Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rex Zhu | 3347 | 89.61% | 8 | 38.10% |
Alex Deucher | 194 | 5.19% | 2 | 9.52% |
Evan Quan | 169 | 4.52% | 5 | 23.81% |
Andrey Grodzovsky | 9 | 0.24% | 1 | 4.76% |
Gustavo A. R. Silva | 8 | 0.21% | 1 | 4.76% |
Lee Jones | 3 | 0.08% | 1 | 4.76% |
Sam Ravnborg | 3 | 0.08% | 1 | 4.76% |
David Francis | 1 | 0.03% | 1 | 4.76% |
Christian König | 1 | 0.03% | 1 | 4.76% |
Total | 3735 | 21 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/pci.h> #include <linux/reboot.h> #include "hwmgr.h" #include "pp_debug.h" #include "ppatomctrl.h" #include "ppsmc.h" #include "atom.h" #include "ivsrcid/thm/irqsrcs_thm_9_0.h" #include "ivsrcid/smuio/irqsrcs_smuio_9_0.h" #include "ivsrcid/ivsrcid_vislands30.h" uint8_t convert_to_vid(uint16_t vddc) { return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25); } uint16_t convert_to_vddc(uint8_t vid) { return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE); } int phm_copy_clock_limits_array( struct pp_hwmgr *hwmgr, uint32_t **pptable_info_array, const uint32_t *pptable_array, uint32_t power_saving_clock_count) { uint32_t array_size, i; uint32_t *table; array_size = sizeof(uint32_t) * power_saving_clock_count; table = kzalloc(array_size, GFP_KERNEL); if (NULL == table) return -ENOMEM; for (i = 0; i < power_saving_clock_count; i++) table[i] = le32_to_cpu(pptable_array[i]); *pptable_info_array = table; return 0; } int phm_copy_overdrive_settings_limits_array( struct pp_hwmgr *hwmgr, uint32_t **pptable_info_array, const uint32_t *pptable_array, uint32_t od_setting_count) { uint32_t array_size, i; uint32_t *table; array_size = sizeof(uint32_t) * od_setting_count; table = kzalloc(array_size, GFP_KERNEL); if (NULL == table) return -ENOMEM; for (i = 0; i < od_setting_count; i++) table[i] = le32_to_cpu(pptable_array[i]); *pptable_info_array = table; return 0; } uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size) { u32 mask = 0; u32 shift = 0; shift = (offset % 4) << 3; if (size == sizeof(uint8_t)) mask = 0xFF << shift; else if (size == sizeof(uint16_t)) mask = 0xFFFF << shift; original_data &= ~mask; original_data |= (field << shift); return original_data; } /* * Returns once the part of the register indicated by the mask has * reached the given value. */ int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index, uint32_t value, uint32_t mask) { uint32_t i; uint32_t cur_value; if (hwmgr == NULL || hwmgr->device == NULL) { pr_err("Invalid Hardware Manager!"); return -EINVAL; } for (i = 0; i < hwmgr->usec_timeout; i++) { cur_value = cgs_read_register(hwmgr->device, index); if ((cur_value & mask) == (value & mask)) break; udelay(1); } /* timeout means wrong logic*/ if (i == hwmgr->usec_timeout) return -1; return 0; } /* * Returns once the part of the register indicated by the mask has * reached the given value.The indirect space is described by giving * the memory-mapped index of the indirect index register. */ int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr, uint32_t indirect_port, uint32_t index, uint32_t value, uint32_t mask) { if (hwmgr == NULL || hwmgr->device == NULL) { pr_err("Invalid Hardware Manager!"); return -EINVAL; } cgs_write_register(hwmgr->device, indirect_port, index); return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value); } int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr, uint32_t index, uint32_t value, uint32_t mask) { uint32_t i; uint32_t cur_value; if (hwmgr == NULL || hwmgr->device == NULL) return -EINVAL; for (i = 0; i < hwmgr->usec_timeout; i++) { cur_value = cgs_read_register(hwmgr->device, index); if ((cur_value & mask) != (value & mask)) break; udelay(1); } /* timeout means wrong logic */ if (i == hwmgr->usec_timeout) return -ETIME; return 0; } int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr, uint32_t indirect_port, uint32_t index, uint32_t value, uint32_t mask) { if (hwmgr == NULL || hwmgr->device == NULL) return -EINVAL; cgs_write_register(hwmgr->device, indirect_port, index); return phm_wait_for_register_unequal(hwmgr, indirect_port + 1, value, mask); } bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr) { return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); } bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr) { return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); } int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table) { uint32_t i, j; uint16_t vvalue; bool found = false; struct pp_atomctrl_voltage_table *table; PP_ASSERT_WITH_CODE((NULL != vol_table), "Voltage Table empty.", return -EINVAL); table = kzalloc(sizeof(struct pp_atomctrl_voltage_table), GFP_KERNEL); if (NULL == table) return -EINVAL; table->mask_low = vol_table->mask_low; table->phase_delay = vol_table->phase_delay; for (i = 0; i < vol_table->count; i++) { vvalue = vol_table->entries[i].value; found = false; for (j = 0; j < table->count; j++) { if (vvalue == table->entries[j].value) { found = true; break; } } if (!found) { table->entries[table->count].value = vvalue; table->entries[table->count].smio_low = vol_table->entries[i].smio_low; table->count++; } } memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table)); kfree(table); table = NULL; return 0; } int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].mvdd; vol_table->entries[i].smio_low = 0; } result = phm_trim_voltage_table(vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim MVDD table.", return result); return 0; } int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddci; vol_table->entries[i].smio_low = 0; } result = phm_trim_voltage_table(vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim VDDCI table.", return result); return 0; } int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_voltage_lookup_table *lookup_table) { int i = 0; PP_ASSERT_WITH_CODE((0 != lookup_table->count), "Voltage Lookup Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = lookup_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = lookup_table->entries[i].us_vdd; vol_table->entries[i].smio_low = 0; } return 0; } void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table) { unsigned int i, diff; if (vol_table->count <= max_vol_steps) return; diff = vol_table->count - max_vol_steps; for (i = 0; i < max_vol_steps; i++) vol_table->entries[i] = vol_table->entries[i + diff]; vol_table->count = max_vol_steps; return; } int phm_reset_single_dpm_table(void *table, uint32_t count, int max) { int i; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; dpm_table->count = count > max ? max : count; for (i = 0; i < dpm_table->count; i++) dpm_table->dpm_level[i].enabled = false; return 0; } void phm_setup_pcie_table_entry( void *table, uint32_t index, uint32_t pcie_gen, uint32_t pcie_lanes) { struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; dpm_table->dpm_level[index].value = pcie_gen; dpm_table->dpm_level[index].param1 = pcie_lanes; dpm_table->dpm_level[index].enabled = 1; } int32_t phm_get_dpm_level_enable_mask_value(void *table) { int32_t i; int32_t mask = 0; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; for (i = dpm_table->count; i > 0; i--) { mask = mask << 1; if (dpm_table->dpm_level[i - 1].enabled) mask |= 0x1; else mask &= 0xFFFFFFFE; } return mask; } uint8_t phm_get_voltage_index( struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage) { uint8_t count = (uint8_t) (lookup_table->count); uint8_t i; PP_ASSERT_WITH_CODE((NULL != lookup_table), "Lookup Table empty.", return 0); PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0); for (i = 0; i < lookup_table->count; i++) { /* find first voltage equal or bigger than requested */ if (lookup_table->entries[i].us_vdd >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i - 1; } uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table, uint32_t voltage) { uint8_t count = (uint8_t) (voltage_table->count); uint8_t i = 0; PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return 0;); PP_ASSERT_WITH_CODE((0 != count), "Voltage Table empty.", return 0;); for (i = 0; i < count; i++) { /* find first voltage bigger than requested */ if (voltage_table->entries[i].value >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i - 1; } uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci) { uint32_t i; for (i = 0; i < vddci_table->count; i++) { if (vddci_table->entries[i].value >= vddci) return vddci_table->entries[i].value; } pr_debug("vddci is larger than max value in vddci_table\n"); return vddci_table->entries[i-1].value; } int phm_find_boot_level(void *table, uint32_t value, uint32_t *boot_level) { int result = -EINVAL; uint32_t i; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; for (i = 0; i < dpm_table->count; i++) { if (value == dpm_table->dpm_level[i].value) { *boot_level = i; result = 0; } } return result; } int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t virtual_voltage_id, int32_t *sclk) { uint8_t entry_id; uint8_t voltage_id; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL); /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd; if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) break; } if (entry_id >= table_info->vdd_dep_on_sclk->count) { pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n"); return -EINVAL; } *sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk; return 0; } /** * phm_initializa_dynamic_state_adjustment_rule_settings - Initialize Dynamic State Adjustment Rule Settings * * @hwmgr: the address of the powerplay hardware manager. */ int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr) { struct phm_clock_voltage_dependency_table *table_clk_vlt; struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); /* initialize vddc_dep_on_dal_pwrl table */ table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, 4), GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n"); return -ENOMEM; } else { table_clk_vlt->count = 4; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW; if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) table_clk_vlt->entries[0].v = 700; else table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW; if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) table_clk_vlt->entries[1].v = 740; else table_clk_vlt->entries[1].v = 720; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL; if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) table_clk_vlt->entries[2].v = 800; else table_clk_vlt->entries[2].v = 810; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE; table_clk_vlt->entries[3].v = 900; if (pptable_info != NULL) pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; } return 0; } uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask) { uint32_t level = 0; while (0 == (mask & (1 << level))) level++; return level; } void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_clock_voltage_dependency_table *table = table_info->vddc_dep_on_dal_pwrl; struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table; enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level; uint32_t req_vddc = 0, req_volt, i; if (!table || table->count <= 0 || dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW || dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE) return; for (i = 0; i < table->count; i++) { if (dal_power_level == table->entries[i].clk) { req_vddc = table->entries[i].v; break; } } vddc_table = table_info->vdd_dep_on_sclk; for (i = 0; i < vddc_table->count; i++) { if (req_vddc <= vddc_table->entries[i].vddc) { req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VddC_Request, req_volt, NULL); return; } } pr_err("DAL requested level can not" " found a available voltage in VDDC DPM Table \n"); } int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t id, uint16_t *voltage) { uint32_t vol; int ret = 0; if (hwmgr->chip_id < CHIP_TONGA) { ret = atomctrl_get_voltage_evv(hwmgr, id, voltage); } else if (hwmgr->chip_id < CHIP_POLARIS10) { ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage); if (*voltage >= 2000 || *voltage == 0) *voltage = 1150; } else { ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol); *voltage = (uint16_t)(vol/100); } return ret; } int phm_irq_process(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { uint32_t client_id = entry->client_id; uint32_t src_id = entry->src_id; if (client_id == AMDGPU_IRQ_CLIENTID_LEGACY) { if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH) { dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n"); /* * SW CTF just occurred. * Try to do a graceful shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n"); orderly_poweroff(true); } else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW) dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n"); else if (src_id == VISLANDS30_IV_SRCID_GPIO_19) { dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n"); /* * HW CTF just occurred. Shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n"); orderly_poweroff(true); } } else if (client_id == SOC15_IH_CLIENTID_THM) { if (src_id == 0) { dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n"); /* * SW CTF just occurred. * Try to do a graceful shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n"); orderly_poweroff(true); } else dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n"); } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) { dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n"); /* * HW CTF just occurred. Shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n"); orderly_poweroff(true); } return 0; } static const struct amdgpu_irq_src_funcs smu9_irq_funcs = { .process = phm_irq_process, }; int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr) { struct amdgpu_irq_src *source = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); if (!source) return -ENOMEM; source->funcs = &smu9_irq_funcs; amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), SOC15_IH_CLIENTID_THM, THM_9_0__SRCID__THM_DIG_THERM_L2H, source); amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), SOC15_IH_CLIENTID_THM, THM_9_0__SRCID__THM_DIG_THERM_H2L, source); /* Register CTF(GPIO_19) interrupt */ amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), SOC15_IH_CLIENTID_ROM_SMUIO, SMUIO_9_0__SRCID__SMUIO_GPIO19, source); return 0; } void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size, uint8_t *frev, uint8_t *crev) { struct amdgpu_device *adev = dev; uint16_t data_start; if (amdgpu_atom_parse_data_header( adev->mode_info.atom_context, table, size, frev, crev, &data_start)) return (uint8_t *)adev->mode_info.atom_context->bios + data_start; return NULL; } int smu_get_voltage_dependency_table_ppt_v1( const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint8_t i = 0; PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count), "Voltage Lookup Table empty", return -EINVAL); dep_table->count = allowed_dep_table->count; for (i=0; i<dep_table->count; i++) { dep_table->entries[i].clk = allowed_dep_table->entries[i].clk; dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd; dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset; dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc; dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx; dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci; dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd; dep_table->entries[i].phases = allowed_dep_table->entries[i].phases; dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable; dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset; } return 0; } int smu_set_watermarks_for_clocks_ranges(void *wt_table, struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges) { uint32_t i; struct watermarks *table = wt_table; if (!table || !wm_with_clock_ranges) return -EINVAL; if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4) return -EINVAL; for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) { table->WatermarkRow[1][i].MinClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MinUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].WmSetting = (uint8_t) wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; } for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) { table->WatermarkRow[0][i].MinClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MinUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].WmSetting = (uint8_t) wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1