link_cap or verified_link_cap, * since struct preferred_link_setting won't be reset after S3. */ link->preferred_link_setting.dpcd_source_device_specific_field_support = true; return link; construct_fail: kfree(link); alloc_fail: return NULL; } void link_destroy(struct dc_link **link) { dc_link_destruct(*link); kfree(*link); *link = NULL; } static void enable_stream_features(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; if (pipe_ctx->stream->signal != SIGNAL_TYPE_DISPLAY_PORT_MST) { struct dc_link *link = stream->link; union down_spread_ctrl old_downspread; union down_spread_ctrl new_downspread; memset(&old_downspread, 0, sizeof(old_downspread)); core_link_read_dpcd(link, DP_DOWNSPREAD_CTRL, &old_downspread.raw, sizeof(old_downspread)); new_downspread.raw = old_downspread.raw; new_downspread.bits.IGNORE_MSA_TIMING_PARAM = (stream->ignore_msa_timing_param) ? 1 : 0; if (new_downspread.raw != old_downspread.raw) { core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL, &new_downspread.raw, sizeof(new_downspread)); } } else { dm_helpers_mst_enable_stream_features(stream); } } static enum dc_status enable_link_dp(struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; enum dc_status status; bool skip_video_pattern; struct dc_link *link = stream->link; const struct dc_link_settings *link_settings = &pipe_ctx->link_config.dp_link_settings; bool fec_enable; int i; bool apply_seamless_boot_optimization = false; uint32_t bl_oled_enable_delay = 50; // in ms uint32_t post_oui_delay = 30; // 30ms /* Reduce link bandwidth between failed link training attempts. */ bool do_fallback = false; // check for seamless boot for (i = 0; i < state->stream_count; i++) { if (state->streams[i]->apply_seamless_boot_optimization) { apply_seamless_boot_optimization = true; break; } } /* Train with fallback when enabling DPIA link. Conventional links are * trained with fallback during sink detection. */ if (link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) do_fallback = true; /* * Temporary w/a to get DP2.0 link rates to work with SST. * TODO DP2.0 - Workaround: Remove w/a if and when the issue is resolved. */ if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING && pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT && link->dc->debug.set_mst_en_for_sst) { dp_enable_mst_on_sink(link, true); } if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) { /*in case it is not on*/ if (!link->dc->config.edp_no_power_sequencing) link->dc->hwss.edp_power_control(link, true); link->dc->hwss.edp_wait_for_hpd_ready(link, true); } if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING) { /* TODO - DP2.0 HW: calculate 32 symbol clock for HPO encoder */ } else { pipe_ctx->stream_res.pix_clk_params.requested_sym_clk = link_settings->link_rate * LINK_RATE_REF_FREQ_IN_KHZ; if (state->clk_mgr && !apply_seamless_boot_optimization) state->clk_mgr->funcs->update_clocks(state->clk_mgr, state, false); } // during mode switch we do DP_SET_POWER off then on, and OUI is lost dpcd_set_source_specific_data(link); if (link->dpcd_sink_ext_caps.raw != 0) { post_oui_delay += link->panel_config.pps.extra_post_OUI_ms; msleep(post_oui_delay); } // similarly, mode switch can cause loss of cable ID dpcd_write_cable_id_to_dprx(link); skip_video_pattern = true; if (link_settings->link_rate == LINK_RATE_LOW) skip_video_pattern = false; if (perform_link_training_with_retries(link_settings, skip_video_pattern, LINK_TRAINING_ATTEMPTS, pipe_ctx, pipe_ctx->stream->signal, do_fallback)) { status = DC_OK; } else { status = DC_FAIL_DP_LINK_TRAINING; } if (link->preferred_training_settings.fec_enable) fec_enable = *link->preferred_training_settings.fec_enable; else fec_enable = true; if (dp_get_link_encoding_format(link_settings) == DP_8b_10b_ENCODING) dp_set_fec_enable(link, fec_enable); // during mode set we do DP_SET_POWER off then on, aux writes are lost if (link->dpcd_sink_ext_caps.bits.oled == 1 || link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1 || link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1) { dc_link_set_default_brightness_aux(link); // TODO: use cached if known if (link->dpcd_sink_ext_caps.bits.oled == 1) msleep(bl_oled_enable_delay); dc_link_backlight_enable_aux(link, true); } return status; } static enum dc_status enable_link_edp( struct dc_state *state, struct pipe_ctx *pipe_ctx) { return enable_link_dp(state, pipe_ctx); } static enum dc_status enable_link_dp_mst( struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dc_link *link = pipe_ctx->stream->link; /* sink signal type after MST branch is MST. Multiple MST sinks * share one link. Link DP PHY is enable or training only once. */ if (link->link_status.link_active) return DC_OK; /* clear payload table */ dm_helpers_dp_mst_clear_payload_allocation_table(link->ctx, link); /* to make sure the pending down rep can be processed * before enabling the link */ dm_helpers_dp_mst_poll_pending_down_reply(link->ctx, link); /* set the sink to MST mode before enabling the link */ dp_enable_mst_on_sink(link, true); return enable_link_dp(state, pipe_ctx); } void dc_link_blank_all_dp_displays(struct dc *dc) { unsigned int i; uint8_t dpcd_power_state = '\0'; enum dc_status status = DC_ERROR_UNEXPECTED; for (i = 0; i < dc->link_count; i++) { if ((dc->links[i]->connector_signal != SIGNAL_TYPE_DISPLAY_PORT) || (dc->links[i]->priv == NULL) || (dc->links[i]->local_sink == NULL)) continue; /* DP 2.0 spec requires that we read LTTPR caps first */ dp_retrieve_lttpr_cap(dc->links[i]); /* if any of the displays are lit up turn them off */ status = core_link_read_dpcd(dc->links[i], DP_SET_POWER, &dpcd_power_state, sizeof(dpcd_power_state)); if (status == DC_OK && dpcd_power_state == DP_POWER_STATE_D0) dc_link_blank_dp_stream(dc->links[i], true); } } void dc_link_blank_all_edp_displays(struct dc *dc) { unsigned int i; uint8_t dpcd_power_state = '\0'; enum dc_status status = DC_ERROR_UNEXPECTED; for (i = 0; i < dc->link_count; i++) { if ((dc->links[i]->connector_signal != SIGNAL_TYPE_EDP) || (!dc->links[i]->edp_sink_present)) continue; /* if any of the displays are lit up turn them off */ status = core_link_read_dpcd(dc->links[i], DP_SET_POWER, &dpcd_power_state, sizeof(dpcd_power_state)); if (status == DC_OK && dpcd_power_state == DP_POWER_STATE_D0) dc_link_blank_dp_stream(dc->links[i], true); } } void dc_link_blank_dp_stream(struct dc_link *link, bool hw_init) { unsigned int j; struct dc *dc = link->ctx->dc; enum signal_type signal = link->connector_signal; if ((signal == SIGNAL_TYPE_EDP) || (signal == SIGNAL_TYPE_DISPLAY_PORT)) { if (link->ep_type == DISPLAY_ENDPOINT_PHY && link->link_enc->funcs->get_dig_frontend && link->link_enc->funcs->is_dig_enabled(link->link_enc)) { unsigned int fe = link->link_enc->funcs->get_dig_frontend(link->link_enc); if (fe != ENGINE_ID_UNKNOWN) for (j = 0; j < dc->res_pool->stream_enc_count; j++) { if (fe == dc->res_pool->stream_enc[j]->id) { dc->res_pool->stream_enc[j]->funcs->dp_blank(link, dc->res_pool->stream_enc[j]); break; } } } if ((!link->wa_flags.dp_keep_receiver_powered) || hw_init) dp_receiver_power_ctrl(link, false); } } static bool get_ext_hdmi_settings(struct pipe_ctx *pipe_ctx, enum engine_id eng_id, struct ext_hdmi_settings *settings) { bool result = false; int i = 0; struct integrated_info *integrated_info = pipe_ctx->stream->ctx->dc_bios->integrated_info; if (integrated_info == NULL) return false; /* * Get retimer settings from sbios for passing SI eye test for DCE11 * The setting values are varied based on board revision and port id * Therefore the setting values of each ports is passed by sbios. */ // Check if current bios contains ext Hdmi settings if (integrated_info->gpu_cap_info & 0x20) { switch (eng_id) { case ENGINE_ID_DIGA: settings->slv_addr = integrated_info->dp0_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp0_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp0_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp0_ext_hdmi_reg_settings, sizeof(integrated_info->dp0_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp0_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp0_ext_hdmi_6g_reg_settings)); result = true; break; case ENGINE_ID_DIGB: settings->slv_addr = integrated_info->dp1_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp1_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp1_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp1_ext_hdmi_reg_settings, sizeof(integrated_info->dp1_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp1_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp1_ext_hdmi_6g_reg_settings)); result = true; break; case ENGINE_ID_DIGC: settings->slv_addr = integrated_info->dp2_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp2_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp2_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp2_ext_hdmi_reg_settings, sizeof(integrated_info->dp2_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp2_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp2_ext_hdmi_6g_reg_settings)); result = true; break; case ENGINE_ID_DIGD: settings->slv_addr = integrated_info->dp3_ext_hdmi_slv_addr; settings->reg_num = integrated_info->dp3_ext_hdmi_6g_reg_num; settings->reg_num_6g = integrated_info->dp3_ext_hdmi_6g_reg_num; memmove(settings->reg_settings, integrated_info->dp3_ext_hdmi_reg_settings, sizeof(integrated_info->dp3_ext_hdmi_reg_settings)); memmove(settings->reg_settings_6g, integrated_info->dp3_ext_hdmi_6g_reg_settings, sizeof(integrated_info->dp3_ext_hdmi_6g_reg_settings)); result = true; break; default: break; } if (result == true) { // Validate settings from bios integrated info table if (settings->slv_addr == 0) return false; if (settings->reg_num > 9) return false; if (settings->reg_num_6g > 3) return false; for (i = 0; i < settings->reg_num; i++) { if (settings->reg_settings[i].i2c_reg_index > 0x20) return false; } for (i = 0; i < settings->reg_num_6g; i++) { if (settings->reg_settings_6g[i].i2c_reg_index > 0x20) return false; } } } return result; } static bool i2c_write(struct pipe_ctx *pipe_ctx, uint8_t address, uint8_t *buffer, uint32_t length) { struct i2c_command cmd = {0}; struct i2c_payload payload = {0}; memset(&payload, 0, sizeof(payload)); memset(&cmd, 0, sizeof(cmd)); cmd.number_of_payloads = 1; cmd.engine = I2C_COMMAND_ENGINE_DEFAULT; cmd.speed = pipe_ctx->stream->ctx->dc->caps.i2c_speed_in_khz; payload.address = address; payload.data = buffer; payload.length = length; payload.write = true; cmd.payloads = &payload; if (dm_helpers_submit_i2c(pipe_ctx->stream->ctx, pipe_ctx->stream->link, &cmd)) return true; return false; } static void write_i2c_retimer_setting( struct pipe_ctx *pipe_ctx, bool is_vga_mode, bool is_over_340mhz, struct ext_hdmi_settings *settings) { uint8_t slave_address = (settings->slv_addr >> 1); uint8_t buffer[2]; const uint8_t apply_rx_tx_change = 0x4; uint8_t offset = 0xA; uint8_t value = 0; int i = 0; bool i2c_success = false; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); memset(&buffer, 0, sizeof(buffer)); /* Start Ext-Hdmi programming*/ for (i = 0; i < settings->reg_num; i++) { /* Apply 3G settings */ if (settings->reg_settings[i].i2c_reg_index <= 0x20) { buffer[0] = settings->reg_settings[i].i2c_reg_index; buffer[1] = settings->reg_settings[i].i2c_reg_val; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Based on DP159 specs, APPLY_RX_TX_CHANGE bit in 0x0A * needs to be set to 1 on every 0xA-0xC write. */ if (settings->reg_settings[i].i2c_reg_index == 0xA || settings->reg_settings[i].i2c_reg_index == 0xB || settings->reg_settings[i].i2c_reg_index == 0xC) { /* Query current value from offset 0xA */ if (settings->reg_settings[i].i2c_reg_index == 0xA) value = settings->reg_settings[i].i2c_reg_val; else { i2c_success = dal_ddc_service_query_ddc_data( pipe_ctx->stream->link->ddc, slave_address, &offset, 1, &value, 1); if (!i2c_success) goto i2c_write_fail; } buffer[0] = offset; /* Set APPLY_RX_TX_CHANGE bit to 1 */ buffer[1] = value | apply_rx_tx_change; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; } } } /* Apply 3G settings */ if (is_over_340mhz) { for (i = 0; i < settings->reg_num_6g; i++) { /* Apply 3G settings */ if (settings->reg_settings[i].i2c_reg_index <= 0x20) { buffer[0] = settings->reg_settings_6g[i].i2c_reg_index; buffer[1] = settings->reg_settings_6g[i].i2c_reg_val; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("above 340Mhz: retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Based on DP159 specs, APPLY_RX_TX_CHANGE bit in 0x0A * needs to be set to 1 on every 0xA-0xC write. */ if (settings->reg_settings_6g[i].i2c_reg_index == 0xA || settings->reg_settings_6g[i].i2c_reg_index == 0xB || settings->reg_settings_6g[i].i2c_reg_index == 0xC) { /* Query current value from offset 0xA */ if (settings->reg_settings_6g[i].i2c_reg_index == 0xA) value = settings->reg_settings_6g[i].i2c_reg_val; else { i2c_success = dal_ddc_service_query_ddc_data( pipe_ctx->stream->link->ddc, slave_address, &offset, 1, &value, 1); if (!i2c_success) goto i2c_write_fail; } buffer[0] = offset; /* Set APPLY_RX_TX_CHANGE bit to 1 */ buffer[1] = value | apply_rx_tx_change; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; } } } } if (is_vga_mode) { /* Program additional settings if using 640x480 resolution */ /* Write offset 0xFF to 0x01 */ buffer[0] = 0xff; buffer[1] = 0x01; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0x00 to 0x23 */ buffer[0] = 0x00; buffer[1] = 0x23; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0xff to 0x00 */ buffer[0] = 0xff; buffer[1] = 0x00; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; } return; i2c_write_fail: DC_LOG_DEBUG("Set retimer failed"); } static void write_i2c_default_retimer_setting( struct pipe_ctx *pipe_ctx, bool is_vga_mode, bool is_over_340mhz) { uint8_t slave_address = (0xBA >> 1); uint8_t buffer[2]; bool i2c_success = false; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); memset(&buffer, 0, sizeof(buffer)); /* Program Slave Address for tuning single integrity */ /* Write offset 0x0A to 0x13 */ buffer[0] = 0x0A; buffer[1] = 0x13; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer writes default setting to slave_address = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0x0A to 0x17 */ buffer[0] = 0x0A; buffer[1] = 0x17; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0x0B to 0xDA or 0xD8 */ buffer[0] = 0x0B; buffer[1] = is_over_340mhz ? 0xDA : 0xD8; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0x0A to 0x17 */ buffer[0] = 0x0A; buffer[1] = 0x17; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0x0C to 0x1D or 0x91 */ buffer[0] = 0x0C; buffer[1] = is_over_340mhz ? 0x1D : 0x91; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0x0A to 0x17 */ buffer[0] = 0x0A; buffer[1] = 0x17; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; if (is_vga_mode) { /* Program additional settings if using 640x480 resolution */ /* Write offset 0xFF to 0x01 */ buffer[0] = 0xff; buffer[1] = 0x01; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val = 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0x00 to 0x23 */ buffer[0] = 0x00; buffer[1] = 0x23; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write to slave_addr = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; /* Write offset 0xff to 0x00 */ buffer[0] = 0xff; buffer[1] = 0x00; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("retimer write default setting to slave_addr = 0x%x,\ offset = 0x%x, reg_val= 0x%x, i2c_success = %d end here\n", slave_address, buffer[0], buffer[1], i2c_success?1:0); if (!i2c_success) goto i2c_write_fail; } return; i2c_write_fail: DC_LOG_DEBUG("Set default retimer failed"); } static void write_i2c_redriver_setting( struct pipe_ctx *pipe_ctx, bool is_over_340mhz) { uint8_t slave_address = (0xF0 >> 1); uint8_t buffer[16]; bool i2c_success = false; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); memset(&buffer, 0, sizeof(buffer)); // Program Slave Address for tuning single integrity buffer[3] = 0x4E; buffer[4] = 0x4E; buffer[5] = 0x4E; buffer[6] = is_over_340mhz ? 0x4E : 0x4A; i2c_success = i2c_write(pipe_ctx, slave_address, buffer, sizeof(buffer)); RETIMER_REDRIVER_INFO("redriver write 0 to all 16 reg offset expect following:\n\ \t slave_addr = 0x%x, offset[3] = 0x%x, offset[4] = 0x%x,\ offset[5] = 0x%x,offset[6] is_over_340mhz = 0x%x,\ i2c_success = %d\n", slave_address, buffer[3], buffer[4], buffer[5], buffer[6], i2c_success?1:0); if (!i2c_success) DC_LOG_DEBUG("Set redriver failed"); } static void disable_link(struct dc_link *link, const struct link_resource *link_res, enum signal_type signal) { /* * TODO: implement call for dp_set_hw_test_pattern * it is needed for compliance testing */ /* Here we need to specify that encoder output settings * need to be calculated as for the set mode, * it will lead to querying dynamic link capabilities * which should be done before enable output */ if (dc_is_dp_signal(signal)) { /* SST DP, eDP */ struct dc_link_settings link_settings = link->cur_link_settings; if (dc_is_dp_sst_signal(signal)) dp_disable_link_phy(link, link_res, signal); else dp_disable_link_phy_mst(link, link_res, signal); if (dc_is_dp_sst_signal(signal) || link->mst_stream_alloc_table.stream_count == 0) { if (dp_get_link_encoding_format(&link_settings) == DP_8b_10b_ENCODING) { dp_set_fec_enable(link, false); dp_set_fec_ready(link, link_res, false); } } } else if (signal != SIGNAL_TYPE_VIRTUAL) { link->dc->hwss.disable_link_output(link, link_res, signal); } if (signal == SIGNAL_TYPE_DISPLAY_PORT_MST) { /* MST disable link only when no stream use the link */ if (link->mst_stream_alloc_table.stream_count <= 0) link->link_status.link_active = false; } else { link->link_status.link_active = false; } } static void enable_link_hdmi(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; enum dc_color_depth display_color_depth; enum engine_id eng_id; struct ext_hdmi_settings settings = {0}; bool is_over_340mhz = false; bool is_vga_mode = (stream->timing.h_addressable == 640) && (stream->timing.v_addressable == 480); struct dc *dc = pipe_ctx->stream->ctx->dc; if (stream->phy_pix_clk == 0) stream->phy_pix_clk = stream->timing.pix_clk_100hz / 10; if (stream->phy_pix_clk > 340000) is_over_340mhz = true; if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) { unsigned short masked_chip_caps = pipe_ctx->stream->link->chip_caps & EXT_DISPLAY_PATH_CAPS__EXT_CHIP_MASK; if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_TISN65DP159RSBT) { /* DP159, Retimer settings */ eng_id = pipe_ctx->stream_res.stream_enc->id; if (get_ext_hdmi_settings(pipe_ctx, eng_id, &settings)) { write_i2c_retimer_setting(pipe_ctx, is_vga_mode, is_over_340mhz, &settings); } else { write_i2c_default_retimer_setting(pipe_ctx, is_vga_mode, is_over_340mhz); } } else if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_PI3EQX1204) { /* PI3EQX1204, Redriver settings */ write_i2c_redriver_setting(pipe_ctx, is_over_340mhz); } } if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) dal_ddc_service_write_scdc_data( stream->link->ddc, stream->phy_pix_clk, stream->timing.flags.LTE_340MCSC_SCRAMBLE); memset(&stream->link->cur_link_settings, 0, sizeof(struct dc_link_settings)); display_color_depth = stream->timing.display_color_depth; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) display_color_depth = COLOR_DEPTH_888; dc->hwss.enable_tmds_link_output( link, &pipe_ctx->link_res, pipe_ctx->stream->signal, pipe_ctx->clock_source->id, display_color_depth, stream->phy_pix_clk); if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) dal_ddc_service_read_scdc_data(link->ddc); } static void enable_link_lvds(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct dc *dc = stream->ctx->dc; if (stream->phy_pix_clk == 0) stream->phy_pix_clk = stream->timing.pix_clk_100hz / 10; memset(&stream->link->cur_link_settings, 0, sizeof(struct dc_link_settings)); dc->hwss.enable_lvds_link_output( link, &pipe_ctx->link_res, pipe_ctx->clock_source->id, stream->phy_pix_clk); } bool dc_power_alpm_dpcd_enable(struct dc_link *link, bool enable) { bool ret = false; union dpcd_alpm_configuration alpm_config; if (link->psr_settings.psr_version == DC_PSR_VERSION_SU_1) { memset(&alpm_config, 0, sizeof(alpm_config)); alpm_config.bits.ENABLE = (enable ? true : false); ret = dm_helpers_dp_write_dpcd(link->ctx, link, DP_RECEIVER_ALPM_CONFIG, &alpm_config.raw, sizeof(alpm_config.raw)); } return ret; } /****************************enable_link***********************************/ static enum dc_status enable_link( struct dc_state *state, struct pipe_ctx *pipe_ctx) { enum dc_status status = DC_ERROR_UNEXPECTED; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; /* There's some scenarios where driver is unloaded with display * still enabled. When driver is reloaded, it may cause a display * to not light up if there is a mismatch between old and new * link settings. Need to call disable first before enabling at * new link settings. */ if (link->link_status.link_active) { disable_link(link, &pipe_ctx->link_res, pipe_ctx->stream->signal); } switch (pipe_ctx->stream->signal) { case SIGNAL_TYPE_DISPLAY_PORT: status = enable_link_dp(state, pipe_ctx); break; case SIGNAL_TYPE_EDP: status = enable_link_edp(state, pipe_ctx); break; case SIGNAL_TYPE_DISPLAY_PORT_MST: status = enable_link_dp_mst(state, pipe_ctx); msleep(200); break; case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_HDMI_TYPE_A: enable_link_hdmi(pipe_ctx); status = DC_OK; break; case SIGNAL_TYPE_LVDS: enable_link_lvds(pipe_ctx); status = DC_OK; break; case SIGNAL_TYPE_VIRTUAL: status = DC_OK; break; default: break; } if (status == DC_OK) pipe_ctx->stream->link->link_status.link_active = true; return status; } static uint32_t get_timing_pixel_clock_100hz(const struct dc_crtc_timing *timing) { uint32_t pxl_clk = timing->pix_clk_100hz; if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) pxl_clk /= 2; else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) pxl_clk = pxl_clk * 2 / 3; if (timing->display_color_depth == COLOR_DEPTH_101010) pxl_clk = pxl_clk * 10 / 8; else if (timing->display_color_depth == COLOR_DEPTH_121212) pxl_clk = pxl_clk * 12 / 8; return pxl_clk; } static bool dp_active_dongle_validate_timing( const struct dc_crtc_timing *timing, const struct dpcd_caps *dpcd_caps) { const struct dc_dongle_caps *dongle_caps = &dpcd_caps->dongle_caps; switch (dpcd_caps->dongle_type) { case DISPLAY_DONGLE_DP_VGA_CONVERTER: case DISPLAY_DONGLE_DP_DVI_CONVERTER: case DISPLAY_DONGLE_DP_DVI_DONGLE: if (timing->pixel_encoding == PIXEL_ENCODING_RGB) return true; else return false; default: break; } if (dpcd_caps->dongle_type == DISPLAY_DONGLE_DP_HDMI_CONVERTER && dongle_caps->extendedCapValid == true) { /* Check Pixel Encoding */ switch (timing->pixel_encoding) { case PIXEL_ENCODING_RGB: case PIXEL_ENCODING_YCBCR444: break; case PIXEL_ENCODING_YCBCR422: if (!dongle_caps->is_dp_hdmi_ycbcr422_pass_through) return false; break; case PIXEL_ENCODING_YCBCR420: if (!dongle_caps->is_dp_hdmi_ycbcr420_pass_through) return false; break; default: /* Invalid Pixel Encoding*/ return false; } switch (timing->display_color_depth) { case COLOR_DEPTH_666: case COLOR_DEPTH_888: /*888 and 666 should always be supported*/ break; case COLOR_DEPTH_101010: if (dongle_caps->dp_hdmi_max_bpc < 10) return false; break; case COLOR_DEPTH_121212: if (dongle_caps->dp_hdmi_max_bpc < 12) return false; break; case COLOR_DEPTH_141414: case COLOR_DEPTH_161616: default: /* These color depths are currently not supported */ return false; } /* Check 3D format */ switch (timing->timing_3d_format) { case TIMING_3D_FORMAT_NONE: case TIMING_3D_FORMAT_FRAME_ALTERNATE: /*Only frame alternate 3D is supported on active dongle*/ break; default: /*other 3D formats are not supported due to bad infoframe translation */ return false; } #if defined(CONFIG_DRM_AMD_DC_DCN) if (dongle_caps->dp_hdmi_frl_max_link_bw_in_kbps > 0) { // DP to HDMI FRL converter struct dc_crtc_timing outputTiming = *timing; if (timing->flags.DSC && !timing->dsc_cfg.is_frl) /* DP input has DSC, HDMI FRL output doesn't have DSC, remove DSC from output timing */ outputTiming.flags.DSC = 0; if (dc_bandwidth_in_kbps_from_timing(&outputTiming) > dongle_caps->dp_hdmi_frl_max_link_bw_in_kbps) return false; } else { // DP to HDMI TMDS converter if (get_timing_pixel_clock_100hz(timing) > (dongle_caps->dp_hdmi_max_pixel_clk_in_khz * 10)) return false; } #else if (get_timing_pixel_clock_100hz(timing) > (dongle_caps->dp_hdmi_max_pixel_clk_in_khz * 10)) return false; #endif } if (dpcd_caps->channel_coding_cap.bits.DP_128b_132b_SUPPORTED == 0 && dpcd_caps->dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_PASSTHROUGH_SUPPORT == 0 && dongle_caps->dfp_cap_ext.supported) { if (dongle_caps->dfp_cap_ext.max_pixel_rate_in_mps < (timing->pix_clk_100hz / 10000)) return false; if (dongle_caps->dfp_cap_ext.max_video_h_active_width < timing->h_addressable) return false; if (dongle_caps->dfp_cap_ext.max_video_v_active_height < timing->v_addressable) return false; if (timing->pixel_encoding == PIXEL_ENCODING_RGB) { if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb) return false; if (timing->display_color_depth == COLOR_DEPTH_666 && !dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_6bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_888 && !dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_8bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_101010 && !dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_10bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_121212 && !dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_12bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_161616 && !dongle_caps->dfp_cap_ext.rgb_color_depth_caps.support_16bpc) return false; } else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR444) { if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb) return false; if (timing->display_color_depth == COLOR_DEPTH_888 && !dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_8bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_101010 && !dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_10bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_121212 && !dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_12bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_161616 && !dongle_caps->dfp_cap_ext.ycbcr444_color_depth_caps.support_16bpc) return false; } else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) { if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb) return false; if (timing->display_color_depth == COLOR_DEPTH_888 && !dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_8bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_101010 && !dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_10bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_121212 && !dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_12bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_161616 && !dongle_caps->dfp_cap_ext.ycbcr422_color_depth_caps.support_16bpc) return false; } else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) { if (!dongle_caps->dfp_cap_ext.encoding_format_caps.support_rgb) return false; if (timing->display_color_depth == COLOR_DEPTH_888 && !dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_8bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_101010 && !dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_10bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_121212 && !dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_12bpc) return false; else if (timing->display_color_depth == COLOR_DEPTH_161616 && !dongle_caps->dfp_cap_ext.ycbcr420_color_depth_caps.support_16bpc) return false; } } return true; } enum dc_status dc_link_validate_mode_timing( const struct dc_stream_state *stream, struct dc_link *link, const struct dc_crtc_timing *timing) { uint32_t max_pix_clk = stream->link->dongle_max_pix_clk * 10; struct dpcd_caps *dpcd_caps = &link->dpcd_caps; /* A hack to avoid failing any modes for EDID override feature on * topology change such as lower quality cable for DP or different dongle */ if (link->remote_sinks[0] && link->remote_sinks[0]->sink_signal == SIGNAL_TYPE_VIRTUAL) return DC_OK; /* Passive Dongle */ if (max_pix_clk != 0 && get_timing_pixel_clock_100hz(timing) > max_pix_clk) return DC_EXCEED_DONGLE_CAP; /* Active Dongle*/ if (!dp_active_dongle_validate_timing(timing, dpcd_caps)) return DC_EXCEED_DONGLE_CAP; switch (stream->signal) { case SIGNAL_TYPE_EDP: case SIGNAL_TYPE_DISPLAY_PORT: if (!dp_validate_mode_timing( link, timing)) return DC_NO_DP_LINK_BANDWIDTH; break; default: break; } return DC_OK; } static struct abm *get_abm_from_stream_res(const struct dc_link *link) { int i; struct dc *dc = NULL; struct abm *abm = NULL; if (!link || !link->ctx) return NULL; dc = link->ctx->dc; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx pipe_ctx = dc->current_state->res_ctx.pipe_ctx[i]; struct dc_stream_state *stream = pipe_ctx.stream; if (stream && stream->link == link) { abm = pipe_ctx.stream_res.abm; break; } } return abm; } int dc_link_get_backlight_level(const struct dc_link *link) { struct abm *abm = get_abm_from_stream_res(link); struct panel_cntl *panel_cntl = link->panel_cntl; struct dc *dc = link->ctx->dc; struct dmcu *dmcu = dc->res_pool->dmcu; bool fw_set_brightness = true; if (dmcu) fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu); if (!fw_set_brightness && panel_cntl->funcs->get_current_backlight) return panel_cntl->funcs->get_current_backlight(panel_cntl); else if (abm != NULL && abm->funcs->get_current_backlight != NULL) return (int) abm->funcs->get_current_backlight(abm); else return DC_ERROR_UNEXPECTED; } int dc_link_get_target_backlight_pwm(const struct dc_link *link) { struct abm *abm = get_abm_from_stream_res(link); if (abm == NULL || abm->funcs->get_target_backlight == NULL) return DC_ERROR_UNEXPECTED; return (int) abm->funcs->get_target_backlight(abm); } static struct pipe_ctx *get_pipe_from_link(const struct dc_link *link) { int i; struct dc *dc = link->ctx->dc; struct pipe_ctx *pipe_ctx = NULL; for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream) { if (dc->current_state->res_ctx.pipe_ctx[i].stream->link == link) { pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; break; } } } return pipe_ctx; } bool dc_link_set_backlight_level(const struct dc_link *link, uint32_t backlight_pwm_u16_16, uint32_t frame_ramp) { struct dc *dc = link->ctx->dc; DC_LOGGER_INIT(link->ctx->logger); DC_LOG_BACKLIGHT("New Backlight level: %d (0x%X)\n", backlight_pwm_u16_16, backlight_pwm_u16_16); if (dc_is_embedded_signal(link->connector_signal)) { struct pipe_ctx *pipe_ctx = get_pipe_from_link(link); if (pipe_ctx) { /* Disable brightness ramping when the display is blanked * as it can hang the DMCU */ if (pipe_ctx->plane_state == NULL) frame_ramp = 0; } else { return false; } dc->hwss.set_backlight_level( pipe_ctx, backlight_pwm_u16_16, frame_ramp); } return true; } bool dc_link_set_psr_allow_active(struct dc_link *link, const bool *allow_active, bool wait, bool force_static, const unsigned int *power_opts) { struct dc *dc = link->ctx->dc; struct dmcu *dmcu = dc->res_pool->dmcu; struct dmub_psr *psr = dc->res_pool->psr; unsigned int panel_inst; if (psr == NULL && force_static) return false; if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst)) return false; if ((allow_active != NULL) && (*allow_active == true) && (link->type == dc_connection_none)) { // Don't enter PSR if panel is not connected return false; } /* Set power optimization flag */ if (power_opts && link->psr_settings.psr_power_opt != *power_opts) { link->psr_settings.psr_power_opt = *power_opts; if (psr != NULL && link->psr_settings.psr_feature_enabled && psr->funcs->psr_set_power_opt) psr->funcs->psr_set_power_opt(psr, link->psr_settings.psr_power_opt, panel_inst); } if (psr != NULL && link->psr_settings.psr_feature_enabled && force_static && psr->funcs->psr_force_static) psr->funcs->psr_force_static(psr, panel_inst); /* Enable or Disable PSR */ if (allow_active && link->psr_settings.psr_allow_active != *allow_active) { link->psr_settings.psr_allow_active = *allow_active; if (!link->psr_settings.psr_allow_active) dc_z10_restore(dc); if (psr != NULL && link->psr_settings.psr_feature_enabled) { psr->funcs->psr_enable(psr, link->psr_settings.psr_allow_active, wait, panel_inst); } else if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu)) && link->psr_settings.psr_feature_enabled) dmcu->funcs->set_psr_enable(dmcu, link->psr_settings.psr_allow_active, wait); else return false; } return true; } bool dc_link_get_psr_state(const struct dc_link *link, enum dc_psr_state *state) { struct dc *dc = link->ctx->dc; struct dmcu *dmcu = dc->res_pool->dmcu; struct dmub_psr *psr = dc->res_pool->psr; unsigned int panel_inst; if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst)) return false; if (psr != NULL && link->psr_settings.psr_feature_enabled) psr->funcs->psr_get_state(psr, state, panel_inst); else if (dmcu != NULL && link->psr_settings.psr_feature_enabled) dmcu->funcs->get_psr_state(dmcu, state); return true; } static inline enum physical_phy_id transmitter_to_phy_id(enum transmitter transmitter_value) { switch (transmitter_value) { case TRANSMITTER_UNIPHY_A: return PHYLD_0; case TRANSMITTER_UNIPHY_B: return PHYLD_1; case TRANSMITTER_UNIPHY_C: return PHYLD_2; case TRANSMITTER_UNIPHY_D: return PHYLD_3; case TRANSMITTER_UNIPHY_E: return PHYLD_4; case TRANSMITTER_UNIPHY_F: return PHYLD_5; case TRANSMITTER_NUTMEG_CRT: return PHYLD_6; case TRANSMITTER_TRAVIS_CRT: return PHYLD_7; case TRANSMITTER_TRAVIS_LCD: return PHYLD_8; case TRANSMITTER_UNIPHY_G: return PHYLD_9; case TRANSMITTER_COUNT: return PHYLD_COUNT; case TRANSMITTER_UNKNOWN: return PHYLD_UNKNOWN; default: WARN_ONCE(1, "Unknown transmitter value %d\n", transmitter_value); return PHYLD_UNKNOWN; } } bool dc_link_setup_psr(struct dc_link *link, const struct dc_stream_state *stream, struct psr_config *psr_config, struct psr_context *psr_context) { struct dc *dc; struct dmcu *dmcu; struct dmub_psr *psr; int i; unsigned int panel_inst; /* updateSinkPsrDpcdConfig*/ union dpcd_psr_configuration psr_configuration; union dpcd_sink_active_vtotal_control_mode vtotal_control = {0}; psr_context->controllerId = CONTROLLER_ID_UNDEFINED; if (!link) return false; dc = link->ctx->dc; dmcu = dc->res_pool->dmcu; psr = dc->res_pool->psr; if (!dmcu && !psr) return false; if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst)) return false; memset(&psr_configuration, 0, sizeof(psr_configuration)); psr_configuration.bits.ENABLE = 1; psr_configuration.bits.CRC_VERIFICATION = 1; psr_configuration.bits.FRAME_CAPTURE_INDICATION = psr_config->psr_frame_capture_indication_req; /* Check for PSR v2*/ if (link->psr_settings.psr_version == DC_PSR_VERSION_SU_1) { /* For PSR v2 selective update. * Indicates whether sink should start capturing * immediately following active scan line, * or starting with the 2nd active scan line. */ psr_configuration.bits.LINE_CAPTURE_INDICATION = 0; /*For PSR v2, determines whether Sink should generate * IRQ_HPD when CRC mismatch is detected. */ psr_configuration.bits.IRQ_HPD_WITH_CRC_ERROR = 1; /* For PSR v2, set the bit when the Source device will * be enabling PSR2 operation. */ psr_configuration.bits.ENABLE_PSR2 = 1; /* For PSR v2, the Sink device must be able to receive * SU region updates early in the frame time. */ psr_configuration.bits.EARLY_TRANSPORT_ENABLE = 1; } dm_helpers_dp_write_dpcd( link->ctx, link, 368, &psr_configuration.raw, sizeof(psr_configuration.raw)); if (link->psr_settings.psr_version == DC_PSR_VERSION_SU_1) { dc_power_alpm_dpcd_enable(link, true); psr_context->su_granularity_required = psr_config->su_granularity_required; psr_context->su_y_granularity = psr_config->su_y_granularity; psr_context->line_time_in_us = psr_config->line_time_in_us; if (link->psr_settings.psr_vtotal_control_support) { psr_context->rate_control_caps = psr_config->rate_control_caps; vtotal_control.bits.ENABLE = true; core_link_write_dpcd(link, DP_SINK_PSR_ACTIVE_VTOTAL_CONTROL_MODE, &vtotal_control.raw, sizeof(vtotal_control.raw)); } } psr_context->channel = link->ddc->ddc_pin->hw_info.ddc_channel; psr_context->transmitterId = link->link_enc->transmitter; psr_context->engineId = link->link_enc->preferred_engine; for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { /* dmcu -1 for all controller id values, * therefore +1 here */ psr_context->controllerId = dc->current_state->res_ctx. pipe_ctx[i].stream_res.tg->inst + 1; break; } } /* Hardcoded for now. Can be Pcie or Uniphy (or Unknown)*/ psr_context->phyType = PHY_TYPE_UNIPHY; /*PhyId is associated with the transmitter id*/ psr_context->smuPhyId = transmitter_to_phy_id(link->link_enc->transmitter); psr_context->crtcTimingVerticalTotal = stream->timing.v_total; psr_context->vsync_rate_hz = div64_u64(div64_u64((stream-> timing.pix_clk_100hz * 100), stream->timing.v_total), stream->timing.h_total); psr_context->psrSupportedDisplayConfig = true; psr_context->psrExitLinkTrainingRequired = psr_config->psr_exit_link_training_required; psr_context->sdpTransmitLineNumDeadline = psr_config->psr_sdp_transmit_line_num_deadline; psr_context->psrFrameCaptureIndicationReq = psr_config->psr_frame_capture_indication_req; psr_context->skipPsrWaitForPllLock = 0; /* only = 1 in KV */ psr_context->numberOfControllers = link->dc->res_pool->timing_generator_count; psr_context->rfb_update_auto_en = true; /* 2 frames before enter PSR. */ psr_context->timehyst_frames = 2; /* half a frame * (units in 100 lines, i.e. a value of 1 represents 100 lines) */ psr_context->hyst_lines = stream->timing.v_total / 2 / 100; psr_context->aux_repeats = 10; psr_context->psr_level.u32all = 0; /*skip power down the single pipe since it blocks the cstate*/ #if defined(CONFIG_DRM_AMD_DC_DCN) if (link->ctx->asic_id.chip_family >= FAMILY_RV) { switch(link->ctx->asic_id.chip_family) { case FAMILY_YELLOW_CARP: case AMDGPU_FAMILY_GC_10_3_6: case AMDGPU_FAMILY_GC_11_0_1: if (dc->debug.disable_z10) psr_context->psr_level.bits.SKIP_CRTC_DISABLE = true; break; default: psr_context->psr_level.bits.SKIP_CRTC_DISABLE = true; break; } } #else if (link->ctx->asic_id.chip_family >= FAMILY_RV) psr_context->psr_level.bits.SKIP_CRTC_DISABLE = true; #endif /* SMU will perform additional powerdown sequence. * For unsupported ASICs, set psr_level flag to skip PSR * static screen notification to SMU. * (Always set for DAL2, did not check ASIC) */ psr_context->allow_smu_optimizations = psr_config->allow_smu_optimizations; psr_context->allow_multi_disp_optimizations = psr_config->allow_multi_disp_optimizations; /* Complete PSR entry before aborting to prevent intermittent * freezes on certain eDPs */ psr_context->psr_level.bits.DISABLE_PSR_ENTRY_ABORT = 1; /* enable ALPM */ psr_context->psr_level.bits.DISABLE_ALPM = 0; psr_context->psr_level.bits.ALPM_DEFAULT_PD_MODE = 1; /* Controls additional delay after remote frame capture before * continuing power down, default = 0 */ psr_context->frame_delay = 0; if (psr) { link->psr_settings.psr_feature_enabled = psr->funcs->psr_copy_settings(psr, link, psr_context, panel_inst); link->psr_settings.psr_power_opt = 0; link->psr_settings.psr_allow_active = 0; } else link->psr_settings.psr_feature_enabled = dmcu->funcs->setup_psr(dmcu, link, psr_context); /* psr_enabled == 0 indicates setup_psr did not succeed, but this * should not happen since firmware should be running at this point */ if (link->psr_settings.psr_feature_enabled == 0) ASSERT(0); return true; } void dc_link_get_psr_residency(const struct dc_link *link, uint32_t *residency) { struct dc *dc = link->ctx->dc; struct dmub_psr *psr = dc->res_pool->psr; unsigned int panel_inst; if (!dc_get_edp_link_panel_inst(dc, link, &panel_inst)) return; /* PSR residency measurements only supported on DMCUB */ if (psr != NULL && link->psr_settings.psr_feature_enabled) psr->funcs->psr_get_residency(psr, residency, panel_inst); else *residency = 0; } bool dc_link_set_sink_vtotal_in_psr_active(const struct dc_link *link, uint16_t psr_vtotal_idle, uint16_t psr_vtotal_su) { struct dc *dc = link->ctx->dc; struct dmub_psr *psr = dc->res_pool->psr; if (psr == NULL || !link->psr_settings.psr_feature_enabled || !link->psr_settings.psr_vtotal_control_support) return false; psr->funcs->psr_set_sink_vtotal_in_psr_active(psr, psr_vtotal_idle, psr_vtotal_su); return true; } const struct dc_link_status *dc_link_get_status(const struct dc_link *link) { return &link->link_status; } void core_link_resume(struct dc_link *link) { if (link->connector_signal != SIGNAL_TYPE_VIRTUAL) program_hpd_filter(link); } static struct fixed31_32 get_pbn_per_slot(struct dc_stream_state *stream) { struct fixed31_32 mbytes_per_sec; uint32_t link_rate_in_mbytes_per_sec = dc_link_bandwidth_kbps(stream->link, &stream->link->cur_link_settings); link_rate_in_mbytes_per_sec /= 8000; /* Kbits to MBytes */ mbytes_per_sec = dc_fixpt_from_int(link_rate_in_mbytes_per_sec); return dc_fixpt_div_int(mbytes_per_sec, 54); } static struct fixed31_32 get_pbn_from_bw_in_kbps(uint64_t kbps) { struct fixed31_32 peak_kbps; uint32_t numerator = 0; uint32_t denominator = 1; /* * margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on * common multiplier to render an integer PBN for all link rate/lane * counts combinations * calculate * peak_kbps *= (1006/1000) * peak_kbps *= (64/54) * peak_kbps *= 8 convert to bytes */ numerator = 64 * PEAK_FACTOR_X1000; denominator = 54 * 8 * 1000 * 1000; kbps *= numerator; peak_kbps = dc_fixpt_from_fraction(kbps, denominator); return peak_kbps; } static struct fixed31_32 get_pbn_from_timing(struct pipe_ctx *pipe_ctx) { uint64_t kbps; kbps = dc_bandwidth_in_kbps_from_timing(&pipe_ctx->stream->timing); return get_pbn_from_bw_in_kbps(kbps); } static void update_mst_stream_alloc_table( struct dc_link *link, struct stream_encoder *stream_enc, struct hpo_dp_stream_encoder *hpo_dp_stream_enc, // TODO: Rename stream_enc to dio_stream_enc? const struct dc_dp_mst_stream_allocation_table *proposed_table) { struct link_mst_stream_allocation work_table[MAX_CONTROLLER_NUM] = { 0 }; struct link_mst_stream_allocation *dc_alloc; int i; int j; /* if DRM proposed_table has more than one new payload */ ASSERT(proposed_table->stream_count - link->mst_stream_alloc_table.stream_count < 2); /* copy proposed_table to link, add stream encoder */ for (i = 0; i < proposed_table->stream_count; i++) { for (j = 0; j < link->mst_stream_alloc_table.stream_count; j++) { dc_alloc = &link->mst_stream_alloc_table.stream_allocations[j]; if (dc_alloc->vcp_id == proposed_table->stream_allocations[i].vcp_id) { work_table[i] = *dc_alloc; work_table[i].slot_count = proposed_table->stream_allocations[i].slot_count; break; /* exit j loop */ } } /* new vcp_id */ if (j == link->mst_stream_alloc_table.stream_count) { work_table[i].vcp_id = proposed_table->stream_allocations[i].vcp_id; work_table[i].slot_count = proposed_table->stream_allocations[i].slot_count; work_table[i].stream_enc = stream_enc; work_table[i].hpo_dp_stream_enc = hpo_dp_stream_enc; } } /* update link->mst_stream_alloc_table with work_table */ link->mst_stream_alloc_table.stream_count = proposed_table->stream_count; for (i = 0; i < MAX_CONTROLLER_NUM; i++) link->mst_stream_alloc_table.stream_allocations[i] = work_table[i]; } static void remove_stream_from_alloc_table( struct dc_link *link, struct stream_encoder *dio_stream_enc, struct hpo_dp_stream_encoder *hpo_dp_stream_enc) { int i = 0; struct link_mst_stream_allocation_table *table = &link->mst_stream_alloc_table; if (hpo_dp_stream_enc) { for (; i < table->stream_count; i++) if (hpo_dp_stream_enc == table->stream_allocations[i].hpo_dp_stream_enc) break; } else { for (; i < table->stream_count; i++) if (dio_stream_enc == table->stream_allocations[i].stream_enc) break; } if (i < table->stream_count) { i++; for (; i < table->stream_count; i++) table->stream_allocations[i-1] = table->stream_allocations[i]; memset(&table->stream_allocations[table->stream_count-1], 0, sizeof(struct link_mst_stream_allocation)); table->stream_count--; } } static void dc_log_vcp_x_y(const struct dc_link *link, struct fixed31_32 avg_time_slots_per_mtp) { const uint32_t VCP_Y_PRECISION = 1000; uint64_t vcp_x, vcp_y; // Add 0.5*(1/VCP_Y_PRECISION) to round up to decimal precision avg_time_slots_per_mtp = dc_fixpt_add( avg_time_slots_per_mtp, dc_fixpt_from_fraction(1, 2 * VCP_Y_PRECISION)); vcp_x = dc_fixpt_floor(avg_time_slots_per_mtp); vcp_y = dc_fixpt_floor( dc_fixpt_mul_int( dc_fixpt_sub_int(avg_time_slots_per_mtp, dc_fixpt_floor(avg_time_slots_per_mtp)), VCP_Y_PRECISION)); if (link->type == dc_connection_mst_branch) DC_LOG_DP2("MST Update Payload: set_throttled_vcp_size slot X.Y for MST stream " "X: %lld Y: %lld/%d", vcp_x, vcp_y, VCP_Y_PRECISION); else DC_LOG_DP2("SST Update Payload: set_throttled_vcp_size slot X.Y for SST stream " "X: %lld Y: %lld/%d", vcp_x, vcp_y, VCP_Y_PRECISION); } /* * Payload allocation/deallocation for SST introduced in DP2.0 */ static enum dc_status dc_link_update_sst_payload(struct pipe_ctx *pipe_ctx, bool allocate) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct link_mst_stream_allocation_table proposed_table = {0}; struct fixed31_32 avg_time_slots_per_mtp; const struct dc_link_settings empty_link_settings = {0}; const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); DC_LOGGER_INIT(link->ctx->logger); /* slot X.Y for SST payload deallocate */ if (!allocate) { avg_time_slots_per_mtp = dc_fixpt_from_int(0); dc_log_vcp_x_y(link, avg_time_slots_per_mtp); if (link_hwss->ext.set_throttled_vcp_size) link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp); if (link_hwss->ext.set_hblank_min_symbol_width) link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx, &empty_link_settings, avg_time_slots_per_mtp); } /* calculate VC payload and update branch with new payload allocation table*/ if (!dpcd_write_128b_132b_sst_payload_allocation_table( stream, link, &proposed_table, allocate)) { DC_LOG_ERROR("SST Update Payload: Failed to update " "allocation table for " "pipe idx: %d\n", pipe_ctx->pipe_idx); return DC_FAIL_DP_PAYLOAD_ALLOCATION; } proposed_table.stream_allocations[0].hpo_dp_stream_enc = pipe_ctx->stream_res.hpo_dp_stream_enc; ASSERT(proposed_table.stream_count == 1); //TODO - DP2.0 Logging: Instead of hpo_dp_stream_enc pointer, log instance id DC_LOG_DP2("SST Update Payload: hpo_dp_stream_enc: %p " "vcp_id: %d " "slot_count: %d\n", (void *) proposed_table.stream_allocations[0].hpo_dp_stream_enc, proposed_table.stream_allocations[0].vcp_id, proposed_table.stream_allocations[0].slot_count); /* program DP source TX for payload */ link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res, &proposed_table); /* poll for ACT handled */ if (!dpcd_poll_for_allocation_change_trigger(link)) { // Failures will result in blackscreen and errors logged BREAK_TO_DEBUGGER(); } /* slot X.Y for SST payload allocate */ if (allocate && dp_get_link_encoding_format(&link->cur_link_settings) == DP_128b_132b_ENCODING) { avg_time_slots_per_mtp = calculate_sst_avg_time_slots_per_mtp(stream, link); dc_log_vcp_x_y(link, avg_time_slots_per_mtp); if (link_hwss->ext.set_throttled_vcp_size) link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp); if (link_hwss->ext.set_hblank_min_symbol_width) link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx, &link->cur_link_settings, avg_time_slots_per_mtp); } /* Always return DC_OK. * If part of sequence fails, log failure(s) and show blackscreen */ return DC_OK; } /* convert link_mst_stream_alloc_table to dm dp_mst_stream_alloc_table * because stream_encoder is not exposed to dm */ enum dc_status dc_link_allocate_mst_payload(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct dc_dp_mst_stream_allocation_table proposed_table = {0}; struct fixed31_32 avg_time_slots_per_mtp; struct fixed31_32 pbn; struct fixed31_32 pbn_per_slot; int i; enum act_return_status ret; const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); DC_LOGGER_INIT(link->ctx->logger); /* enable_link_dp_mst already check link->enabled_stream_count * and stream is in link->stream[]. This is called during set mode, * stream_enc is available. */ /* get calculate VC payload for stream: stream_alloc */ if (dm_helpers_dp_mst_write_payload_allocation_table( stream->ctx, stream, &proposed_table, true)) update_mst_stream_alloc_table( link, pipe_ctx->stream_res.stream_enc, pipe_ctx->stream_res.hpo_dp_stream_enc, &proposed_table); else DC_LOG_WARNING("Failed to update" "MST allocation table for" "pipe idx:%d\n", pipe_ctx->pipe_idx); DC_LOG_MST("%s " "stream_count: %d: \n ", __func__, link->mst_stream_alloc_table.stream_count); for (i = 0; i < MAX_CONTROLLER_NUM; i++) { DC_LOG_MST("stream_enc[%d]: %p " "stream[%d].hpo_dp_stream_enc: %p " "stream[%d].vcp_id: %d " "stream[%d].slot_count: %d\n", i, (void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, (void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); } ASSERT(proposed_table.stream_count > 0); /* program DP source TX for payload */ if (link_hwss->ext.update_stream_allocation_table == NULL || dp_get_link_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) { DC_LOG_ERROR("Failure: unknown encoding format\n"); return DC_ERROR_UNEXPECTED; } link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res, &link->mst_stream_alloc_table); /* send down message */ ret = dm_helpers_dp_mst_poll_for_allocation_change_trigger( stream->ctx, stream); if (ret != ACT_LINK_LOST) { dm_helpers_dp_mst_send_payload_allocation( stream->ctx, stream, true); } /* slot X.Y for only current stream */ pbn_per_slot = get_pbn_per_slot(stream); if (pbn_per_slot.value == 0) { DC_LOG_ERROR("Failure: pbn_per_slot==0 not allowed. Cannot continue, returning DC_UNSUPPORTED_VALUE.\n"); return DC_UNSUPPORTED_VALUE; } pbn = get_pbn_from_timing(pipe_ctx); avg_time_slots_per_mtp = dc_fixpt_div(pbn, pbn_per_slot); dc_log_vcp_x_y(link, avg_time_slots_per_mtp); if (link_hwss->ext.set_throttled_vcp_size) link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp); if (link_hwss->ext.set_hblank_min_symbol_width) link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx, &link->cur_link_settings, avg_time_slots_per_mtp); return DC_OK; } enum dc_status dc_link_reduce_mst_payload(struct pipe_ctx *pipe_ctx, uint32_t bw_in_kbps) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct fixed31_32 avg_time_slots_per_mtp; struct fixed31_32 pbn; struct fixed31_32 pbn_per_slot; struct dc_dp_mst_stream_allocation_table proposed_table = {0}; uint8_t i; const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); DC_LOGGER_INIT(link->ctx->logger); /* decrease throttled vcp size */ pbn_per_slot = get_pbn_per_slot(stream); pbn = get_pbn_from_bw_in_kbps(bw_in_kbps); avg_time_slots_per_mtp = dc_fixpt_div(pbn, pbn_per_slot); if (link_hwss->ext.set_throttled_vcp_size) link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp); if (link_hwss->ext.set_hblank_min_symbol_width) link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx, &link->cur_link_settings, avg_time_slots_per_mtp); /* send ALLOCATE_PAYLOAD sideband message with updated pbn */ dm_helpers_dp_mst_send_payload_allocation( stream->ctx, stream, true); /* notify immediate branch device table update */ if (dm_helpers_dp_mst_write_payload_allocation_table( stream->ctx, stream, &proposed_table, true)) { /* update mst stream allocation table software state */ update_mst_stream_alloc_table( link, pipe_ctx->stream_res.stream_enc, pipe_ctx->stream_res.hpo_dp_stream_enc, &proposed_table); } else { DC_LOG_WARNING("Failed to update" "MST allocation table for" "pipe idx:%d\n", pipe_ctx->pipe_idx); } DC_LOG_MST("%s " "stream_count: %d: \n ", __func__, link->mst_stream_alloc_table.stream_count); for (i = 0; i < MAX_CONTROLLER_NUM; i++) { DC_LOG_MST("stream_enc[%d]: %p " "stream[%d].hpo_dp_stream_enc: %p " "stream[%d].vcp_id: %d " "stream[%d].slot_count: %d\n", i, (void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, (void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); } ASSERT(proposed_table.stream_count > 0); /* update mst stream allocation table hardware state */ if (link_hwss->ext.update_stream_allocation_table == NULL || dp_get_link_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) { DC_LOG_ERROR("Failure: unknown encoding format\n"); return DC_ERROR_UNEXPECTED; } link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res, &link->mst_stream_alloc_table); /* poll for immediate branch device ACT handled */ dm_helpers_dp_mst_poll_for_allocation_change_trigger( stream->ctx, stream); return DC_OK; } enum dc_status dc_link_increase_mst_payload(struct pipe_ctx *pipe_ctx, uint32_t bw_in_kbps) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct fixed31_32 avg_time_slots_per_mtp; struct fixed31_32 pbn; struct fixed31_32 pbn_per_slot; struct dc_dp_mst_stream_allocation_table proposed_table = {0}; uint8_t i; enum act_return_status ret; const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); DC_LOGGER_INIT(link->ctx->logger); /* notify immediate branch device table update */ if (dm_helpers_dp_mst_write_payload_allocation_table( stream->ctx, stream, &proposed_table, true)) { /* update mst stream allocation table software state */ update_mst_stream_alloc_table( link, pipe_ctx->stream_res.stream_enc, pipe_ctx->stream_res.hpo_dp_stream_enc, &proposed_table); } DC_LOG_MST("%s " "stream_count: %d: \n ", __func__, link->mst_stream_alloc_table.stream_count); for (i = 0; i < MAX_CONTROLLER_NUM; i++) { DC_LOG_MST("stream_enc[%d]: %p " "stream[%d].hpo_dp_stream_enc: %p " "stream[%d].vcp_id: %d " "stream[%d].slot_count: %d\n", i, (void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, (void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); } ASSERT(proposed_table.stream_count > 0); /* update mst stream allocation table hardware state */ if (link_hwss->ext.update_stream_allocation_table == NULL || dp_get_link_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) { DC_LOG_ERROR("Failure: unknown encoding format\n"); return DC_ERROR_UNEXPECTED; } link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res, &link->mst_stream_alloc_table); /* poll for immediate branch device ACT handled */ ret = dm_helpers_dp_mst_poll_for_allocation_change_trigger( stream->ctx, stream); if (ret != ACT_LINK_LOST) { /* send ALLOCATE_PAYLOAD sideband message with updated pbn */ dm_helpers_dp_mst_send_payload_allocation( stream->ctx, stream, true); } /* increase throttled vcp size */ pbn = get_pbn_from_bw_in_kbps(bw_in_kbps); pbn_per_slot = get_pbn_per_slot(stream); avg_time_slots_per_mtp = dc_fixpt_div(pbn, pbn_per_slot); if (link_hwss->ext.set_throttled_vcp_size) link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp); if (link_hwss->ext.set_hblank_min_symbol_width) link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx, &link->cur_link_settings, avg_time_slots_per_mtp); return DC_OK; } static enum dc_status deallocate_mst_payload(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct dc_dp_mst_stream_allocation_table proposed_table = {0}; struct fixed31_32 avg_time_slots_per_mtp = dc_fixpt_from_int(0); int i; bool mst_mode = (link->type == dc_connection_mst_branch); const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); const struct dc_link_settings empty_link_settings = {0}; DC_LOGGER_INIT(link->ctx->logger); /* deallocate_mst_payload is called before disable link. When mode or * disable/enable monitor, new stream is created which is not in link * stream[] yet. For this, payload is not allocated yet, so de-alloc * should not done. For new mode set, map_resources will get engine * for new stream, so stream_enc->id should be validated until here. */ /* slot X.Y */ if (link_hwss->ext.set_throttled_vcp_size) link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp); if (link_hwss->ext.set_hblank_min_symbol_width) link_hwss->ext.set_hblank_min_symbol_width(pipe_ctx, &empty_link_settings, avg_time_slots_per_mtp); if (mst_mode) { /* when link is in mst mode, reply on mst manager to remove * payload */ if (dm_helpers_dp_mst_write_payload_allocation_table( stream->ctx, stream, &proposed_table, false)) update_mst_stream_alloc_table( link, pipe_ctx->stream_res.stream_enc, pipe_ctx->stream_res.hpo_dp_stream_enc, &proposed_table); else DC_LOG_WARNING("Failed to update" "MST allocation table for" "pipe idx:%d\n", pipe_ctx->pipe_idx); } else { /* when link is no longer in mst mode (mst hub unplugged), * remove payload with default dc logic */ remove_stream_from_alloc_table(link, pipe_ctx->stream_res.stream_enc, pipe_ctx->stream_res.hpo_dp_stream_enc); } DC_LOG_MST("%s" "stream_count: %d: ", __func__, link->mst_stream_alloc_table.stream_count); for (i = 0; i < MAX_CONTROLLER_NUM; i++) { DC_LOG_MST("stream_enc[%d]: %p " "stream[%d].hpo_dp_stream_enc: %p " "stream[%d].vcp_id: %d " "stream[%d].slot_count: %d\n", i, (void *) link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, (void *) link->mst_stream_alloc_table.stream_allocations[i].hpo_dp_stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); } /* update mst stream allocation table hardware state */ if (link_hwss->ext.update_stream_allocation_table == NULL || dp_get_link_encoding_format(&link->cur_link_settings) == DP_UNKNOWN_ENCODING) { DC_LOG_DEBUG("Unknown encoding format\n"); return DC_ERROR_UNEXPECTED; } link_hwss->ext.update_stream_allocation_table(link, &pipe_ctx->link_res, &link->mst_stream_alloc_table); if (mst_mode) { dm_helpers_dp_mst_poll_for_allocation_change_trigger( stream->ctx, stream); dm_helpers_dp_mst_send_payload_allocation( stream->ctx, stream, false); } return DC_OK; } #if defined(CONFIG_DRM_AMD_DC_HDCP) static void update_psp_stream_config(struct pipe_ctx *pipe_ctx, bool dpms_off) { struct cp_psp *cp_psp = &pipe_ctx->stream->ctx->cp_psp; struct link_encoder *link_enc = NULL; struct cp_psp_stream_config config = {0}; enum dp_panel_mode panel_mode = dp_get_panel_mode(pipe_ctx->stream->link); if (cp_psp == NULL || cp_psp->funcs.update_stream_config == NULL) return; link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link); ASSERT(link_enc); if (link_enc == NULL) return; /* otg instance */ config.otg_inst = (uint8_t) pipe_ctx->stream_res.tg->inst; /* dig front end */ config.dig_fe = (uint8_t) pipe_ctx->stream_res.stream_enc->stream_enc_inst; /* stream encoder index */ config.stream_enc_idx = pipe_ctx->stream_res.stream_enc->id - ENGINE_ID_DIGA; if (is_dp_128b_132b_signal(pipe_ctx)) config.stream_enc_idx = pipe_ctx->stream_res.hpo_dp_stream_enc->id - ENGINE_ID_HPO_DP_0; /* dig back end */ config.dig_be = pipe_ctx->stream->link->link_enc_hw_inst; /* link encoder index */ config.link_enc_idx = link_enc->transmitter - TRANSMITTER_UNIPHY_A; if (is_dp_128b_132b_signal(pipe_ctx)) config.link_enc_idx = pipe_ctx->link_res.hpo_dp_link_enc->inst; /* dio output index is dpia index for DPIA endpoint & dcio index by default */ if (pipe_ctx->stream->link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) config.dio_output_idx = pipe_ctx->stream->link->link_id.enum_id - ENUM_ID_1; else config.dio_output_idx = link_enc->transmitter - TRANSMITTER_UNIPHY_A; /* phy index */ config.phy_idx = resource_transmitter_to_phy_idx( pipe_ctx->stream->link->dc, link_enc->transmitter); if (pipe_ctx->stream->link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) /* USB4 DPIA doesn't use PHY in our soc, initialize it to 0 */ config.phy_idx = 0; /* stream properties */ config.assr_enabled = (panel_mode == DP_PANEL_MODE_EDP) ? 1 : 0; config.mst_enabled = (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) ? 1 : 0; config.dp2_enabled = is_dp_128b_132b_signal(pipe_ctx) ? 1 : 0; config.usb4_enabled = (pipe_ctx->stream->link->ep_type == DISPLAY_ENDPOINT_USB4_DPIA) ? 1 : 0; config.dpms_off = dpms_off; /* dm stream context */ config.dm_stream_ctx = pipe_ctx->stream->dm_stream_context; cp_psp->funcs.update_stream_config(cp_psp->handle, &config); } #endif static void fpga_dp_hpo_enable_link_and_stream(struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dc *dc = pipe_ctx->stream->ctx->dc; struct dc_stream_state *stream = pipe_ctx->stream; struct link_mst_stream_allocation_table proposed_table = {0}; struct fixed31_32 avg_time_slots_per_mtp; uint8_t req_slot_count = 0; uint8_t vc_id = 1; /// VC ID always 1 for SST struct dc_link_settings link_settings = pipe_ctx->link_config.dp_link_settings; const struct link_hwss *link_hwss = get_link_hwss(stream->link, &pipe_ctx->link_res); DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); stream->link->cur_link_settings = link_settings; if (link_hwss->ext.enable_dp_link_output) link_hwss->ext.enable_dp_link_output(stream->link, &pipe_ctx->link_res, stream->signal, pipe_ctx->clock_source->id, &link_settings); #ifdef DIAGS_BUILD /* Workaround for FPGA HPO capture DP link data: * HPO capture will set link to active mode * This workaround is required to get a capture from start of frame */ if (!dc->debug.fpga_hpo_capture_en) { struct encoder_set_dp_phy_pattern_param params = {0}; params.dp_phy_pattern = DP_TEST_PATTERN_VIDEO_MODE; /* Set link active */ stream->link->hpo_dp_link_enc->funcs->set_link_test_pattern( stream->link->hpo_dp_link_enc, ¶ms); } #endif /* Enable DP_STREAM_ENC */ dc->hwss.enable_stream(pipe_ctx); /* Set DPS PPS SDP (AKA "info frames") */ if (pipe_ctx->stream->timing.flags.DSC) { dp_set_dsc_pps_sdp(pipe_ctx, true, true); } /* Allocate Payload */ if ((stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) && (state->stream_count > 1)) { // MST case uint8_t i; proposed_table.stream_count = state->stream_count; for (i = 0; i < state->stream_count; i++) { avg_time_slots_per_mtp = calculate_sst_avg_time_slots_per_mtp(state->streams[i], state->streams[i]->link); req_slot_count = dc_fixpt_ceil(avg_time_slots_per_mtp); proposed_table.stream_allocations[i].slot_count = req_slot_count; proposed_table.stream_allocations[i].vcp_id = i+1; /* NOTE: This makes assumption that pipe_ctx index is same as stream index */ proposed_table.stream_allocations[i].hpo_dp_stream_enc = state->res_ctx.pipe_ctx[i].stream_res.hpo_dp_stream_enc; } } else { // SST case avg_time_slots_per_mtp = calculate_sst_avg_time_slots_per_mtp(stream, stream->link); req_slot_count = dc_fixpt_ceil(avg_time_slots_per_mtp); proposed_table.stream_count = 1; /// Always 1 stream for SST proposed_table.stream_allocations[0].slot_count = req_slot_count; proposed_table.stream_allocations[0].vcp_id = vc_id; proposed_table.stream_allocations[0].hpo_dp_stream_enc = pipe_ctx->stream_res.hpo_dp_stream_enc; } link_hwss->ext.update_stream_allocation_table(stream->link, &pipe_ctx->link_res, &proposed_table); if (link_hwss->ext.set_throttled_vcp_size) link_hwss->ext.set_throttled_vcp_size(pipe_ctx, avg_time_slots_per_mtp); dc->hwss.unblank_stream(pipe_ctx, &stream->link->cur_link_settings); } void core_link_enable_stream( struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dc *dc = pipe_ctx->stream->ctx->dc; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; enum dc_status status; struct link_encoder *link_enc; enum otg_out_mux_dest otg_out_dest = OUT_MUX_DIO; struct vpg *vpg = pipe_ctx->stream_res.stream_enc->vpg; const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); if (is_dp_128b_132b_signal(pipe_ctx)) vpg = pipe_ctx->stream_res.hpo_dp_stream_enc->vpg; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); if (pipe_ctx->stream->sink) { if (pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL && pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_NONE) { DC_LOG_DC("%s pipe_ctx dispname=%s signal=%x\n", __func__, pipe_ctx->stream->sink->edid_caps.display_name, pipe_ctx->stream->signal); } } if (!IS_DIAG_DC(dc->ctx->dce_environment) && dc_is_virtual_signal(pipe_ctx->stream->signal)) return; link_enc = link_enc_cfg_get_link_enc(link); ASSERT(link_enc); if (!dc_is_virtual_signal(pipe_ctx->stream->signal) && !is_dp_128b_132b_signal(pipe_ctx)) { if (link_enc) link_enc->funcs->setup( link_enc, pipe_ctx->stream->signal); } pipe_ctx->stream->link->link_state_valid = true; if (pipe_ctx->stream_res.tg->funcs->set_out_mux) { if (is_dp_128b_132b_signal(pipe_ctx)) otg_out_dest = OUT_MUX_HPO_DP; else otg_out_dest = OUT_MUX_DIO; pipe_ctx->stream_res.tg->funcs->set_out_mux(pipe_ctx->stream_res.tg, otg_out_dest); } link_hwss->setup_stream_attribute(pipe_ctx); if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { bool apply_edp_fast_boot_optimization = pipe_ctx->stream->apply_edp_fast_boot_optimization; pipe_ctx->stream->apply_edp_fast_boot_optimization = false; // Enable VPG before building infoframe if (vpg && vpg->funcs->vpg_poweron) vpg->funcs->vpg_poweron(vpg); resource_build_info_frame(pipe_ctx); dc->hwss.update_info_frame(pipe_ctx); if (dc_is_dp_signal(pipe_ctx->stream->signal)) dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME); /* Do not touch link on seamless boot optimization. */ if (pipe_ctx->stream->apply_seamless_boot_optimization) { pipe_ctx->stream->dpms_off = false; /* Still enable stream features & audio on seamless boot for DP external displays */ if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT) { enable_stream_features(pipe_ctx); if (pipe_ctx->stream_res.audio != NULL) { pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc); dc->hwss.enable_audio_stream(pipe_ctx); } } #if defined(CONFIG_DRM_AMD_DC_HDCP) update_psp_stream_config(pipe_ctx, false); #endif return; } /* eDP lit up by bios already, no need to enable again. */ if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP && apply_edp_fast_boot_optimization && !pipe_ctx->stream->timing.flags.DSC && !pipe_ctx->next_odm_pipe) { pipe_ctx->stream->dpms_off = false; #if defined(CONFIG_DRM_AMD_DC_HDCP) update_psp_stream_config(pipe_ctx, false); #endif return; } if (pipe_ctx->stream->dpms_off) return; /* Have to setup DSC before DIG FE and BE are connected (which happens before the * link training). This is to make sure the bandwidth sent to DIG BE won't be * bigger than what the link and/or DIG BE can handle. VBID[6]/CompressedStream_flag * will be automatically set at a later time when the video is enabled * (DP_VID_STREAM_EN = 1). */ if (pipe_ctx->stream->timing.flags.DSC) { if (dc_is_dp_signal(pipe_ctx->stream->signal) || dc_is_virtual_signal(pipe_ctx->stream->signal)) dp_set_dsc_enable(pipe_ctx, true); } status = enable_link(state, pipe_ctx); if (status != DC_OK) { DC_LOG_WARNING("enabling link %u failed: %d\n", pipe_ctx->stream->link->link_index, status); /* Abort stream enable *unless* the failure was due to * DP link training - some DP monitors will recover and * show the stream anyway. But MST displays can't proceed * without link training. */ if (status != DC_FAIL_DP_LINK_TRAINING || pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) { if (false == stream->link->link_status.link_active) disable_link(stream->link, &pipe_ctx->link_res, pipe_ctx->stream->signal); BREAK_TO_DEBUGGER(); return; } } /* turn off otg test pattern if enable */ if (pipe_ctx->stream_res.tg->funcs->set_test_pattern) pipe_ctx->stream_res.tg->funcs->set_test_pattern(pipe_ctx->stream_res.tg, CONTROLLER_DP_TEST_PATTERN_VIDEOMODE, COLOR_DEPTH_UNDEFINED); /* This second call is needed to reconfigure the DIG * as a workaround for the incorrect value being applied * from transmitter control. */ if (!(dc_is_virtual_signal(pipe_ctx->stream->signal) || is_dp_128b_132b_signal(pipe_ctx))) if (link_enc) link_enc->funcs->setup( link_enc, pipe_ctx->stream->signal); dc->hwss.enable_stream(pipe_ctx); /* Set DPS PPS SDP (AKA "info frames") */ if (pipe_ctx->stream->timing.flags.DSC) { if (dc_is_dp_signal(pipe_ctx->stream->signal) || dc_is_virtual_signal(pipe_ctx->stream->signal)) { dp_set_dsc_on_rx(pipe_ctx, true); dp_set_dsc_pps_sdp(pipe_ctx, true, true); } } if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) dc_link_allocate_mst_payload(pipe_ctx); else if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT && is_dp_128b_132b_signal(pipe_ctx)) dc_link_update_sst_payload(pipe_ctx, true); dc->hwss.unblank_stream(pipe_ctx, &pipe_ctx->stream->link->cur_link_settings); if (stream->sink_patches.delay_ignore_msa > 0) msleep(stream->sink_patches.delay_ignore_msa); if (dc_is_dp_signal(pipe_ctx->stream->signal)) enable_stream_features(pipe_ctx); #if defined(CONFIG_DRM_AMD_DC_HDCP) update_psp_stream_config(pipe_ctx, false); #endif dc->hwss.enable_audio_stream(pipe_ctx); } else { // if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) if (is_dp_128b_132b_signal(pipe_ctx)) fpga_dp_hpo_enable_link_and_stream(state, pipe_ctx); if (dc_is_dp_signal(pipe_ctx->stream->signal) || dc_is_virtual_signal(pipe_ctx->stream->signal)) dp_set_dsc_enable(pipe_ctx, true); } if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) { core_link_set_avmute(pipe_ctx, false); } } void core_link_disable_stream(struct pipe_ctx *pipe_ctx) { struct dc *dc = pipe_ctx->stream->ctx->dc; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; struct vpg *vpg = pipe_ctx->stream_res.stream_enc->vpg; if (is_dp_128b_132b_signal(pipe_ctx)) vpg = pipe_ctx->stream_res.hpo_dp_stream_enc->vpg; DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger); if (pipe_ctx->stream->sink) { if (pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL && pipe_ctx->stream->sink->sink_signal != SIGNAL_TYPE_NONE) { DC_LOG_DC("%s pipe_ctx dispname=%s signal=%x\n", __func__, pipe_ctx->stream->sink->edid_caps.display_name, pipe_ctx->stream->signal); } } if (!IS_DIAG_DC(dc->ctx->dce_environment) && dc_is_virtual_signal(pipe_ctx->stream->signal)) return; if (!pipe_ctx->stream->sink->edid_caps.panel_patch.skip_avmute) { if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) core_link_set_avmute(pipe_ctx, true); } dc->hwss.disable_audio_stream(pipe_ctx); #if defined(CONFIG_DRM_AMD_DC_HDCP) update_psp_stream_config(pipe_ctx, true); #endif dc->hwss.blank_stream(pipe_ctx); if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) deallocate_mst_payload(pipe_ctx); else if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT && is_dp_128b_132b_signal(pipe_ctx)) dc_link_update_sst_payload(pipe_ctx, false); if (dc_is_hdmi_signal(pipe_ctx->stream->signal)) { struct ext_hdmi_settings settings = {0}; enum engine_id eng_id = pipe_ctx->stream_res.stream_enc->id; unsigned short masked_chip_caps = link->chip_caps & EXT_DISPLAY_PATH_CAPS__EXT_CHIP_MASK; //Need to inform that sink is going to use legacy HDMI mode. dal_ddc_service_write_scdc_data( link->ddc, 165000,//vbios only handles 165Mhz. false); if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_TISN65DP159RSBT) { /* DP159, Retimer settings */ if (get_ext_hdmi_settings(pipe_ctx, eng_id, &settings)) write_i2c_retimer_setting(pipe_ctx, false, false, &settings); else write_i2c_default_retimer_setting(pipe_ctx, false, false); } else if (masked_chip_caps == EXT_DISPLAY_PATH_CAPS__HDMI20_PI3EQX1204) { /* PI3EQX1204, Redriver settings */ write_i2c_redriver_setting(pipe_ctx, false); } } if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT && !is_dp_128b_132b_signal(pipe_ctx)) { /* In DP1.x SST mode, our encoder will go to TPS1 * when link is on but stream is off. * Disabling link before stream will avoid exposing TPS1 pattern * during the disable sequence as it will confuse some receivers * state machine. * In DP2 or MST mode, our encoder will stay video active */ disable_link(pipe_ctx->stream->link, &pipe_ctx->link_res, pipe_ctx->stream->signal); dc->hwss.disable_stream(pipe_ctx); } else { dc->hwss.disable_stream(pipe_ctx); disable_link(pipe_ctx->stream->link, &pipe_ctx->link_res, pipe_ctx->stream->signal); } if (pipe_ctx->stream->timing.flags.DSC) { if (dc_is_dp_signal(pipe_ctx->stream->signal)) dp_set_dsc_enable(pipe_ctx, false); } if (is_dp_128b_132b_signal(pipe_ctx)) { if (pipe_ctx->stream_res.tg->funcs->set_out_mux) pipe_ctx->stream_res.tg->funcs->set_out_mux(pipe_ctx->stream_res.tg, OUT_MUX_DIO); } if (vpg && vpg->funcs->vpg_powerdown) vpg->funcs->vpg_powerdown(vpg); } void core_link_set_avmute(struct pipe_ctx *pipe_ctx, bool enable) { struct dc *dc = pipe_ctx->stream->ctx->dc; if (!dc_is_hdmi_signal(pipe_ctx->stream->signal)) return; dc->hwss.set_avmute(pipe_ctx, enable); } /** * dc_link_enable_hpd_filter: * If enable is true, programs HPD filter on associated HPD line using * delay_on_disconnect/delay_on_connect values dependent on * link->connector_signal * * If enable is false, programs HPD filter on associated HPD line with no * delays on connect or disconnect * * @link: pointer to the dc link * @enable: boolean specifying whether to enable hbd */ void dc_link_enable_hpd_filter(struct dc_link *link, bool enable) { struct gpio *hpd; if (enable) { link->is_hpd_filter_disabled = false; program_hpd_filter(link); } else { link->is_hpd_filter_disabled = true; /* Obtain HPD handle */ hpd = get_hpd_gpio(link->ctx->dc_bios, link->link_id, link->ctx->gpio_service); if (!hpd) return; /* Setup HPD filtering */ if (dal_gpio_open(hpd, GPIO_MODE_INTERRUPT) == GPIO_RESULT_OK) { struct gpio_hpd_config config; config.delay_on_connect = 0; config.delay_on_disconnect = 0; dal_irq_setup_hpd_filter(hpd, &config); dal_gpio_close(hpd); } else { ASSERT_CRITICAL(false); } /* Release HPD handle */ dal_gpio_destroy_irq(&hpd); } } void dc_link_set_drive_settings(struct dc *dc, struct link_training_settings *lt_settings, const struct dc_link *link) { int i; struct link_resource link_res; for (i = 0; i < dc->link_count; i++) if (dc->links[i] == link) break; if (i >= dc->link_count) ASSERT_CRITICAL(false); dc_link_get_cur_link_res(link, &link_res); dc_link_dp_set_drive_settings(dc->links[i], &link_res, lt_settings); } void dc_link_set_preferred_link_settings(struct dc *dc, struct dc_link_settings *link_setting, struct dc_link *link) { int i; struct pipe_ctx *pipe; struct dc_stream_state *link_stream; struct dc_link_settings store_settings = *link_setting; link->preferred_link_setting = store_settings; /* Retrain with preferred link settings only relevant for * DP signal type * Check for non-DP signal or if passive dongle present */ if (!dc_is_dp_signal(link->connector_signal) || link->dongle_max_pix_clk > 0) return; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->stream->link) { if (pipe->stream->link == link) { link_stream = pipe->stream; break; } } } /* Stream not found */ if (i == MAX_PIPES) return; /* Cannot retrain link if backend is off */ if (link_stream->dpms_off) return; if (decide_link_settings(link_stream, &store_settings)) dp_retrain_link_dp_test(link, &store_settings, false); } void dc_link_set_preferred_training_settings(struct dc *dc, struct dc_link_settings *link_setting, struct dc_link_training_overrides *lt_overrides, struct dc_link *link, bool skip_immediate_retrain) { if (lt_overrides != NULL) link->preferred_training_settings = *lt_overrides; else memset(&link->preferred_training_settings, 0, sizeof(link->preferred_training_settings)); if (link_setting != NULL) { link->preferred_link_setting = *link_setting; if (dp_get_link_encoding_format(link_setting) == DP_128b_132b_ENCODING) /* TODO: add dc update for acquiring link res */ skip_immediate_retrain = true; } else { link->preferred_link_setting.lane_count = LANE_COUNT_UNKNOWN; link->preferred_link_setting.link_rate = LINK_RATE_UNKNOWN; } /* Retrain now, or wait until next stream update to apply */ if (skip_immediate_retrain == false) dc_link_set_preferred_link_settings(dc, &link->preferred_link_setting, link); } void dc_link_enable_hpd(const struct dc_link *link) { dc_link_dp_enable_hpd(link); } void dc_link_disable_hpd(const struct dc_link *link) { dc_link_dp_disable_hpd(link); } void dc_link_set_test_pattern(struct dc_link *link, enum dp_test_pattern test_pattern, enum dp_test_pattern_color_space test_pattern_color_space, const struct link_training_settings *p_link_settings, const unsigned char *p_custom_pattern, unsigned int cust_pattern_size) { if (link != NULL) dc_link_dp_set_test_pattern( link, test_pattern, test_pattern_color_space, p_link_settings, p_custom_pattern, cust_pattern_size); } uint32_t dc_link_bandwidth_kbps( const struct dc_link *link, const struct dc_link_settings *link_setting) { uint32_t total_data_bw_efficiency_x10000 = 0; uint32_t link_rate_per_lane_kbps = 0; switch (dp_get_link_encoding_format(link_setting)) { case DP_8b_10b_ENCODING: /* For 8b/10b encoding: * link rate is defined in the unit of LINK_RATE_REF_FREQ_IN_KHZ per DP byte per lane. * data bandwidth efficiency is 80% with additional 3% overhead if FEC is supported. */ link_rate_per_lane_kbps = link_setting->link_rate * LINK_RATE_REF_FREQ_IN_KHZ * BITS_PER_DP_BYTE; total_data_bw_efficiency_x10000 = DATA_EFFICIENCY_8b_10b_x10000; if (dc_link_should_enable_fec(link)) { total_data_bw_efficiency_x10000 /= 100; total_data_bw_efficiency_x10000 *= DATA_EFFICIENCY_8b_10b_FEC_EFFICIENCY_x100; } break; case DP_128b_132b_ENCODING: /* For 128b/132b encoding: * link rate is defined in the unit of 10mbps per lane. * total data bandwidth efficiency is always 96.71%. */ link_rate_per_lane_kbps = link_setting->link_rate * 10000; total_data_bw_efficiency_x10000 = DATA_EFFICIENCY_128b_132b_x10000; break; default: break; } /* overall effective link bandwidth = link rate per lane * lane count * total data bandwidth efficiency */ return link_rate_per_lane_kbps * link_setting->lane_count / 10000 * total_data_bw_efficiency_x10000; } const struct dc_link_settings *dc_link_get_link_cap( const struct dc_link *link) { if (link->preferred_link_setting.lane_count != LANE_COUNT_UNKNOWN && link->preferred_link_setting.link_rate != LINK_RATE_UNKNOWN) return &link->preferred_link_setting; return &link->verified_link_cap; } void dc_link_overwrite_extended_receiver_cap( struct dc_link *link) { dp_overwrite_extended_receiver_cap(link); } bool dc_link_is_fec_supported(const struct dc_link *link) { /* TODO - use asic cap instead of link_enc->features * we no longer know which link enc to use for this link before commit */ struct link_encoder *link_enc = NULL; link_enc = link_enc_cfg_get_link_enc(link); ASSERT(link_enc); return (dc_is_dp_signal(link->connector_signal) && link_enc && link_enc->features.fec_supported && link->dpcd_caps.fec_cap.bits.FEC_CAPABLE && !IS_FPGA_MAXIMUS_DC(link->ctx->dce_environment)); } bool dc_link_should_enable_fec(const struct dc_link *link) { bool force_disable = false; if (link->fec_state == dc_link_fec_enabled) force_disable = false; else if (link->connector_signal != SIGNAL_TYPE_DISPLAY_PORT_MST && link->local_sink && link->local_sink->edid_caps.panel_patch.disable_fec) force_disable = true; else if (link->connector_signal == SIGNAL_TYPE_EDP && (link->dpcd_caps.dsc_caps.dsc_basic_caps.fields. dsc_support.DSC_SUPPORT == false || link->panel_config.dsc.disable_dsc_edp || !link->dc->caps.edp_dsc_support)) force_disable = true; return !force_disable && dc_link_is_fec_supported(link); } uint32_t dc_bandwidth_in_kbps_from_timing( const struct dc_crtc_timing *timing) { uint32_t bits_per_channel = 0; uint32_t kbps; #if defined(CONFIG_DRM_AMD_DC_DCN) if (timing->flags.DSC) return dc_dsc_stream_bandwidth_in_kbps(timing, timing->dsc_cfg.bits_per_pixel, timing->dsc_cfg.num_slices_h, timing->dsc_cfg.is_dp); #endif /* CONFIG_DRM_AMD_DC_DCN */ switch (timing->display_color_depth) { case COLOR_DEPTH_666: bits_per_channel = 6; break; case COLOR_DEPTH_888: bits_per_channel = 8; break; case COLOR_DEPTH_101010: bits_per_channel = 10; break; case COLOR_DEPTH_121212: bits_per_channel = 12; break; case COLOR_DEPTH_141414: bits_per_channel = 14; break; case COLOR_DEPTH_161616: bits_per_channel = 16; break; default: ASSERT(bits_per_channel != 0); bits_per_channel = 8; break; } kbps = timing->pix_clk_100hz / 10; kbps *= bits_per_channel; if (timing->flags.Y_ONLY != 1) { /*Only YOnly make reduce bandwidth by 1/3 compares to RGB*/ kbps *= 3; if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) kbps /= 2; else if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) kbps = kbps * 2 / 3; } return kbps; } void dc_link_get_cur_link_res(const struct dc_link *link, struct link_resource *link_res) { int i; struct pipe_ctx *pipe = NULL; memset(link_res, 0, sizeof(*link_res)); for (i = 0; i < MAX_PIPES; i++) { pipe = &link->dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->stream->link && pipe->top_pipe == NULL) { if (pipe->stream->link == link) { *link_res = pipe->link_res; break; } } } } /** * dc_get_cur_link_res_map() - take a snapshot of current link resource allocation state * @dc: pointer to dc of the dm calling this * @map: a dc link resource snapshot defined internally to dc. * * DM needs to capture a snapshot of current link resource allocation mapping * and store it in its persistent storage. * * Some of the link resource is using first come first serve policy. * The allocation mapping depends on original hotplug order. This information * is lost after driver is loaded next time. The snapshot is used in order to * restore link resource to its previous state so user will get consistent * link capability allocation across reboot. * * Return: none (void function) * */ void dc_get_cur_link_res_map(const struct dc *dc, uint32_t *map) { struct dc_link *link; uint32_t i; uint32_t hpo_dp_recycle_map = 0; *map = 0; if (dc->caps.dp_hpo) { for (i = 0; i < dc->caps.max_links; i++) { link = dc->links[i]; if (link->link_status.link_active && dp_get_link_encoding_format(&link->reported_link_cap) == DP_128b_132b_ENCODING && dp_get_link_encoding_format(&link->cur_link_settings) != DP_128b_132b_ENCODING) /* hpo dp link encoder is considered as recycled, when RX reports 128b/132b encoding capability * but current link doesn't use it. */ hpo_dp_recycle_map |= (1 << i); } *map |= (hpo_dp_recycle_map << LINK_RES_HPO_DP_REC_MAP__SHIFT); } } /** * dc_restore_link_res_map() - restore link resource allocation state from a snapshot * @dc: pointer to dc of the dm calling this * @map: a dc link resource snapshot defined internally to dc. * * DM needs to call this function after initial link detection on boot and * before first commit streams to restore link resource allocation state * from previous boot session. * * Some of the link resource is using first come first serve policy. * The allocation mapping depends on original hotplug order. This information * is lost after driver is loaded next time. The snapshot is used in order to * restore link resource to its previous state so user will get consistent * link capability allocation across reboot. * * Return: none (void function) * */ void dc_restore_link_res_map(const struct dc *dc, uint32_t *map) { struct dc_link *link; uint32_t i; unsigned int available_hpo_dp_count; uint32_t hpo_dp_recycle_map = (*map & LINK_RES_HPO_DP_REC_MAP__MASK) >> LINK_RES_HPO_DP_REC_MAP__SHIFT; if (dc->caps.dp_hpo) { available_hpo_dp_count = dc->res_pool->hpo_dp_link_enc_count; /* remove excess 128b/132b encoding support for not recycled links */ for (i = 0; i < dc->caps.max_links; i++) { if ((hpo_dp_recycle_map & (1 << i)) == 0) { link = dc->links[i]; if (link->type != dc_connection_none && dp_get_link_encoding_format(&link->verified_link_cap) == DP_128b_132b_ENCODING) { if (available_hpo_dp_count > 0) available_hpo_dp_count--; else /* remove 128b/132b encoding capability by limiting verified link rate to HBR3 */ link->verified_link_cap.link_rate = LINK_RATE_HIGH3; } } } /* remove excess 128b/132b encoding support for recycled links */ for (i = 0; i < dc->caps.max_links; i++) { if ((hpo_dp_recycle_map & (1 << i)) != 0) { link = dc->links[i]; if (link->type != dc_connection_none && dp_get_link_encoding_format(&link->verified_link_cap) == DP_128b_132b_ENCODING) { if (available_hpo_dp_count > 0) available_hpo_dp_count--; else /* remove 128b/132b encoding capability by limiting verified link rate to HBR3 */ link->verified_link_cap.link_rate = LINK_RATE_HIGH3; } } } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1