Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rex Zhu | 4262 | 56.23% | 28 | 32.94% |
Xiaojian Du | 1072 | 14.14% | 4 | 4.71% |
Evan Quan | 559 | 7.38% | 9 | 10.59% |
Chengming Gui | 511 | 6.74% | 2 | 2.35% |
Mikita Lipski | 304 | 4.01% | 5 | 5.88% |
Alex Deucher | 187 | 2.47% | 7 | 8.24% |
Huang Rui | 151 | 1.99% | 4 | 4.71% |
Hawking Zhang | 147 | 1.94% | 4 | 4.71% |
Hersen Wu | 135 | 1.78% | 1 | 1.18% |
Sudheesh Mavila | 74 | 0.98% | 1 | 1.18% |
Prike Liang | 33 | 0.44% | 1 | 1.18% |
Andrey Grodzovsky | 30 | 0.40% | 1 | 1.18% |
Shirish S | 21 | 0.28% | 2 | 2.35% |
Eric Huang | 21 | 0.28% | 1 | 1.18% |
Gustavo A. R. Silva | 21 | 0.28% | 4 | 4.71% |
Dave Airlie | 13 | 0.17% | 1 | 1.18% |
changzhu | 8 | 0.11% | 1 | 1.18% |
mengwang | 7 | 0.09% | 1 | 1.18% |
Fengguang Wu | 6 | 0.08% | 1 | 1.18% |
Tom St Denis | 6 | 0.08% | 1 | 1.18% |
Darren Powell | 5 | 0.07% | 2 | 2.35% |
Nicholas Kazlauskas | 3 | 0.04% | 1 | 1.18% |
Masanari Iida | 1 | 0.01% | 1 | 1.18% |
Colin Ian King | 1 | 0.01% | 1 | 1.18% |
zhengbin | 1 | 0.01% | 1 | 1.18% |
Total | 7579 | 85 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include "atom-types.h" #include "atombios.h" #include "processpptables.h" #include "cgs_common.h" #include "smumgr.h" #include "hwmgr.h" #include "hardwaremanager.h" #include "rv_ppsmc.h" #include "smu10_hwmgr.h" #include "power_state.h" #include "soc15_common.h" #include "smu10.h" #include "asic_reg/pwr/pwr_10_0_offset.h" #include "asic_reg/pwr/pwr_10_0_sh_mask.h" #define SMU10_MAX_DEEPSLEEP_DIVIDER_ID 5 #define SMU10_MINIMUM_ENGINE_CLOCK 800 /* 8Mhz, the low boundary of engine clock allowed on this chip */ #define SCLK_MIN_DIV_INTV_SHIFT 12 #define SMU10_DISPCLK_BYPASS_THRESHOLD 10000 /* 100Mhz */ #define SMC_RAM_END 0x40000 static const unsigned long SMU10_Magic = (unsigned long) PHM_Rv_Magic; static int smu10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; PPSMC_Msg msg; switch (clk_type) { case amd_pp_dcf_clock: if (clk_freq == smu10_data->dcf_actual_hard_min_freq) return 0; msg = PPSMC_MSG_SetHardMinDcefclkByFreq; smu10_data->dcf_actual_hard_min_freq = clk_freq; break; case amd_pp_soc_clock: msg = PPSMC_MSG_SetHardMinSocclkByFreq; break; case amd_pp_f_clock: if (clk_freq == smu10_data->f_actual_hard_min_freq) return 0; smu10_data->f_actual_hard_min_freq = clk_freq; msg = PPSMC_MSG_SetHardMinFclkByFreq; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); return -EINVAL; } smum_send_msg_to_smc_with_parameter(hwmgr, msg, clk_freq, NULL); return 0; } static struct smu10_power_state *cast_smu10_ps(struct pp_hw_power_state *hw_ps) { if (SMU10_Magic != hw_ps->magic) return NULL; return (struct smu10_power_state *)hw_ps; } static const struct smu10_power_state *cast_const_smu10_ps( const struct pp_hw_power_state *hw_ps) { if (SMU10_Magic != hw_ps->magic) return NULL; return (struct smu10_power_state *)hw_ps; } static int smu10_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); smu10_data->dce_slow_sclk_threshold = 30000; smu10_data->thermal_auto_throttling_treshold = 0; smu10_data->is_nb_dpm_enabled = 1; smu10_data->dpm_flags = 1; smu10_data->need_min_deep_sleep_dcefclk = true; smu10_data->num_active_display = 0; smu10_data->deep_sleep_dcefclk = 0; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerPlaySupport); return 0; } static int smu10_construct_max_power_limits_table(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *table) { return 0; } static int smu10_init_dynamic_state_adjustment_rule_settings( struct pp_hwmgr *hwmgr) { int count = 8; struct phm_clock_voltage_dependency_table *table_clk_vlt; table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, count), GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("Can not allocate memory!\n"); return -ENOMEM; } table_clk_vlt->count = count; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1; table_clk_vlt->entries[1].v = 1; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2; table_clk_vlt->entries[2].v = 2; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3; table_clk_vlt->entries[3].v = 3; table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4; table_clk_vlt->entries[4].v = 4; table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5; table_clk_vlt->entries[5].v = 5; table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6; table_clk_vlt->entries[6].v = 6; table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7; table_clk_vlt->entries[7].v = 7; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; return 0; } static int smu10_get_system_info_data(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)hwmgr->backend; smu10_data->sys_info.htc_hyst_lmt = 5; smu10_data->sys_info.htc_tmp_lmt = 203; if (smu10_data->thermal_auto_throttling_treshold == 0) smu10_data->thermal_auto_throttling_treshold = 203; smu10_construct_max_power_limits_table (hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); smu10_init_dynamic_state_adjustment_rule_settings(hwmgr); return 0; } static int smu10_construct_boot_state(struct pp_hwmgr *hwmgr) { return 0; } static int smu10_set_clock_limit(struct pp_hwmgr *hwmgr, const void *input) { struct PP_Clocks clocks = {0}; struct pp_display_clock_request clock_req; clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; clock_req.clock_type = amd_pp_dcf_clock; clock_req.clock_freq_in_khz = clocks.dcefClock * 10; PP_ASSERT_WITH_CODE(!smu10_display_clock_voltage_request(hwmgr, &clock_req), "Attempt to set DCF Clock Failed!", return -EINVAL); return 0; } static int smu10_set_min_deep_sleep_dcefclk(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->deep_sleep_dcefclk != clock) { smu10_data->deep_sleep_dcefclk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, smu10_data->deep_sleep_dcefclk, NULL); } return 0; } static int smu10_set_hard_min_dcefclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->dcf_actual_hard_min_freq != clock) { smu10_data->dcf_actual_hard_min_freq = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinDcefclkByFreq, smu10_data->dcf_actual_hard_min_freq, NULL); } return 0; } static int smu10_set_hard_min_fclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->f_actual_hard_min_freq != clock) { smu10_data->f_actual_hard_min_freq = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, smu10_data->f_actual_hard_min_freq, NULL); } return 0; } static int smu10_set_hard_min_gfxclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->gfx_actual_soft_min_freq != clock) { smu10_data->gfx_actual_soft_min_freq = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, clock, NULL); } return 0; } static int smu10_set_soft_max_gfxclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->gfx_max_freq_limit != (clock * 100)) { smu10_data->gfx_max_freq_limit = clock * 100; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, clock, NULL); } return 0; } static int smu10_set_active_display_count(struct pp_hwmgr *hwmgr, uint32_t count) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (smu10_data->num_active_display != count) { smu10_data->num_active_display = count; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetDisplayCount, smu10_data->num_active_display, NULL); } return 0; } static int smu10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { return smu10_set_clock_limit(hwmgr, input); } static int smu10_init_power_gate_state(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; smu10_data->vcn_power_gated = true; smu10_data->isp_tileA_power_gated = true; smu10_data->isp_tileB_power_gated = true; if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetGfxCGPG, true, NULL); else return 0; } static int smu10_setup_asic_task(struct pp_hwmgr *hwmgr) { return smu10_init_power_gate_state(hwmgr); } static int smu10_reset_cc6_data(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); smu10_data->separation_time = 0; smu10_data->cc6_disable = false; smu10_data->pstate_disable = false; smu10_data->cc6_setting_changed = false; return 0; } static int smu10_power_off_asic(struct pp_hwmgr *hwmgr) { return smu10_reset_cc6_data(hwmgr); } static bool smu10_is_gfx_on(struct pp_hwmgr *hwmgr) { uint32_t reg; struct amdgpu_device *adev = hwmgr->adev; reg = RREG32_SOC15(PWR, 0, mmPWR_MISC_CNTL_STATUS); if ((reg & PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK) == (0x2 << PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT)) return true; return false; } static int smu10_disable_gfx_off(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; if (adev->pm.pp_feature & PP_GFXOFF_MASK) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableGfxOff, NULL); /* confirm gfx is back to "on" state */ while (!smu10_is_gfx_on(hwmgr)) msleep(1); } return 0; } static int smu10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { return 0; } static int smu10_enable_gfx_off(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; if (adev->pm.pp_feature & PP_GFXOFF_MASK) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableGfxOff, NULL); return 0; } static int smu10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); int ret = -EINVAL; if (adev->in_suspend) { pr_info("restore the fine grain parameters\n"); ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, smu10_data->gfx_actual_soft_min_freq, NULL); if (ret) return ret; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, smu10_data->gfx_actual_soft_max_freq, NULL); if (ret) return ret; } return 0; } static int smu10_gfx_off_control(struct pp_hwmgr *hwmgr, bool enable) { if (enable) return smu10_enable_gfx_off(hwmgr); else return smu10_disable_gfx_off(hwmgr); } static int smu10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *prequest_ps, const struct pp_power_state *pcurrent_ps) { return 0; } /* temporary hardcoded clock voltage breakdown tables */ static const DpmClock_t VddDcfClk[]= { { 300, 2600}, { 600, 3200}, { 600, 3600}, }; static const DpmClock_t VddSocClk[]= { { 478, 2600}, { 722, 3200}, { 722, 3600}, }; static const DpmClock_t VddFClk[]= { { 400, 2600}, {1200, 3200}, {1200, 3600}, }; static const DpmClock_t VddDispClk[]= { { 435, 2600}, { 661, 3200}, {1086, 3600}, }; static const DpmClock_t VddDppClk[]= { { 435, 2600}, { 661, 3200}, { 661, 3600}, }; static const DpmClock_t VddPhyClk[]= { { 540, 2600}, { 810, 3200}, { 810, 3600}, }; static int smu10_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr, struct smu10_voltage_dependency_table **pptable, uint32_t num_entry, const DpmClock_t *pclk_dependency_table) { uint32_t i; struct smu10_voltage_dependency_table *ptable; ptable = kzalloc(struct_size(ptable, entries, num_entry), GFP_KERNEL); if (NULL == ptable) return -ENOMEM; ptable->count = num_entry; for (i = 0; i < ptable->count; i++) { ptable->entries[i].clk = pclk_dependency_table->Freq * 100; ptable->entries[i].vol = pclk_dependency_table->Vol; pclk_dependency_table++; } *pptable = ptable; return 0; } static int smu10_populate_clock_table(struct pp_hwmgr *hwmgr) { uint32_t result; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); DpmClocks_t *table = &(smu10_data->clock_table); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); result = smum_smc_table_manager(hwmgr, (uint8_t *)table, SMU10_CLOCKTABLE, true); PP_ASSERT_WITH_CODE((0 == result), "Attempt to copy clock table from smc failed", return result); if (0 == result && table->DcefClocks[0].Freq != 0) { smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk, NUM_DCEFCLK_DPM_LEVELS, &smu10_data->clock_table.DcefClocks[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk, NUM_SOCCLK_DPM_LEVELS, &smu10_data->clock_table.SocClocks[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk, NUM_FCLK_DPM_LEVELS, &smu10_data->clock_table.FClocks[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk, NUM_MEMCLK_DPM_LEVELS, &smu10_data->clock_table.MemClocks[0]); } else { smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk, ARRAY_SIZE(VddDcfClk), &VddDcfClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk, ARRAY_SIZE(VddSocClk), &VddSocClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk, ARRAY_SIZE(VddFClk), &VddFClk[0]); } smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk, ARRAY_SIZE(VddDispClk), &VddDispClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk, ARRAY_SIZE(VddDppClk), &VddDppClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk, ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &result); smu10_data->gfx_min_freq_limit = result / 10 * 1000; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &result); smu10_data->gfx_max_freq_limit = result / 10 * 1000; return 0; } static int smu10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct smu10_hwmgr *data; data = kzalloc(sizeof(struct smu10_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; result = smu10_initialize_dpm_defaults(hwmgr); if (result != 0) { pr_err("smu10_initialize_dpm_defaults failed\n"); return result; } smu10_populate_clock_table(hwmgr); result = smu10_get_system_info_data(hwmgr); if (result != 0) { pr_err("smu10_get_system_info_data failed\n"); return result; } smu10_construct_boot_state(hwmgr); hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = SMU10_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = SMU10_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.vbiosInterruptId = 0; hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; hwmgr->pstate_sclk = SMU10_UMD_PSTATE_GFXCLK * 100; hwmgr->pstate_mclk = SMU10_UMD_PSTATE_FCLK * 100; /* enable the pp_od_clk_voltage sysfs file */ hwmgr->od_enabled = 1; /* disabled fine grain tuning function by default */ data->fine_grain_enabled = 0; return result; } static int smu10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); kfree(pinfo->vdd_dep_on_dcefclk); pinfo->vdd_dep_on_dcefclk = NULL; kfree(pinfo->vdd_dep_on_socclk); pinfo->vdd_dep_on_socclk = NULL; kfree(pinfo->vdd_dep_on_fclk); pinfo->vdd_dep_on_fclk = NULL; kfree(pinfo->vdd_dep_on_dispclk); pinfo->vdd_dep_on_dispclk = NULL; kfree(pinfo->vdd_dep_on_dppclk); pinfo->vdd_dep_on_dppclk = NULL; kfree(pinfo->vdd_dep_on_phyclk); pinfo->vdd_dep_on_phyclk = NULL; kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int smu10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { struct smu10_hwmgr *data = hwmgr->backend; uint32_t min_sclk = hwmgr->display_config->min_core_set_clock; uint32_t min_mclk = hwmgr->display_config->min_mem_set_clock/100; uint32_t index_fclk = data->clock_vol_info.vdd_dep_on_fclk->count - 1; uint32_t index_socclk = data->clock_vol_info.vdd_dep_on_socclk->count - 1; uint32_t fine_grain_min_freq = 0, fine_grain_max_freq = 0; if (hwmgr->smu_version < 0x1E3700) { pr_info("smu firmware version too old, can not set dpm level\n"); return 0; } if (min_sclk < data->gfx_min_freq_limit) min_sclk = data->gfx_min_freq_limit; min_sclk /= 100; /* transfer 10KHz to MHz */ if (min_mclk < data->clock_table.FClocks[0].Freq) min_mclk = data->clock_table.FClocks[0].Freq; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, data->gfx_max_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, SMU10_UMD_PSTATE_PEAK_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinSocclkByFreq, SMU10_UMD_PSTATE_PEAK_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinVcn, SMU10_UMD_PSTATE_VCE, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, data->gfx_max_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, SMU10_UMD_PSTATE_PEAK_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxSocclkByFreq, SMU10_UMD_PSTATE_PEAK_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxVcn, SMU10_UMD_PSTATE_VCE, NULL); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, min_sclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, min_sclk, NULL); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, min_mclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, min_mclk, NULL); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, SMU10_UMD_PSTATE_GFXCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, SMU10_UMD_PSTATE_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinSocclkByFreq, SMU10_UMD_PSTATE_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinVcn, SMU10_UMD_PSTATE_PROFILE_VCE, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, SMU10_UMD_PSTATE_GFXCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, SMU10_UMD_PSTATE_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxSocclkByFreq, SMU10_UMD_PSTATE_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxVcn, SMU10_UMD_PSTATE_PROFILE_VCE, NULL); break; case AMD_DPM_FORCED_LEVEL_AUTO: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, min_sclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, hwmgr->display_config->num_display > 3 ? (data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk / 100) : min_mclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinSocclkByFreq, data->clock_vol_info.vdd_dep_on_socclk->entries[0].clk / 100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinVcn, SMU10_UMD_PSTATE_MIN_VCE, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, data->gfx_max_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, data->clock_vol_info.vdd_dep_on_fclk->entries[index_fclk].clk / 100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxSocclkByFreq, data->clock_vol_info.vdd_dep_on_socclk->entries[index_socclk].clk / 100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxVcn, SMU10_UMD_PSTATE_VCE, NULL); break; case AMD_DPM_FORCED_LEVEL_LOW: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, data->gfx_min_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, data->gfx_min_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, min_mclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, min_mclk, NULL); break; case AMD_DPM_FORCED_LEVEL_MANUAL: data->fine_grain_enabled = 1; break; case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return 0; } static uint32_t smu10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct smu10_hwmgr *data; if (hwmgr == NULL) return -EINVAL; data = (struct smu10_hwmgr *)(hwmgr->backend); if (low) return data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk; else return data->clock_vol_info.vdd_dep_on_fclk->entries[ data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk; } static uint32_t smu10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct smu10_hwmgr *data; if (hwmgr == NULL) return -EINVAL; data = (struct smu10_hwmgr *)(hwmgr->backend); if (low) return data->gfx_min_freq_limit; else return data->gfx_max_freq_limit; } static int smu10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { return 0; } static int smu10_dpm_get_pp_table_entry_callback( struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps, unsigned int index, const void *clock_info) { struct smu10_power_state *smu10_ps = cast_smu10_ps(hw_ps); smu10_ps->levels[index].engine_clock = 0; smu10_ps->levels[index].vddc_index = 0; smu10_ps->level = index + 1; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { smu10_ps->levels[index].ds_divider_index = 5; smu10_ps->levels[index].ss_divider_index = 5; } return 0; } static int smu10_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } static int smu10_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry, struct pp_power_state *ps) { int result; struct smu10_power_state *smu10_ps; ps->hardware.magic = SMU10_Magic; smu10_ps = cast_smu10_ps(&(ps->hardware)); result = pp_tables_get_entry(hwmgr, entry, ps, smu10_dpm_get_pp_table_entry_callback); smu10_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK; smu10_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK; return result; } static int smu10_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct smu10_power_state); } static int smu10_set_cpu_power_state(struct pp_hwmgr *hwmgr) { return 0; } static int smu10_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time, bool cc6_disable, bool pstate_disable, bool pstate_switch_disable) { struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend); if (separation_time != data->separation_time || cc6_disable != data->cc6_disable || pstate_disable != data->pstate_disable) { data->separation_time = separation_time; data->cc6_disable = cc6_disable; data->pstate_disable = pstate_disable; data->cc6_setting_changed = true; } return 0; } static int smu10_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { return -EINVAL; } static int smu10_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct smu10_hwmgr *data = hwmgr->backend; struct smu10_voltage_dependency_table *mclk_table = data->clock_vol_info.vdd_dep_on_fclk; uint32_t low, high; low = mask ? (ffs(mask) - 1) : 0; high = mask ? (fls(mask) - 1) : 0; switch (type) { case PP_SCLK: if (low > 2 || high > 2) { pr_info("Currently sclk only support 3 levels on RV\n"); return -EINVAL; } smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, low == 2 ? data->gfx_max_freq_limit/100 : low == 1 ? SMU10_UMD_PSTATE_GFXCLK : data->gfx_min_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, high == 0 ? data->gfx_min_freq_limit/100 : high == 1 ? SMU10_UMD_PSTATE_GFXCLK : data->gfx_max_freq_limit/100, NULL); break; case PP_MCLK: if (low > mclk_table->count - 1 || high > mclk_table->count - 1) return -EINVAL; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, mclk_table->entries[low].clk/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, mclk_table->entries[high].clk/100, NULL); break; case PP_PCIE: default: break; } return 0; } static int smu10_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_voltage_dependency_table *mclk_table = data->clock_vol_info.vdd_dep_on_fclk; uint32_t i, now, size = 0; uint32_t min_freq, max_freq = 0; uint32_t ret = 0; switch (type) { case PP_SCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency, &now); /* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */ if (now == data->gfx_max_freq_limit/100) i = 2; else if (now == data->gfx_min_freq_limit/100) i = 0; else i = 1; size += sprintf(buf + size, "0: %uMhz %s\n", data->gfx_min_freq_limit/100, i == 0 ? "*" : ""); size += sprintf(buf + size, "1: %uMhz %s\n", i == 1 ? now : SMU10_UMD_PSTATE_GFXCLK, i == 1 ? "*" : ""); size += sprintf(buf + size, "2: %uMhz %s\n", data->gfx_max_freq_limit/100, i == 2 ? "*" : ""); break; case PP_MCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency, &now); for (i = 0; i < mclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, mclk_table->entries[i].clk / 100, ((mclk_table->entries[i].clk / 100) == now) ? "*" : ""); break; case OD_SCLK: if (hwmgr->od_enabled) { ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); if (ret) return ret; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); if (ret) return ret; size += sprintf(buf + size, "%s:\n", "OD_SCLK"); size += sprintf(buf + size, "0: %10uMhz\n", (data->gfx_actual_soft_min_freq > 0) ? data->gfx_actual_soft_min_freq : min_freq); size += sprintf(buf + size, "1: %10uMhz\n", (data->gfx_actual_soft_max_freq > 0) ? data->gfx_actual_soft_max_freq : max_freq); } break; case OD_RANGE: if (hwmgr->od_enabled) { ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); if (ret) return ret; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); if (ret) return ret; size += sprintf(buf + size, "%s:\n", "OD_RANGE"); size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", min_freq, max_freq); } break; default: break; } return size; } static int smu10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { struct smu10_hwmgr *data; if (level == NULL || hwmgr == NULL || state == NULL) return -EINVAL; data = (struct smu10_hwmgr *)(hwmgr->backend); if (index == 0) { level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk; level->coreClock = data->gfx_min_freq_limit; } else { level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[ data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk; level->coreClock = data->gfx_max_freq_limit; } level->nonLocalMemoryFreq = 0; level->nonLocalMemoryWidth = 0; return 0; } static int smu10_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, struct pp_clock_info *clock_info) { const struct smu10_power_state *ps = cast_const_smu10_ps(state); clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index)); clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index)); return 0; } #define MEM_FREQ_LOW_LATENCY 25000 #define MEM_FREQ_HIGH_LATENCY 80000 #define MEM_LATENCY_HIGH 245 #define MEM_LATENCY_LOW 35 #define MEM_LATENCY_ERR 0xFFFF static uint32_t smu10_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clock) { if (clock >= MEM_FREQ_LOW_LATENCY && clock < MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_HIGH; else if (clock >= MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_LOW; else return MEM_LATENCY_ERR; } static int smu10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { uint32_t i; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); struct smu10_voltage_dependency_table *pclk_vol_table; bool latency_required = false; if (pinfo == NULL) return -EINVAL; switch (type) { case amd_pp_mem_clock: pclk_vol_table = pinfo->vdd_dep_on_mclk; latency_required = true; break; case amd_pp_f_clock: pclk_vol_table = pinfo->vdd_dep_on_fclk; latency_required = true; break; case amd_pp_dcf_clock: pclk_vol_table = pinfo->vdd_dep_on_dcefclk; break; case amd_pp_disp_clock: pclk_vol_table = pinfo->vdd_dep_on_dispclk; break; case amd_pp_phy_clock: pclk_vol_table = pinfo->vdd_dep_on_phyclk; break; case amd_pp_dpp_clock: pclk_vol_table = pinfo->vdd_dep_on_dppclk; break; default: return -EINVAL; } if (pclk_vol_table == NULL || pclk_vol_table->count == 0) return -EINVAL; clocks->num_levels = 0; for (i = 0; i < pclk_vol_table->count; i++) { if (pclk_vol_table->entries[i].clk) { clocks->data[clocks->num_levels].clocks_in_khz = pclk_vol_table->entries[i].clk * 10; clocks->data[clocks->num_levels].latency_in_us = latency_required ? smu10_get_mem_latency(hwmgr, pclk_vol_table->entries[i].clk) : 0; clocks->num_levels++; } } return 0; } static int smu10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { uint32_t i; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); struct smu10_voltage_dependency_table *pclk_vol_table = NULL; if (pinfo == NULL) return -EINVAL; switch (type) { case amd_pp_mem_clock: pclk_vol_table = pinfo->vdd_dep_on_mclk; break; case amd_pp_f_clock: pclk_vol_table = pinfo->vdd_dep_on_fclk; break; case amd_pp_dcf_clock: pclk_vol_table = pinfo->vdd_dep_on_dcefclk; break; case amd_pp_soc_clock: pclk_vol_table = pinfo->vdd_dep_on_socclk; break; case amd_pp_disp_clock: pclk_vol_table = pinfo->vdd_dep_on_dispclk; break; case amd_pp_phy_clock: pclk_vol_table = pinfo->vdd_dep_on_phyclk; break; default: return -EINVAL; } if (pclk_vol_table == NULL || pclk_vol_table->count == 0) return -EINVAL; clocks->num_levels = 0; for (i = 0; i < pclk_vol_table->count; i++) { if (pclk_vol_table->entries[i].clk) { clocks->data[clocks->num_levels].clocks_in_khz = pclk_vol_table->entries[i].clk * 10; clocks->data[clocks->num_levels].voltage_in_mv = pclk_vol_table->entries[i].vol; clocks->num_levels++; } } return 0; } static int smu10_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks) { clocks->engine_max_clock = 80000; /* driver can't get engine clock, temp hard code to 800MHz */ return 0; } static int smu10_thermal_get_temperature(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; uint32_t reg_value = RREG32_SOC15(THM, 0, mmTHM_TCON_CUR_TMP); int cur_temp = (reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT; if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK) cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; else cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return cur_temp; } static int smu10_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; uint32_t sclk, mclk, activity_percent; bool has_gfx_busy; int ret = 0; /* GetGfxBusy support was added on RV SMU FW 30.85.00 and PCO 4.30.59 */ if ((adev->apu_flags & AMD_APU_IS_PICASSO) && (hwmgr->smu_version >= 0x41e3b)) has_gfx_busy = true; else if ((adev->apu_flags & AMD_APU_IS_RAVEN) && (hwmgr->smu_version >= 0x1e5500)) has_gfx_busy = true; else has_gfx_busy = false; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency, &sclk); /* in units of 10KHZ */ *((uint32_t *)value) = sclk * 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency, &mclk); /* in units of 10KHZ */ *((uint32_t *)value) = mclk * 100; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = smu10_thermal_get_temperature(hwmgr); break; case AMDGPU_PP_SENSOR_VCN_POWER_STATE: *(uint32_t *)value = smu10_data->vcn_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: if (!has_gfx_busy) ret = -EOPNOTSUPP; else { ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxBusy, &activity_percent); if (!ret) *((uint32_t *)value) = min(activity_percent, (u32)100); else ret = -EIO; } break; default: ret = -EOPNOTSUPP; break; } return ret; } static int smu10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, void *clock_ranges) { struct smu10_hwmgr *data = hwmgr->backend; struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges; Watermarks_t *table = &(data->water_marks_table); struct amdgpu_device *adev = hwmgr->adev; int i; smu_set_watermarks_for_clocks_ranges(table,wm_with_clock_ranges); if (adev->apu_flags & AMD_APU_IS_RAVEN2) { for (i = 0; i < NUM_WM_RANGES; i++) table->WatermarkRow[WM_DCFCLK][i].WmType = (uint8_t)0; for (i = 0; i < NUM_WM_RANGES; i++) table->WatermarkRow[WM_SOCCLK][i].WmType = (uint8_t)0; } smum_smc_table_manager(hwmgr, (uint8_t *)table, (uint16_t)SMU10_WMTABLE, false); data->water_marks_exist = true; return 0; } static int smu10_smus_notify_pwe(struct pp_hwmgr *hwmgr) { return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SetRccPfcPmeRestoreRegister, NULL); } static int smu10_powergate_mmhub(struct pp_hwmgr *hwmgr) { return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerGateMmHub, NULL); } static int smu10_powergate_sdma(struct pp_hwmgr *hwmgr, bool gate) { if (gate) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerDownSdma, NULL); else return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerUpSdma, NULL); } static void smu10_powergate_vcn(struct pp_hwmgr *hwmgr, bool bgate) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (bgate) { amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCN, AMD_PG_STATE_GATE); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PowerDownVcn, 0, NULL); smu10_data->vcn_power_gated = true; } else { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PowerUpVcn, 0, NULL); amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCN, AMD_PG_STATE_UNGATE); smu10_data->vcn_power_gated = false; } } static int conv_power_profile_to_pplib_workload(int power_profile) { int pplib_workload = 0; switch (power_profile) { case PP_SMC_POWER_PROFILE_FULLSCREEN3D: pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT; break; case PP_SMC_POWER_PROFILE_VIDEO: pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT; break; case PP_SMC_POWER_PROFILE_VR: pplib_workload = WORKLOAD_PPLIB_VR_BIT; break; case PP_SMC_POWER_PROFILE_COMPUTE: pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT; break; case PP_SMC_POWER_PROFILE_CUSTOM: pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT; break; } return pplib_workload; } static int smu10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) { uint32_t i, size = 0; static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, {70, 60, 1, 3,}, {90, 60, 0, 0,}, {70, 60, 0, 0,}, {70, 90, 0, 0,}, {30, 60, 0, 6,}, }; static const char *title[6] = {"NUM", "MODE_NAME", "BUSY_SET_POINT", "FPS", "USE_RLC_BUSY", "MIN_ACTIVE_LEVEL"}; if (!buf) return -EINVAL; phm_get_sysfs_buf(&buf, &size); size += sysfs_emit_at(buf, size, "%s %16s %s %s %s %s\n",title[0], title[1], title[2], title[3], title[4], title[5]); for (i = 0; i <= PP_SMC_POWER_PROFILE_COMPUTE; i++) size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n", i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", profile_mode_setting[i][0], profile_mode_setting[i][1], profile_mode_setting[i][2], profile_mode_setting[i][3]); return size; } static bool smu10_is_raven1_refresh(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; if ((adev->apu_flags & AMD_APU_IS_RAVEN) && (hwmgr->smu_version >= 0x41e2b)) return true; else return false; } static int smu10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) { int workload_type = 0; int result = 0; if (input[size] > PP_SMC_POWER_PROFILE_COMPUTE) { pr_err("Invalid power profile mode %ld\n", input[size]); return -EINVAL; } if (hwmgr->power_profile_mode == input[size]) return 0; /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = conv_power_profile_to_pplib_workload(input[size]); if (workload_type && smu10_is_raven1_refresh(hwmgr) && !hwmgr->gfxoff_state_changed_by_workload) { smu10_gfx_off_control(hwmgr, false); hwmgr->gfxoff_state_changed_by_workload = true; } result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_ActiveProcessNotify, 1 << workload_type, NULL); if (!result) hwmgr->power_profile_mode = input[size]; if (workload_type && hwmgr->gfxoff_state_changed_by_workload) { smu10_gfx_off_control(hwmgr, true); hwmgr->gfxoff_state_changed_by_workload = false; } return 0; } static int smu10_asic_reset(struct pp_hwmgr *hwmgr, enum SMU_ASIC_RESET_MODE mode) { return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DeviceDriverReset, mode, NULL); } static int smu10_set_fine_grain_clk_vol(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { uint32_t min_freq, max_freq = 0; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); int ret = 0; if (!hwmgr->od_enabled) { pr_err("Fine grain not support\n"); return -EINVAL; } if (!smu10_data->fine_grain_enabled) { pr_err("pp_od_clk_voltage is not accessible if power_dpm_force_performance_level is not in manual mode!\n"); return -EINVAL; } if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { if (size != 2) { pr_err("Input parameter number not correct\n"); return -EINVAL; } if (input[0] == 0) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); if (input[1] < min_freq) { pr_err("Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n", input[1], min_freq); return -EINVAL; } smu10_data->gfx_actual_soft_min_freq = input[1]; } else if (input[0] == 1) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); if (input[1] > max_freq) { pr_err("Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n", input[1], max_freq); return -EINVAL; } smu10_data->gfx_actual_soft_max_freq = input[1]; } else { return -EINVAL; } } else if (type == PP_OD_RESTORE_DEFAULT_TABLE) { if (size != 0) { pr_err("Input parameter number not correct\n"); return -EINVAL; } smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); smu10_data->gfx_actual_soft_min_freq = min_freq; smu10_data->gfx_actual_soft_max_freq = max_freq; } else if (type == PP_OD_COMMIT_DPM_TABLE) { if (size != 0) { pr_err("Input parameter number not correct\n"); return -EINVAL; } if (smu10_data->gfx_actual_soft_min_freq > smu10_data->gfx_actual_soft_max_freq) { pr_err("The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n", smu10_data->gfx_actual_soft_min_freq, smu10_data->gfx_actual_soft_max_freq); return -EINVAL; } ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, smu10_data->gfx_actual_soft_min_freq, NULL); if (ret) return ret; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, smu10_data->gfx_actual_soft_max_freq, NULL); if (ret) return ret; } else { return -EINVAL; } return 0; } static int smu10_gfx_state_change(struct pp_hwmgr *hwmgr, uint32_t state) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GpuChangeState, state, NULL); return 0; } static const struct pp_hwmgr_func smu10_hwmgr_funcs = { .backend_init = smu10_hwmgr_backend_init, .backend_fini = smu10_hwmgr_backend_fini, .apply_state_adjust_rules = smu10_apply_state_adjust_rules, .force_dpm_level = smu10_dpm_force_dpm_level, .get_power_state_size = smu10_get_power_state_size, .powerdown_uvd = NULL, .powergate_uvd = smu10_powergate_vcn, .powergate_vce = NULL, .get_mclk = smu10_dpm_get_mclk, .get_sclk = smu10_dpm_get_sclk, .patch_boot_state = smu10_dpm_patch_boot_state, .get_pp_table_entry = smu10_dpm_get_pp_table_entry, .get_num_of_pp_table_entries = smu10_dpm_get_num_of_pp_table_entries, .set_cpu_power_state = smu10_set_cpu_power_state, .store_cc6_data = smu10_store_cc6_data, .force_clock_level = smu10_force_clock_level, .print_clock_levels = smu10_print_clock_levels, .get_dal_power_level = smu10_get_dal_power_level, .get_performance_level = smu10_get_performance_level, .get_current_shallow_sleep_clocks = smu10_get_current_shallow_sleep_clocks, .get_clock_by_type_with_latency = smu10_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = smu10_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = smu10_set_watermarks_for_clocks_ranges, .get_max_high_clocks = smu10_get_max_high_clocks, .read_sensor = smu10_read_sensor, .set_active_display_count = smu10_set_active_display_count, .set_min_deep_sleep_dcefclk = smu10_set_min_deep_sleep_dcefclk, .dynamic_state_management_enable = smu10_enable_dpm_tasks, .power_off_asic = smu10_power_off_asic, .asic_setup = smu10_setup_asic_task, .power_state_set = smu10_set_power_state_tasks, .dynamic_state_management_disable = smu10_disable_dpm_tasks, .powergate_mmhub = smu10_powergate_mmhub, .smus_notify_pwe = smu10_smus_notify_pwe, .display_clock_voltage_request = smu10_display_clock_voltage_request, .powergate_gfx = smu10_gfx_off_control, .powergate_sdma = smu10_powergate_sdma, .set_hard_min_dcefclk_by_freq = smu10_set_hard_min_dcefclk_by_freq, .set_hard_min_fclk_by_freq = smu10_set_hard_min_fclk_by_freq, .set_hard_min_gfxclk_by_freq = smu10_set_hard_min_gfxclk_by_freq, .set_soft_max_gfxclk_by_freq = smu10_set_soft_max_gfxclk_by_freq, .get_power_profile_mode = smu10_get_power_profile_mode, .set_power_profile_mode = smu10_set_power_profile_mode, .asic_reset = smu10_asic_reset, .set_fine_grain_clk_vol = smu10_set_fine_grain_clk_vol, .gfx_state_change = smu10_gfx_state_change, }; int smu10_init_function_pointers(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &smu10_hwmgr_funcs; hwmgr->pptable_func = &pptable_funcs; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1