Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
yanyang1 | 4443 | 65.33% | 2 | 5.56% |
Rex Zhu | 909 | 13.37% | 10 | 27.78% |
Evan Quan | 729 | 10.72% | 3 | 8.33% |
Alex Deucher | 373 | 5.48% | 4 | 11.11% |
Eric Huang | 196 | 2.88% | 2 | 5.56% |
Gustavo A. R. Silva | 72 | 1.06% | 5 | 13.89% |
Monk Liu | 44 | 0.65% | 1 | 2.78% |
Lee Jones | 11 | 0.16% | 2 | 5.56% |
Huang Rui | 8 | 0.12% | 2 | 5.56% |
Colin Ian King | 7 | 0.10% | 1 | 2.78% |
Flora Cui | 3 | 0.04% | 1 | 2.78% |
Baoyou Xie | 3 | 0.04% | 1 | 2.78% |
Joe Perches | 2 | 0.03% | 1 | 2.78% |
Edward O'Callaghan | 1 | 0.01% | 1 | 2.78% |
Total | 6801 | 36 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include <linux/module.h> #include <linux/slab.h> #include "process_pptables_v1_0.h" #include "ppatomctrl.h" #include "atombios.h" #include "hwmgr.h" #include "cgs_common.h" #include "pptable_v1_0.h" /** * set_hw_cap - Private Function used during initialization. * @hwmgr: Pointer to the hardware manager. * @setIt: A flag indication if the capability should be set (TRUE) or reset (FALSE). * @cap: Which capability to set/reset. */ static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap) { if (setIt) phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); else phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); } /** * set_platform_caps - Private Function used during initialization. * @hwmgr: Pointer to the hardware manager. * @powerplay_caps: the bit array (from BIOS) of capability bits. * Exception: the current implementation always returns 1. */ static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps) { PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____), "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____), "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____), "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____), "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____), "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY), PHM_PlatformCaps_PowerPlaySupport ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), PHM_PlatformCaps_BiosPowerSourceControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC), PHM_PlatformCaps_AutomaticDCTransition ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL), PHM_PlatformCaps_EnableMVDDControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL), PHM_PlatformCaps_ControlVDDCI ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL), PHM_PlatformCaps_ControlVDDGFX ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO), PHM_PlatformCaps_BACO ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND), PHM_PlatformCaps_DisableVoltageIsland ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), PHM_PlatformCaps_CombinePCCWithThermalSignal ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE), PHM_PlatformCaps_LoadPostProductionFirmware ); return 0; } /* * Private Function to get the PowerPlay Table Address. */ static const void *get_powerplay_table(struct pp_hwmgr *hwmgr) { int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 size; u8 frev, crev; void *table_address = (void *)hwmgr->soft_pp_table; if (!table_address) { table_address = (ATOM_Tonga_POWERPLAYTABLE *) smu_atom_get_data_table(hwmgr->adev, index, &size, &frev, &crev); hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/ hwmgr->soft_pp_table_size = size; } return table_address; } static int get_vddc_lookup_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table **lookup_table, const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables, uint32_t max_levels ) { uint32_t i; phm_ppt_v1_voltage_lookup_table *table; phm_ppt_v1_voltage_lookup_record *record; ATOM_Tonga_Voltage_Lookup_Record *atom_record; PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries), "Invalid CAC Leakage PowerPlay Table!", return 1); table = kzalloc(struct_size(table, entries, max_levels), GFP_KERNEL); if (!table) return -ENOMEM; table->count = vddc_lookup_pp_tables->ucNumEntries; for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) { record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_voltage_lookup_record, entries, table, i); atom_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_Voltage_Lookup_Record, entries, vddc_lookup_pp_tables, i); record->us_calculated = 0; record->us_vdd = le16_to_cpu(atom_record->usVdd); record->us_cac_low = le16_to_cpu(atom_record->usCACLow); record->us_cac_mid = le16_to_cpu(atom_record->usCACMid); record->us_cac_high = le16_to_cpu(atom_record->usCACHigh); } *lookup_table = table; return 0; } /** * get_platform_power_management_table - Private Function used during initialization. * Initialize Platform Power Management Parameter table * @hwmgr: Pointer to the hardware manager. * @atom_ppm_table: Pointer to PPM table in VBIOS */ static int get_platform_power_management_table( struct pp_hwmgr *hwmgr, ATOM_Tonga_PPM_Table *atom_ppm_table) { struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL); struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (NULL == ptr) return -ENOMEM; ptr->ppm_design = atom_ppm_table->ucPpmDesign; ptr->cpu_core_number = le16_to_cpu(atom_ppm_table->usCpuCoreNumber); ptr->platform_tdp = le32_to_cpu(atom_ppm_table->ulPlatformTDP); ptr->small_ac_platform_tdp = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP); ptr->platform_tdc = le32_to_cpu(atom_ppm_table->ulPlatformTDC); ptr->small_ac_platform_tdc = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC); ptr->apu_tdp = le32_to_cpu(atom_ppm_table->ulApuTDP); ptr->dgpu_tdp = le32_to_cpu(atom_ppm_table->ulDGpuTDP); ptr->dgpu_ulv_power = le32_to_cpu(atom_ppm_table->ulDGpuUlvPower); ptr->tj_max = le32_to_cpu(atom_ppm_table->ulTjmax); pp_table_information->ppm_parameter_table = ptr; return 0; } /** * init_dpm_2_parameters - Private Function used during initialization. * Initialize TDP limits for DPM2 * @hwmgr: Pointer to the hardware manager. * @powerplay_table: Pointer to the PowerPlay Table. */ static int init_dpm_2_parameters( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { int result = 0; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); ATOM_Tonga_PPM_Table *atom_ppm_table; uint32_t disable_ppm = 0; uint32_t disable_power_control = 0; pp_table_information->us_ulv_voltage_offset = le16_to_cpu(powerplay_table->usUlvVoltageOffset); pp_table_information->ppm_parameter_table = NULL; pp_table_information->vddc_lookup_table = NULL; pp_table_information->vddgfx_lookup_table = NULL; /* TDP limits */ hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(powerplay_table->usPowerControlLimit); hwmgr->platform_descriptor.TDPAdjustment = 0; hwmgr->platform_descriptor.VidAdjustment = 0; hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; hwmgr->platform_descriptor.VidMinLimit = 0; hwmgr->platform_descriptor.VidMaxLimit = 1500000; hwmgr->platform_descriptor.VidStep = 6250; disable_power_control = 0; if (0 == disable_power_control) { /* enable TDP overdrive (PowerControl) feature as well if supported */ if (hwmgr->platform_descriptor.TDPODLimit != 0) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerControl); } if (0 != powerplay_table->usVddcLookupTableOffset) { const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable = (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usVddcLookupTableOffset)); result = get_vddc_lookup_table(hwmgr, &pp_table_information->vddc_lookup_table, pVddcCACTable, 16); } if (0 != powerplay_table->usVddgfxLookupTableOffset) { const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable = (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset)); result = get_vddc_lookup_table(hwmgr, &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16); } disable_ppm = 0; if (0 == disable_ppm) { atom_ppm_table = (ATOM_Tonga_PPM_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset)); if (0 != powerplay_table->usPPMTableOffset) { if (get_platform_power_management_table(hwmgr, atom_ppm_table) == 0) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnablePlatformPowerManagement); } } } return result; } static int get_valid_clk( struct pp_hwmgr *hwmgr, struct phm_clock_array **clk_table, phm_ppt_v1_clock_voltage_dependency_table const *clk_volt_pp_table ) { uint32_t i; struct phm_clock_array *table; phm_ppt_v1_clock_voltage_dependency_record *dep_record; PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count), "Invalid PowerPlay Table!", return -1); table = kzalloc(struct_size(table, values, clk_volt_pp_table->count), GFP_KERNEL); if (!table) return -ENOMEM; table->count = (uint32_t)clk_volt_pp_table->count; for (i = 0; i < table->count; i++) { dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_clock_voltage_dependency_record, entries, clk_volt_pp_table, i); table->values[i] = (uint32_t)dep_record->clk; } *clk_table = table; return 0; } static int get_hard_limits( struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *limits, ATOM_Tonga_Hard_Limit_Table const *limitable ) { PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1); /* currently we always take entries[0] parameters */ limits->sclk = le32_to_cpu(limitable->entries[0].ulSCLKLimit); limits->mclk = le32_to_cpu(limitable->entries[0].ulMCLKLimit); limits->vddc = le16_to_cpu(limitable->entries[0].usVddcLimit); limits->vddci = le16_to_cpu(limitable->entries[0].usVddciLimit); limits->vddgfx = le16_to_cpu(limitable->entries[0].usVddgfxLimit); return 0; } static int get_mclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table, ATOM_Tonga_MCLK_Dependency_Table const *mclk_dep_table ) { uint32_t i; phm_ppt_v1_clock_voltage_dependency_table *mclk_table; phm_ppt_v1_clock_voltage_dependency_record *mclk_table_record; ATOM_Tonga_MCLK_Dependency_Record *mclk_dep_record; PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); mclk_table = kzalloc(struct_size(mclk_table, entries, mclk_dep_table->ucNumEntries), GFP_KERNEL); if (!mclk_table) return -ENOMEM; mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries; for (i = 0; i < mclk_dep_table->ucNumEntries; i++) { mclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_clock_voltage_dependency_record, entries, mclk_table, i); mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_MCLK_Dependency_Record, entries, mclk_dep_table, i); mclk_table_record->vddInd = mclk_dep_record->ucVddcInd; mclk_table_record->vdd_offset = le16_to_cpu(mclk_dep_record->usVddgfxOffset); mclk_table_record->vddci = le16_to_cpu(mclk_dep_record->usVddci); mclk_table_record->mvdd = le16_to_cpu(mclk_dep_record->usMvdd); mclk_table_record->clk = le32_to_cpu(mclk_dep_record->ulMclk); } *pp_tonga_mclk_dep_table = mclk_table; return 0; } static int get_sclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table, PPTable_Generic_SubTable_Header const *sclk_dep_table ) { uint32_t i; phm_ppt_v1_clock_voltage_dependency_table *sclk_table; phm_ppt_v1_clock_voltage_dependency_record *sclk_table_record; if (sclk_dep_table->ucRevId < 1) { const ATOM_Tonga_SCLK_Dependency_Table *tonga_table = (ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table; ATOM_Tonga_SCLK_Dependency_Record *sclk_dep_record; PP_ASSERT_WITH_CODE((0 != tonga_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); sclk_table = kzalloc(struct_size(sclk_table, entries, tonga_table->ucNumEntries), GFP_KERNEL); if (!sclk_table) return -ENOMEM; sclk_table->count = (uint32_t)tonga_table->ucNumEntries; for (i = 0; i < tonga_table->ucNumEntries; i++) { sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_SCLK_Dependency_Record, entries, tonga_table, i); sclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_clock_voltage_dependency_record, entries, sclk_table, i); sclk_table_record->vddInd = sclk_dep_record->ucVddInd; sclk_table_record->vdd_offset = le16_to_cpu(sclk_dep_record->usVddcOffset); sclk_table_record->clk = le32_to_cpu(sclk_dep_record->ulSclk); sclk_table_record->cks_enable = (((sclk_dep_record->ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0; sclk_table_record->cks_voffset = (sclk_dep_record->ucCKSVOffsetandDisable & 0x7F); } } else { const ATOM_Polaris_SCLK_Dependency_Table *polaris_table = (ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table; ATOM_Polaris_SCLK_Dependency_Record *sclk_dep_record; PP_ASSERT_WITH_CODE((0 != polaris_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); sclk_table = kzalloc(struct_size(sclk_table, entries, polaris_table->ucNumEntries), GFP_KERNEL); if (!sclk_table) return -ENOMEM; sclk_table->count = (uint32_t)polaris_table->ucNumEntries; for (i = 0; i < polaris_table->ucNumEntries; i++) { sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Polaris_SCLK_Dependency_Record, entries, polaris_table, i); sclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_clock_voltage_dependency_record, entries, sclk_table, i); sclk_table_record->vddInd = sclk_dep_record->ucVddInd; sclk_table_record->vdd_offset = le16_to_cpu(sclk_dep_record->usVddcOffset); sclk_table_record->clk = le32_to_cpu(sclk_dep_record->ulSclk); sclk_table_record->cks_enable = (((sclk_dep_record->ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0; sclk_table_record->cks_voffset = (sclk_dep_record->ucCKSVOffsetandDisable & 0x7F); sclk_table_record->sclk_offset = le32_to_cpu(sclk_dep_record->ulSclkOffset); } } *pp_tonga_sclk_dep_table = sclk_table; return 0; } static int get_pcie_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_pcie_table **pp_tonga_pcie_table, PPTable_Generic_SubTable_Header const *ptable ) { uint32_t i, pcie_count; phm_ppt_v1_pcie_table *pcie_table; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_pcie_record *pcie_record; if (ptable->ucRevId < 1) { const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)ptable; ATOM_Tonga_PCIE_Record *atom_pcie_record; PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); pcie_table = kzalloc(struct_size(pcie_table, entries, atom_pcie_table->ucNumEntries), GFP_KERNEL); if (!pcie_table) return -ENOMEM; /* * Make sure the number of pcie entries are less than or equal to sclk dpm levels. * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1. */ pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1; if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count) pcie_count = (uint32_t)atom_pcie_table->ucNumEntries; else pr_err("Number of Pcie Entries exceed the number of SCLK Dpm Levels! Disregarding the excess entries...\n"); pcie_table->count = pcie_count; for (i = 0; i < pcie_count; i++) { pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_pcie_record, entries, pcie_table, i); atom_pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_PCIE_Record, entries, atom_pcie_table, i); pcie_record->gen_speed = atom_pcie_record->ucPCIEGenSpeed; pcie_record->lane_width = le16_to_cpu(atom_pcie_record->usPCIELaneWidth); } *pp_tonga_pcie_table = pcie_table; } else { /* Polaris10/Polaris11 and newer. */ const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)ptable; ATOM_Polaris10_PCIE_Record *atom_pcie_record; PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); pcie_table = kzalloc(struct_size(pcie_table, entries, atom_pcie_table->ucNumEntries), GFP_KERNEL); if (!pcie_table) return -ENOMEM; /* * Make sure the number of pcie entries are less than or equal to sclk dpm levels. * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1. */ pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1; if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count) pcie_count = (uint32_t)atom_pcie_table->ucNumEntries; else pr_err("Number of Pcie Entries exceed the number of SCLK Dpm Levels! Disregarding the excess entries...\n"); pcie_table->count = pcie_count; for (i = 0; i < pcie_count; i++) { pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_pcie_record, entries, pcie_table, i); atom_pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Polaris10_PCIE_Record, entries, atom_pcie_table, i); pcie_record->gen_speed = atom_pcie_record->ucPCIEGenSpeed; pcie_record->lane_width = le16_to_cpu(atom_pcie_record->usPCIELaneWidth); pcie_record->pcie_sclk = le32_to_cpu(atom_pcie_record->ulPCIE_Sclk); } *pp_tonga_pcie_table = pcie_table; } return 0; } static int get_cac_tdp_table( struct pp_hwmgr *hwmgr, struct phm_cac_tdp_table **cac_tdp_table, const PPTable_Generic_SubTable_Header * table ) { uint32_t table_size; struct phm_cac_tdp_table *tdp_table; table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table); tdp_table = kzalloc(table_size, GFP_KERNEL); if (NULL == tdp_table) return -ENOMEM; hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL); if (NULL == hwmgr->dyn_state.cac_dtp_table) { kfree(tdp_table); return -ENOMEM; } if (table->ucRevId < 3) { const ATOM_Tonga_PowerTune_Table *tonga_table = (ATOM_Tonga_PowerTune_Table *)table; tdp_table->usTDP = le16_to_cpu(tonga_table->usTDP); tdp_table->usConfigurableTDP = le16_to_cpu(tonga_table->usConfigurableTDP); tdp_table->usTDC = le16_to_cpu(tonga_table->usTDC); tdp_table->usBatteryPowerLimit = le16_to_cpu(tonga_table->usBatteryPowerLimit); tdp_table->usSmallPowerLimit = le16_to_cpu(tonga_table->usSmallPowerLimit); tdp_table->usLowCACLeakage = le16_to_cpu(tonga_table->usLowCACLeakage); tdp_table->usHighCACLeakage = le16_to_cpu(tonga_table->usHighCACLeakage); tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(tonga_table->usMaximumPowerDeliveryLimit); tdp_table->usDefaultTargetOperatingTemp = le16_to_cpu(tonga_table->usTjMax); tdp_table->usTargetOperatingTemp = le16_to_cpu(tonga_table->usTjMax); /*Set the initial temp to the same as default */ tdp_table->usPowerTuneDataSetID = le16_to_cpu(tonga_table->usPowerTuneDataSetID); tdp_table->usSoftwareShutdownTemp = le16_to_cpu(tonga_table->usSoftwareShutdownTemp); tdp_table->usClockStretchAmount = le16_to_cpu(tonga_table->usClockStretchAmount); } else if (table->ucRevId < 4) { /* Fiji and newer */ const ATOM_Fiji_PowerTune_Table *fijitable = (ATOM_Fiji_PowerTune_Table *)table; tdp_table->usTDP = le16_to_cpu(fijitable->usTDP); tdp_table->usConfigurableTDP = le16_to_cpu(fijitable->usConfigurableTDP); tdp_table->usTDC = le16_to_cpu(fijitable->usTDC); tdp_table->usBatteryPowerLimit = le16_to_cpu(fijitable->usBatteryPowerLimit); tdp_table->usSmallPowerLimit = le16_to_cpu(fijitable->usSmallPowerLimit); tdp_table->usLowCACLeakage = le16_to_cpu(fijitable->usLowCACLeakage); tdp_table->usHighCACLeakage = le16_to_cpu(fijitable->usHighCACLeakage); tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(fijitable->usMaximumPowerDeliveryLimit); tdp_table->usDefaultTargetOperatingTemp = le16_to_cpu(fijitable->usTjMax); tdp_table->usTargetOperatingTemp = le16_to_cpu(fijitable->usTjMax); /*Set the initial temp to the same as default */ tdp_table->usPowerTuneDataSetID = le16_to_cpu(fijitable->usPowerTuneDataSetID); tdp_table->usSoftwareShutdownTemp = le16_to_cpu(fijitable->usSoftwareShutdownTemp); tdp_table->usClockStretchAmount = le16_to_cpu(fijitable->usClockStretchAmount); tdp_table->usTemperatureLimitHotspot = le16_to_cpu(fijitable->usTemperatureLimitHotspot); tdp_table->usTemperatureLimitLiquid1 = le16_to_cpu(fijitable->usTemperatureLimitLiquid1); tdp_table->usTemperatureLimitLiquid2 = le16_to_cpu(fijitable->usTemperatureLimitLiquid2); tdp_table->usTemperatureLimitVrVddc = le16_to_cpu(fijitable->usTemperatureLimitVrVddc); tdp_table->usTemperatureLimitVrMvdd = le16_to_cpu(fijitable->usTemperatureLimitVrMvdd); tdp_table->usTemperatureLimitPlx = le16_to_cpu(fijitable->usTemperatureLimitPlx); tdp_table->ucLiquid1_I2C_address = fijitable->ucLiquid1_I2C_address; tdp_table->ucLiquid2_I2C_address = fijitable->ucLiquid2_I2C_address; tdp_table->ucLiquid_I2C_Line = fijitable->ucLiquid_I2C_Line; tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address; tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line; tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address; tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line; } else { const ATOM_Polaris_PowerTune_Table *polaristable = (ATOM_Polaris_PowerTune_Table *)table; tdp_table->usTDP = le16_to_cpu(polaristable->usTDP); tdp_table->usConfigurableTDP = le16_to_cpu(polaristable->usConfigurableTDP); tdp_table->usTDC = le16_to_cpu(polaristable->usTDC); tdp_table->usBatteryPowerLimit = le16_to_cpu(polaristable->usBatteryPowerLimit); tdp_table->usSmallPowerLimit = le16_to_cpu(polaristable->usSmallPowerLimit); tdp_table->usLowCACLeakage = le16_to_cpu(polaristable->usLowCACLeakage); tdp_table->usHighCACLeakage = le16_to_cpu(polaristable->usHighCACLeakage); tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(polaristable->usMaximumPowerDeliveryLimit); tdp_table->usDefaultTargetOperatingTemp = le16_to_cpu(polaristable->usTjMax); tdp_table->usTargetOperatingTemp = le16_to_cpu(polaristable->usTjMax); /*Set the initial temp to the same as default */ tdp_table->usPowerTuneDataSetID = le16_to_cpu(polaristable->usPowerTuneDataSetID); tdp_table->usSoftwareShutdownTemp = le16_to_cpu(polaristable->usSoftwareShutdownTemp); tdp_table->usClockStretchAmount = le16_to_cpu(polaristable->usClockStretchAmount); tdp_table->usTemperatureLimitHotspot = le16_to_cpu(polaristable->usTemperatureLimitHotspot); tdp_table->usTemperatureLimitLiquid1 = le16_to_cpu(polaristable->usTemperatureLimitLiquid1); tdp_table->usTemperatureLimitLiquid2 = le16_to_cpu(polaristable->usTemperatureLimitLiquid2); tdp_table->usTemperatureLimitVrVddc = le16_to_cpu(polaristable->usTemperatureLimitVrVddc); tdp_table->usTemperatureLimitVrMvdd = le16_to_cpu(polaristable->usTemperatureLimitVrMvdd); tdp_table->usTemperatureLimitPlx = le16_to_cpu(polaristable->usTemperatureLimitPlx); tdp_table->ucLiquid1_I2C_address = polaristable->ucLiquid1_I2C_address; tdp_table->ucLiquid2_I2C_address = polaristable->ucLiquid2_I2C_address; tdp_table->ucLiquid_I2C_Line = polaristable->ucLiquid_I2C_Line; tdp_table->ucVr_I2C_address = polaristable->ucVr_I2C_address; tdp_table->ucVr_I2C_Line = polaristable->ucVr_I2C_Line; tdp_table->ucPlx_I2C_address = polaristable->ucPlx_I2C_address; tdp_table->ucPlx_I2C_Line = polaristable->ucPlx_I2C_Line; tdp_table->usBoostPowerLimit = polaristable->usBoostPowerLimit; tdp_table->ucCKS_LDO_REFSEL = polaristable->ucCKS_LDO_REFSEL; tdp_table->ucHotSpotOnly = polaristable->ucHotSpotOnly; } *cac_tdp_table = tdp_table; return 0; } static int get_mm_clock_voltage_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table, const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table ) { uint32_t i; const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record; phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table; phm_ppt_v1_mm_clock_voltage_dependency_record *mm_table_record; PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); mm_table = kzalloc(struct_size(mm_table, entries, mm_dependency_table->ucNumEntries), GFP_KERNEL); if (!mm_table) return -ENOMEM; mm_table->count = mm_dependency_table->ucNumEntries; for (i = 0; i < mm_dependency_table->ucNumEntries; i++) { mm_dependency_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_MM_Dependency_Record, entries, mm_dependency_table, i); mm_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( phm_ppt_v1_mm_clock_voltage_dependency_record, entries, mm_table, i); mm_table_record->vddcInd = mm_dependency_record->ucVddcInd; mm_table_record->vddgfx_offset = le16_to_cpu(mm_dependency_record->usVddgfxOffset); mm_table_record->aclk = le32_to_cpu(mm_dependency_record->ulAClk); mm_table_record->samclock = le32_to_cpu(mm_dependency_record->ulSAMUClk); mm_table_record->eclk = le32_to_cpu(mm_dependency_record->ulEClk); mm_table_record->vclk = le32_to_cpu(mm_dependency_record->ulVClk); mm_table_record->dclk = le32_to_cpu(mm_dependency_record->ulDClk); } *tonga_mm_table = mm_table; return 0; } static int get_gpio_table(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_gpio_table **pp_tonga_gpio_table, const ATOM_Tonga_GPIO_Table *atom_gpio_table) { uint32_t table_size; struct phm_ppt_v1_gpio_table *pp_gpio_table; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); table_size = sizeof(struct phm_ppt_v1_gpio_table); pp_gpio_table = kzalloc(table_size, GFP_KERNEL); if (!pp_gpio_table) return -ENOMEM; if (pp_table_information->vdd_dep_on_sclk->count < atom_gpio_table->ucVRHotTriggeredSclkDpmIndex) PP_ASSERT_WITH_CODE(false, "SCLK DPM index for VRHot cannot exceed the total sclk level count!",); else pp_gpio_table->vrhot_triggered_sclk_dpm_index = atom_gpio_table->ucVRHotTriggeredSclkDpmIndex; *pp_tonga_gpio_table = pp_gpio_table; return 0; } /** * init_clock_voltage_dependency - Private Function used during initialization. * Initialize clock voltage dependency * @hwmgr: Pointer to the hardware manager. * @powerplay_table: Pointer to the PowerPlay Table. */ static int init_clock_voltage_dependency( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { int result = 0; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table = (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usMMDependencyTableOffset)); const PPTable_Generic_SubTable_Header *pPowerTuneTable = (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPowerTuneTableOffset)); const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); const PPTable_Generic_SubTable_Header *sclk_dep_table = (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); const ATOM_Tonga_Hard_Limit_Table *pHardLimits = (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usHardLimitTableOffset)); const PPTable_Generic_SubTable_Header *pcie_table = (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPCIETableOffset)); const ATOM_Tonga_GPIO_Table *gpio_table = (const ATOM_Tonga_GPIO_Table *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usGPIOTableOffset)); pp_table_information->vdd_dep_on_sclk = NULL; pp_table_information->vdd_dep_on_mclk = NULL; pp_table_information->mm_dep_table = NULL; pp_table_information->pcie_table = NULL; pp_table_information->gpio_table = NULL; if (powerplay_table->usMMDependencyTableOffset != 0) result = get_mm_clock_voltage_table(hwmgr, &pp_table_information->mm_dep_table, mm_dependency_table); if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0) result = get_cac_tdp_table(hwmgr, &pp_table_information->cac_dtp_table, pPowerTuneTable); if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0) result = get_sclk_voltage_dependency_table(hwmgr, &pp_table_information->vdd_dep_on_sclk, sclk_dep_table); if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0) result = get_mclk_voltage_dependency_table(hwmgr, &pp_table_information->vdd_dep_on_mclk, mclk_dep_table); if (result == 0 && powerplay_table->usPCIETableOffset != 0) result = get_pcie_table(hwmgr, &pp_table_information->pcie_table, pcie_table); if (result == 0 && powerplay_table->usHardLimitTableOffset != 0) result = get_hard_limits(hwmgr, &pp_table_information->max_clock_voltage_on_dc, pHardLimits); hwmgr->dyn_state.max_clock_voltage_on_dc.sclk = pp_table_information->max_clock_voltage_on_dc.sclk; hwmgr->dyn_state.max_clock_voltage_on_dc.mclk = pp_table_information->max_clock_voltage_on_dc.mclk; hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = pp_table_information->max_clock_voltage_on_dc.vddc; hwmgr->dyn_state.max_clock_voltage_on_dc.vddci = pp_table_information->max_clock_voltage_on_dc.vddci; if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk) && (0 != pp_table_information->vdd_dep_on_mclk->count)) result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values, pp_table_information->vdd_dep_on_mclk); if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk) && (0 != pp_table_information->vdd_dep_on_sclk->count)) result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values, pp_table_information->vdd_dep_on_sclk); if (!result && gpio_table) result = get_gpio_table(hwmgr, &pp_table_information->gpio_table, gpio_table); return result; } /** * init_over_drive_limits - Retrieves the (signed) Overdrive limits from VBIOS. * The max engine clock, memory clock and max temperature come from the firmware info table. * * The information is placed into the platform descriptor. * * @hwmgr: source of the VBIOS table and owner of the platform descriptor to be updated. * @powerplay_table: the address of the PowerPlay table. * * Return: 1 as long as the firmware info table was present and of a supported version. */ static int init_over_drive_limits( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table) { hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(powerplay_table->ulMaxODEngineClock); hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(powerplay_table->ulMaxODMemoryClock); hwmgr->platform_descriptor.minOverdriveVDDC = 0; hwmgr->platform_descriptor.maxOverdriveVDDC = 0; hwmgr->platform_descriptor.overdriveVDDCStep = 0; return 0; } /** * init_thermal_controller - Private Function used during initialization. * Inspect the PowerPlay table for obvious signs of corruption. * @hwmgr: Pointer to the hardware manager. * @powerplay_table: Pointer to the PowerPlay Table. * Exception: This implementation always returns 1. */ static int init_thermal_controller( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { const PPTable_Generic_SubTable_Header *fan_table; ATOM_Tonga_Thermal_Controller *thermal_controller; thermal_controller = (ATOM_Tonga_Thermal_Controller *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usThermalControllerOffset)); PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset), "Thermal controller table not set!", return -1); hwmgr->thermal_controller.ucType = thermal_controller->ucType; hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine; hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress; hwmgr->thermal_controller.fanInfo.bNoFan = (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN)); hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; hwmgr->thermal_controller.fanInfo.ulMinRPM = thermal_controller->ucFanMinRPM * 100UL; hwmgr->thermal_controller.fanInfo.ulMaxRPM = thermal_controller->ucFanMaxRPM * 100UL; set_hw_cap( hwmgr, ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, PHM_PlatformCaps_ThermalController ); if (0 == powerplay_table->usFanTableOffset) { hwmgr->thermal_controller.use_hw_fan_control = 1; return 0; } fan_table = (const PPTable_Generic_SubTable_Header *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usFanTableOffset)); PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset), "Fan table not set!", return -1); PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId), "Unsupported fan table format!", return -1); hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay = 100000; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); if (fan_table->ucRevId < 8) { const ATOM_Tonga_Fan_Table *tonga_fan_table = (ATOM_Tonga_Fan_Table *)fan_table; hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst = tonga_fan_table->ucTHyst; hwmgr->thermal_controller.advanceFanControlParameters.usTMin = le16_to_cpu(tonga_fan_table->usTMin); hwmgr->thermal_controller.advanceFanControlParameters.usTMed = le16_to_cpu(tonga_fan_table->usTMed); hwmgr->thermal_controller.advanceFanControlParameters.usTHigh = le16_to_cpu(tonga_fan_table->usTHigh); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = le16_to_cpu(tonga_fan_table->usPWMMin); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed = le16_to_cpu(tonga_fan_table->usPWMMed); hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh = le16_to_cpu(tonga_fan_table->usPWMHigh); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = 10900; /* hard coded */ hwmgr->thermal_controller.advanceFanControlParameters.usTMax = le16_to_cpu(tonga_fan_table->usTMax); hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode = tonga_fan_table->ucFanControlMode; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = le16_to_cpu(tonga_fan_table->usFanPWMMax); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity = 4836; hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = le16_to_cpu(tonga_fan_table->usFanOutputSensitivity); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM = le16_to_cpu(tonga_fan_table->usFanRPMMax); hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = (le32_to_cpu(tonga_fan_table->ulMinFanSCLKAcousticLimit) / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature = tonga_fan_table->ucTargetTemperature; hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit = tonga_fan_table->ucMinimumPWMLimit; } else if (fan_table->ucRevId == 8) { const ATOM_Fiji_Fan_Table *fiji_fan_table = (ATOM_Fiji_Fan_Table *)fan_table; hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst = fiji_fan_table->ucTHyst; hwmgr->thermal_controller.advanceFanControlParameters.usTMin = le16_to_cpu(fiji_fan_table->usTMin); hwmgr->thermal_controller.advanceFanControlParameters.usTMed = le16_to_cpu(fiji_fan_table->usTMed); hwmgr->thermal_controller.advanceFanControlParameters.usTHigh = le16_to_cpu(fiji_fan_table->usTHigh); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = le16_to_cpu(fiji_fan_table->usPWMMin); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed = le16_to_cpu(fiji_fan_table->usPWMMed); hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh = le16_to_cpu(fiji_fan_table->usPWMHigh); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = le16_to_cpu(fiji_fan_table->usTMax); hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode = fiji_fan_table->ucFanControlMode; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = le16_to_cpu(fiji_fan_table->usFanPWMMax); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity = 4836; hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = le16_to_cpu(fiji_fan_table->usFanOutputSensitivity); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM = le16_to_cpu(fiji_fan_table->usFanRPMMax); hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = (le32_to_cpu(fiji_fan_table->ulMinFanSCLKAcousticLimit) / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature = fiji_fan_table->ucTargetTemperature; hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit = fiji_fan_table->ucMinimumPWMLimit; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge = le16_to_cpu(fiji_fan_table->usFanGainEdge); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot = le16_to_cpu(fiji_fan_table->usFanGainHotspot); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid = le16_to_cpu(fiji_fan_table->usFanGainLiquid); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc = le16_to_cpu(fiji_fan_table->usFanGainVrVddc); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd = le16_to_cpu(fiji_fan_table->usFanGainVrMvdd); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx = le16_to_cpu(fiji_fan_table->usFanGainPlx); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm = le16_to_cpu(fiji_fan_table->usFanGainHbm); } else if (fan_table->ucRevId >= 9) { const ATOM_Polaris_Fan_Table *polaris_fan_table = (ATOM_Polaris_Fan_Table *)fan_table; hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst = polaris_fan_table->ucTHyst; hwmgr->thermal_controller.advanceFanControlParameters.usTMin = le16_to_cpu(polaris_fan_table->usTMin); hwmgr->thermal_controller.advanceFanControlParameters.usTMed = le16_to_cpu(polaris_fan_table->usTMed); hwmgr->thermal_controller.advanceFanControlParameters.usTHigh = le16_to_cpu(polaris_fan_table->usTHigh); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = le16_to_cpu(polaris_fan_table->usPWMMin); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed = le16_to_cpu(polaris_fan_table->usPWMMed); hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh = le16_to_cpu(polaris_fan_table->usPWMHigh); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = le16_to_cpu(polaris_fan_table->usTMax); hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode = polaris_fan_table->ucFanControlMode; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = le16_to_cpu(polaris_fan_table->usFanPWMMax); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity = 4836; hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = le16_to_cpu(polaris_fan_table->usFanOutputSensitivity); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM = le16_to_cpu(polaris_fan_table->usFanRPMMax); hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = (le32_to_cpu(polaris_fan_table->ulMinFanSCLKAcousticLimit) / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature = polaris_fan_table->ucTargetTemperature; hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit = polaris_fan_table->ucMinimumPWMLimit; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge = le16_to_cpu(polaris_fan_table->usFanGainEdge); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot = le16_to_cpu(polaris_fan_table->usFanGainHotspot); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid = le16_to_cpu(polaris_fan_table->usFanGainLiquid); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc = le16_to_cpu(polaris_fan_table->usFanGainVrVddc); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd = le16_to_cpu(polaris_fan_table->usFanGainVrMvdd); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx = le16_to_cpu(polaris_fan_table->usFanGainPlx); hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm = le16_to_cpu(polaris_fan_table->usFanGainHbm); hwmgr->thermal_controller.advanceFanControlParameters.ucEnableZeroRPM = le16_to_cpu(polaris_fan_table->ucEnableZeroRPM); hwmgr->thermal_controller.advanceFanControlParameters.ucFanStopTemperature = le16_to_cpu(polaris_fan_table->ucFanStopTemperature); hwmgr->thermal_controller.advanceFanControlParameters.ucFanStartTemperature = le16_to_cpu(polaris_fan_table->ucFanStartTemperature); } return 0; } /** * check_powerplay_tables - Private Function used during initialization. * Inspect the PowerPlay table for obvious signs of corruption. * @hwmgr: Pointer to the hardware manager. * @powerplay_table: Pointer to the PowerPlay Table. * Exception: 2 if the powerplay table is incorrect. */ static int check_powerplay_tables( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { const ATOM_Tonga_State_Array *state_arrays; state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usStateArrayOffset)); PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <= powerplay_table->sHeader.ucTableFormatRevision), "Unsupported PPTable format!", return -1); PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset), "State table is not set!", return -1); PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize), "Invalid PowerPlay Table!", return -1); PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), "Invalid PowerPlay Table!", return -1); return 0; } static int pp_tables_v1_0_initialize(struct pp_hwmgr *hwmgr) { int result = 0; const ATOM_Tonga_POWERPLAYTABLE *powerplay_table; hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL); PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable), "Failed to allocate hwmgr->pptable!", return -ENOMEM); powerplay_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((NULL != powerplay_table), "Missing PowerPlay Table!", return -1); result = check_powerplay_tables(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "check_powerplay_tables failed", return result); result = set_platform_caps(hwmgr, le32_to_cpu(powerplay_table->ulPlatformCaps)); PP_ASSERT_WITH_CODE((result == 0), "set_platform_caps failed", return result); result = init_thermal_controller(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_thermal_controller failed", return result); result = init_over_drive_limits(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_over_drive_limits failed", return result); result = init_clock_voltage_dependency(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_clock_voltage_dependency failed", return result); result = init_dpm_2_parameters(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_dpm_2_parameters failed", return result); return result; } static int pp_tables_v1_0_uninitialize(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); kfree(pp_table_information->vdd_dep_on_sclk); pp_table_information->vdd_dep_on_sclk = NULL; kfree(pp_table_information->vdd_dep_on_mclk); pp_table_information->vdd_dep_on_mclk = NULL; kfree(pp_table_information->valid_mclk_values); pp_table_information->valid_mclk_values = NULL; kfree(pp_table_information->valid_sclk_values); pp_table_information->valid_sclk_values = NULL; kfree(pp_table_information->vddc_lookup_table); pp_table_information->vddc_lookup_table = NULL; kfree(pp_table_information->vddgfx_lookup_table); pp_table_information->vddgfx_lookup_table = NULL; kfree(pp_table_information->mm_dep_table); pp_table_information->mm_dep_table = NULL; kfree(pp_table_information->cac_dtp_table); pp_table_information->cac_dtp_table = NULL; kfree(hwmgr->dyn_state.cac_dtp_table); hwmgr->dyn_state.cac_dtp_table = NULL; kfree(pp_table_information->ppm_parameter_table); pp_table_information->ppm_parameter_table = NULL; kfree(pp_table_information->pcie_table); pp_table_information->pcie_table = NULL; kfree(pp_table_information->gpio_table); pp_table_information->gpio_table = NULL; kfree(hwmgr->pptable); hwmgr->pptable = NULL; return 0; } const struct pp_table_func pptable_v1_0_funcs = { .pptable_init = pp_tables_v1_0_initialize, .pptable_fini = pp_tables_v1_0_uninitialize, }; int get_number_of_powerplay_table_entries_v1_0(struct pp_hwmgr *hwmgr) { ATOM_Tonga_State_Array const *state_arrays; const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1); PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >= ATOM_Tonga_TABLE_REVISION_TONGA), "Incorrect PowerPlay table revision!", return -1); state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + le16_to_cpu(pp_table->usStateArrayOffset)); return (uint32_t)(state_arrays->ucNumEntries); } /* * Private function to convert flags stored in the BIOS to software flags in PowerPlay. */ static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr, uint16_t classification, uint16_t classification2) { uint32_t result = 0; if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) result |= PP_StateClassificationFlag_Boot; if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) result |= PP_StateClassificationFlag_Thermal; if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) result |= PP_StateClassificationFlag_LimitedPowerSource; if (classification & ATOM_PPLIB_CLASSIFICATION_REST) result |= PP_StateClassificationFlag_Rest; if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) result |= PP_StateClassificationFlag_Forced; if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) result |= PP_StateClassificationFlag_ACPI; if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) result |= PP_StateClassificationFlag_LimitedPowerSource_2; return result; } static int ppt_get_num_of_vce_state_table_entries_v1_0(struct pp_hwmgr *hwmgr) { const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); const ATOM_Tonga_VCE_State_Table *vce_state_table; if (pp_table == NULL) return 0; vce_state_table = (void *)pp_table + le16_to_cpu(pp_table->usVCEStateTableOffset); return vce_state_table->ucNumEntries; } static int ppt_get_vce_state_table_entry_v1_0(struct pp_hwmgr *hwmgr, uint32_t i, struct amd_vce_state *vce_state, void **clock_info, uint32_t *flag) { const ATOM_Tonga_VCE_State_Record *vce_state_record; ATOM_Tonga_SCLK_Dependency_Record *sclk_dep_record; ATOM_Tonga_MCLK_Dependency_Record *mclk_dep_record; ATOM_Tonga_MM_Dependency_Record *mm_dep_record; const ATOM_Tonga_POWERPLAYTABLE *pptable = get_powerplay_table(hwmgr); const ATOM_Tonga_VCE_State_Table *vce_state_table = (ATOM_Tonga_VCE_State_Table *)(((unsigned long)pptable) + le16_to_cpu(pptable->usVCEStateTableOffset)); const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = (ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long)pptable) + le16_to_cpu(pptable->usSclkDependencyTableOffset)); const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = (ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long)pptable) + le16_to_cpu(pptable->usMclkDependencyTableOffset)); const ATOM_Tonga_MM_Dependency_Table *mm_dep_table = (ATOM_Tonga_MM_Dependency_Table *)(((unsigned long)pptable) + le16_to_cpu(pptable->usMMDependencyTableOffset)); PP_ASSERT_WITH_CODE((i < vce_state_table->ucNumEntries), "Requested state entry ID is out of range!", return -EINVAL); vce_state_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_VCE_State_Record, entries, vce_state_table, i); sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_SCLK_Dependency_Record, entries, sclk_dep_table, vce_state_record->ucSCLKIndex); mm_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_MM_Dependency_Record, entries, mm_dep_table, vce_state_record->ucVCEClockIndex); *flag = vce_state_record->ucFlag; vce_state->evclk = le32_to_cpu(mm_dep_record->ulEClk); vce_state->ecclk = le32_to_cpu(mm_dep_record->ulEClk); vce_state->sclk = le32_to_cpu(sclk_dep_record->ulSclk); if (vce_state_record->ucMCLKIndex >= mclk_dep_table->ucNumEntries) mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_MCLK_Dependency_Record, entries, mclk_dep_table, mclk_dep_table->ucNumEntries - 1); else mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_MCLK_Dependency_Record, entries, mclk_dep_table, vce_state_record->ucMCLKIndex); vce_state->mclk = le32_to_cpu(mclk_dep_record->ulMclk); return 0; } /** * get_powerplay_table_entry_v1_0 - Create a Power State out of an entry in the PowerPlay table. * This function is called by the hardware back-end. * @hwmgr: Pointer to the hardware manager. * @entry_index: The index of the entry to be extracted from the table. * @power_state: The address of the PowerState instance being created. * @call_back_func: The function to call into to fill power state * Return: -1 if the entry cannot be retrieved. */ int get_powerplay_table_entry_v1_0(struct pp_hwmgr *hwmgr, uint32_t entry_index, struct pp_power_state *power_state, int (*call_back_func)(struct pp_hwmgr *, void *, struct pp_power_state *, void *, uint32_t)) { int result = 0; const ATOM_Tonga_State_Array *state_arrays; const ATOM_Tonga_State *state_entry; const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); int i, j; uint32_t flags = 0; PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;); power_state->classification.bios_index = entry_index; if (pp_table->sHeader.ucTableFormatRevision >= ATOM_Tonga_TABLE_REVISION_TONGA) { state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + le16_to_cpu(pp_table->usStateArrayOffset)); PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset), "Invalid PowerPlay Table State Array Offset.", return -1); PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), "Invalid PowerPlay Table State Array.", return -1); PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries), "Invalid PowerPlay Table State Array Entry.", return -1); state_entry = GET_FLEXIBLE_ARRAY_MEMBER_ADDR( ATOM_Tonga_State, entries, state_arrays, entry_index); result = call_back_func(hwmgr, (void *)state_entry, power_state, (void *)pp_table, make_classification_flags(hwmgr, le16_to_cpu(state_entry->usClassification), le16_to_cpu(state_entry->usClassification2))); } if (!result && (power_state->classification.flags & PP_StateClassificationFlag_Boot)) result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware)); hwmgr->num_vce_state_tables = i = ppt_get_num_of_vce_state_table_entries_v1_0(hwmgr); if ((i != 0) && (i <= AMD_MAX_VCE_LEVELS)) { for (j = 0; j < i; j++) ppt_get_vce_state_table_entry_v1_0(hwmgr, j, &(hwmgr->vce_states[j]), NULL, &flags); } return result; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1