Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Evan Quan | 1684 | 95.57% | 7 | 63.64% |
Alex Deucher | 46 | 2.61% | 2 | 18.18% |
Rex Zhu | 24 | 1.36% | 1 | 9.09% |
Alex Dewar | 8 | 0.45% | 1 | 9.09% |
Total | 1762 | 11 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/module.h> #include <linux/slab.h> #include <linux/fb.h> #include "smu11_driver_if.h" #include "vega20_processpptables.h" #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "pp_debug.h" #include "cgs_common.h" #include "vega20_pptable.h" #define VEGA20_FAN_TARGET_TEMPERATURE_OVERRIDE 105 static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable, enum phm_platform_caps cap) { if (enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); else phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); } static const void *get_powerplay_table(struct pp_hwmgr *hwmgr) { int index = GetIndexIntoMasterDataTable(powerplayinfo); u16 size; u8 frev, crev; const void *table_address = hwmgr->soft_pp_table; if (!table_address) { table_address = (ATOM_Vega20_POWERPLAYTABLE *) smu_atom_get_data_table(hwmgr->adev, index, &size, &frev, &crev); hwmgr->soft_pp_table = table_address; hwmgr->soft_pp_table_size = size; } return table_address; } #if 0 static void dump_pptable(PPTable_t *pptable) { int i; pr_info("Version = 0x%08x\n", pptable->Version); pr_info("FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]); pr_info("FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]); pr_info("SocketPowerLimitAc0 = %d\n", pptable->SocketPowerLimitAc0); pr_info("SocketPowerLimitAc0Tau = %d\n", pptable->SocketPowerLimitAc0Tau); pr_info("SocketPowerLimitAc1 = %d\n", pptable->SocketPowerLimitAc1); pr_info("SocketPowerLimitAc1Tau = %d\n", pptable->SocketPowerLimitAc1Tau); pr_info("SocketPowerLimitAc2 = %d\n", pptable->SocketPowerLimitAc2); pr_info("SocketPowerLimitAc2Tau = %d\n", pptable->SocketPowerLimitAc2Tau); pr_info("SocketPowerLimitAc3 = %d\n", pptable->SocketPowerLimitAc3); pr_info("SocketPowerLimitAc3Tau = %d\n", pptable->SocketPowerLimitAc3Tau); pr_info("SocketPowerLimitDc = %d\n", pptable->SocketPowerLimitDc); pr_info("SocketPowerLimitDcTau = %d\n", pptable->SocketPowerLimitDcTau); pr_info("TdcLimitSoc = %d\n", pptable->TdcLimitSoc); pr_info("TdcLimitSocTau = %d\n", pptable->TdcLimitSocTau); pr_info("TdcLimitGfx = %d\n", pptable->TdcLimitGfx); pr_info("TdcLimitGfxTau = %d\n", pptable->TdcLimitGfxTau); pr_info("TedgeLimit = %d\n", pptable->TedgeLimit); pr_info("ThotspotLimit = %d\n", pptable->ThotspotLimit); pr_info("ThbmLimit = %d\n", pptable->ThbmLimit); pr_info("Tvr_gfxLimit = %d\n", pptable->Tvr_gfxLimit); pr_info("Tvr_memLimit = %d\n", pptable->Tvr_memLimit); pr_info("Tliquid1Limit = %d\n", pptable->Tliquid1Limit); pr_info("Tliquid2Limit = %d\n", pptable->Tliquid2Limit); pr_info("TplxLimit = %d\n", pptable->TplxLimit); pr_info("FitLimit = %d\n", pptable->FitLimit); pr_info("PpmPowerLimit = %d\n", pptable->PpmPowerLimit); pr_info("PpmTemperatureThreshold = %d\n", pptable->PpmTemperatureThreshold); pr_info("MemoryOnPackage = 0x%02x\n", pptable->MemoryOnPackage); pr_info("padding8_limits = 0x%02x\n", pptable->padding8_limits); pr_info("Tvr_SocLimit = %d\n", pptable->Tvr_SocLimit); pr_info("UlvVoltageOffsetSoc = %d\n", pptable->UlvVoltageOffsetSoc); pr_info("UlvVoltageOffsetGfx = %d\n", pptable->UlvVoltageOffsetGfx); pr_info("UlvSmnclkDid = %d\n", pptable->UlvSmnclkDid); pr_info("UlvMp1clkDid = %d\n", pptable->UlvMp1clkDid); pr_info("UlvGfxclkBypass = %d\n", pptable->UlvGfxclkBypass); pr_info("Padding234 = 0x%02x\n", pptable->Padding234); pr_info("MinVoltageGfx = %d\n", pptable->MinVoltageGfx); pr_info("MinVoltageSoc = %d\n", pptable->MinVoltageSoc); pr_info("MaxVoltageGfx = %d\n", pptable->MaxVoltageGfx); pr_info("MaxVoltageSoc = %d\n", pptable->MaxVoltageSoc); pr_info("LoadLineResistanceGfx = %d\n", pptable->LoadLineResistanceGfx); pr_info("LoadLineResistanceSoc = %d\n", pptable->LoadLineResistanceSoc); pr_info("[PPCLK_GFXCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_GFXCLK].padding, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c); pr_info("[PPCLK_VCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_VCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK].padding, pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.c); pr_info("[PPCLK_DCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_DCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK].padding, pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.c); pr_info("[PPCLK_ECLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_ECLK].VoltageMode, pptable->DpmDescriptor[PPCLK_ECLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_ECLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_ECLK].padding, pptable->DpmDescriptor[PPCLK_ECLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_ECLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_ECLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_ECLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_ECLK].SsCurve.c); pr_info("[PPCLK_SOCCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_SOCCLK].padding, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c); pr_info("[PPCLK_UCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_UCLK].padding, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c); pr_info("[PPCLK_DCEFCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_DCEFCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_DCEFCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCEFCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCEFCLK].padding, pptable->DpmDescriptor[PPCLK_DCEFCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCEFCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCEFCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCEFCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCEFCLK].SsCurve.c); pr_info("[PPCLK_DISPCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_DISPCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_DISPCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DISPCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DISPCLK].padding, pptable->DpmDescriptor[PPCLK_DISPCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DISPCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DISPCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_DISPCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_DISPCLK].SsCurve.c); pr_info("[PPCLK_PIXCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_PIXCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_PIXCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_PIXCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_PIXCLK].padding, pptable->DpmDescriptor[PPCLK_PIXCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_PIXCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_PIXCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_PIXCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_PIXCLK].SsCurve.c); pr_info("[PPCLK_PHYCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_PHYCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_PHYCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_PHYCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_PHYCLK].padding, pptable->DpmDescriptor[PPCLK_PHYCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_PHYCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_PHYCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_PHYCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_PHYCLK].SsCurve.c); pr_info("[PPCLK_FCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n", pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_FCLK].padding, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c); pr_info("FreqTableGfx\n"); for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableGfx[i]); pr_info("FreqTableVclk\n"); for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableVclk[i]); pr_info("FreqTableDclk\n"); for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableDclk[i]); pr_info("FreqTableEclk\n"); for (i = 0; i < NUM_ECLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableEclk[i]); pr_info("FreqTableSocclk\n"); for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableSocclk[i]); pr_info("FreqTableUclk\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableUclk[i]); pr_info("FreqTableFclk\n"); for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableFclk[i]); pr_info("FreqTableDcefclk\n"); for (i = 0; i < NUM_DCEFCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableDcefclk[i]); pr_info("FreqTableDispclk\n"); for (i = 0; i < NUM_DISPCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTableDispclk[i]); pr_info("FreqTablePixclk\n"); for (i = 0; i < NUM_PIXCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTablePixclk[i]); pr_info("FreqTablePhyclk\n"); for (i = 0; i < NUM_PHYCLK_DPM_LEVELS; i++) pr_info(" .[%02d] = %d\n", i, pptable->FreqTablePhyclk[i]); pr_info("DcModeMaxFreq[PPCLK_GFXCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_GFXCLK]); pr_info("DcModeMaxFreq[PPCLK_VCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_VCLK]); pr_info("DcModeMaxFreq[PPCLK_DCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_DCLK]); pr_info("DcModeMaxFreq[PPCLK_ECLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_ECLK]); pr_info("DcModeMaxFreq[PPCLK_SOCCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_SOCCLK]); pr_info("DcModeMaxFreq[PPCLK_UCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_UCLK]); pr_info("DcModeMaxFreq[PPCLK_DCEFCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_DCEFCLK]); pr_info("DcModeMaxFreq[PPCLK_DISPCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_DISPCLK]); pr_info("DcModeMaxFreq[PPCLK_PIXCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_PIXCLK]); pr_info("DcModeMaxFreq[PPCLK_PHYCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_PHYCLK]); pr_info("DcModeMaxFreq[PPCLK_FCLK] = %d\n", pptable->DcModeMaxFreq[PPCLK_FCLK]); pr_info("Padding8_Clks = %d\n", pptable->Padding8_Clks); pr_info("Mp0clkFreq\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->Mp0clkFreq[i]); pr_info("Mp0DpmVoltage\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->Mp0DpmVoltage[i]); pr_info("GfxclkFidle = 0x%x\n", pptable->GfxclkFidle); pr_info("GfxclkSlewRate = 0x%x\n", pptable->GfxclkSlewRate); pr_info("CksEnableFreq = 0x%x\n", pptable->CksEnableFreq); pr_info("Padding789 = 0x%x\n", pptable->Padding789); pr_info("CksVoltageOffset[a = 0x%08x b = 0x%08x c = 0x%08x]\n", pptable->CksVoltageOffset.a, pptable->CksVoltageOffset.b, pptable->CksVoltageOffset.c); pr_info("Padding567[0] = 0x%x\n", pptable->Padding567[0]); pr_info("Padding567[1] = 0x%x\n", pptable->Padding567[1]); pr_info("Padding567[2] = 0x%x\n", pptable->Padding567[2]); pr_info("Padding567[3] = 0x%x\n", pptable->Padding567[3]); pr_info("GfxclkDsMaxFreq = %d\n", pptable->GfxclkDsMaxFreq); pr_info("GfxclkSource = 0x%x\n", pptable->GfxclkSource); pr_info("Padding456 = 0x%x\n", pptable->Padding456); pr_info("LowestUclkReservedForUlv = %d\n", pptable->LowestUclkReservedForUlv); pr_info("Padding8_Uclk[0] = 0x%x\n", pptable->Padding8_Uclk[0]); pr_info("Padding8_Uclk[1] = 0x%x\n", pptable->Padding8_Uclk[1]); pr_info("Padding8_Uclk[2] = 0x%x\n", pptable->Padding8_Uclk[2]); pr_info("PcieGenSpeed\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->PcieGenSpeed[i]); pr_info("PcieLaneCount\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->PcieLaneCount[i]); pr_info("LclkFreq\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->LclkFreq[i]); pr_info("EnableTdpm = %d\n", pptable->EnableTdpm); pr_info("TdpmHighHystTemperature = %d\n", pptable->TdpmHighHystTemperature); pr_info("TdpmLowHystTemperature = %d\n", pptable->TdpmLowHystTemperature); pr_info("GfxclkFreqHighTempLimit = %d\n", pptable->GfxclkFreqHighTempLimit); pr_info("FanStopTemp = %d\n", pptable->FanStopTemp); pr_info("FanStartTemp = %d\n", pptable->FanStartTemp); pr_info("FanGainEdge = %d\n", pptable->FanGainEdge); pr_info("FanGainHotspot = %d\n", pptable->FanGainHotspot); pr_info("FanGainLiquid = %d\n", pptable->FanGainLiquid); pr_info("FanGainVrGfx = %d\n", pptable->FanGainVrGfx); pr_info("FanGainVrSoc = %d\n", pptable->FanGainVrSoc); pr_info("FanGainPlx = %d\n", pptable->FanGainPlx); pr_info("FanGainHbm = %d\n", pptable->FanGainHbm); pr_info("FanPwmMin = %d\n", pptable->FanPwmMin); pr_info("FanAcousticLimitRpm = %d\n", pptable->FanAcousticLimitRpm); pr_info("FanThrottlingRpm = %d\n", pptable->FanThrottlingRpm); pr_info("FanMaximumRpm = %d\n", pptable->FanMaximumRpm); pr_info("FanTargetTemperature = %d\n", pptable->FanTargetTemperature); pr_info("FanTargetGfxclk = %d\n", pptable->FanTargetGfxclk); pr_info("FanZeroRpmEnable = %d\n", pptable->FanZeroRpmEnable); pr_info("FanTachEdgePerRev = %d\n", pptable->FanTachEdgePerRev); pr_info("FuzzyFan_ErrorSetDelta = %d\n", pptable->FuzzyFan_ErrorSetDelta); pr_info("FuzzyFan_ErrorRateSetDelta = %d\n", pptable->FuzzyFan_ErrorRateSetDelta); pr_info("FuzzyFan_PwmSetDelta = %d\n", pptable->FuzzyFan_PwmSetDelta); pr_info("FuzzyFan_Reserved = %d\n", pptable->FuzzyFan_Reserved); pr_info("OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]); pr_info("OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]); pr_info("Padding8_Avfs[0] = %d\n", pptable->Padding8_Avfs[0]); pr_info("Padding8_Avfs[1] = %d\n", pptable->Padding8_Avfs[1]); pr_info("qAvfsGb[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_GFX].a, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].b, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].c); pr_info("qAvfsGb[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_SOC].a, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].b, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].c); pr_info("dBtcGbGfxCksOn{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxCksOn.a, pptable->dBtcGbGfxCksOn.b, pptable->dBtcGbGfxCksOn.c); pr_info("dBtcGbGfxCksOff{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxCksOff.a, pptable->dBtcGbGfxCksOff.b, pptable->dBtcGbGfxCksOff.c); pr_info("dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxAfll.a, pptable->dBtcGbGfxAfll.b, pptable->dBtcGbGfxAfll.c); pr_info("dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbSoc.a, pptable->dBtcGbSoc.b, pptable->dBtcGbSoc.c); pr_info("qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_GFX].m, pptable->qAgingGb[AVFS_VOLTAGE_GFX].b); pr_info("qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_SOC].m, pptable->qAgingGb[AVFS_VOLTAGE_SOC].b); pr_info("qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c); pr_info("qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c); pr_info("DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]); pr_info("DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]); pr_info("DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]); pr_info("DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]); pr_info("Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]); pr_info("Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]); pr_info("DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]); pr_info("DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]); pr_info("DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]); pr_info("DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]); pr_info("XgmiLinkSpeed\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->XgmiLinkSpeed[i]); pr_info("XgmiLinkWidth\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->XgmiLinkWidth[i]); pr_info("XgmiFclkFreq\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->XgmiFclkFreq[i]); pr_info("XgmiUclkFreq\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->XgmiUclkFreq[i]); pr_info("XgmiSocclkFreq\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->XgmiSocclkFreq[i]); pr_info("XgmiSocVoltage\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) pr_info(" .[%d] = %d\n", i, pptable->XgmiSocVoltage[i]); pr_info("DebugOverrides = 0x%x\n", pptable->DebugOverrides); pr_info("ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation0.a, pptable->ReservedEquation0.b, pptable->ReservedEquation0.c); pr_info("ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation1.a, pptable->ReservedEquation1.b, pptable->ReservedEquation1.c); pr_info("ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation2.a, pptable->ReservedEquation2.b, pptable->ReservedEquation2.c); pr_info("ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation3.a, pptable->ReservedEquation3.b, pptable->ReservedEquation3.c); pr_info("MinVoltageUlvGfx = %d\n", pptable->MinVoltageUlvGfx); pr_info("MinVoltageUlvSoc = %d\n", pptable->MinVoltageUlvSoc); pr_info("MGpuFanBoostLimitRpm = %d\n", pptable->MGpuFanBoostLimitRpm); pr_info("padding16_Fan = %d\n", pptable->padding16_Fan); pr_info("FanGainVrMem0 = %d\n", pptable->FanGainVrMem0); pr_info("FanGainVrMem0 = %d\n", pptable->FanGainVrMem0); pr_info("DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]); pr_info("DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]); for (i = 0; i < 11; i++) pr_info("Reserved[%d] = 0x%x\n", i, pptable->Reserved[i]); for (i = 0; i < 3; i++) pr_info("Padding32[%d] = 0x%x\n", i, pptable->Padding32[i]); pr_info("MaxVoltageStepGfx = 0x%x\n", pptable->MaxVoltageStepGfx); pr_info("MaxVoltageStepSoc = 0x%x\n", pptable->MaxVoltageStepSoc); pr_info("VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping); pr_info("VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping); pr_info("VddMem0VrMapping = 0x%x\n", pptable->VddMem0VrMapping); pr_info("VddMem1VrMapping = 0x%x\n", pptable->VddMem1VrMapping); pr_info("GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask); pr_info("SocUlvPhaseSheddingMask = 0x%x\n", pptable->SocUlvPhaseSheddingMask); pr_info("ExternalSensorPresent = 0x%x\n", pptable->ExternalSensorPresent); pr_info("Padding8_V = 0x%x\n", pptable->Padding8_V); pr_info("GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent); pr_info("GfxOffset = 0x%x\n", pptable->GfxOffset); pr_info("Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx); pr_info("SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent); pr_info("SocOffset = 0x%x\n", pptable->SocOffset); pr_info("Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc); pr_info("Mem0MaxCurrent = 0x%x\n", pptable->Mem0MaxCurrent); pr_info("Mem0Offset = 0x%x\n", pptable->Mem0Offset); pr_info("Padding_TelemetryMem0 = 0x%x\n", pptable->Padding_TelemetryMem0); pr_info("Mem1MaxCurrent = 0x%x\n", pptable->Mem1MaxCurrent); pr_info("Mem1Offset = 0x%x\n", pptable->Mem1Offset); pr_info("Padding_TelemetryMem1 = 0x%x\n", pptable->Padding_TelemetryMem1); pr_info("AcDcGpio = %d\n", pptable->AcDcGpio); pr_info("AcDcPolarity = %d\n", pptable->AcDcPolarity); pr_info("VR0HotGpio = %d\n", pptable->VR0HotGpio); pr_info("VR0HotPolarity = %d\n", pptable->VR0HotPolarity); pr_info("VR1HotGpio = %d\n", pptable->VR1HotGpio); pr_info("VR1HotPolarity = %d\n", pptable->VR1HotPolarity); pr_info("Padding1 = 0x%x\n", pptable->Padding1); pr_info("Padding2 = 0x%x\n", pptable->Padding2); pr_info("LedPin0 = %d\n", pptable->LedPin0); pr_info("LedPin1 = %d\n", pptable->LedPin1); pr_info("LedPin2 = %d\n", pptable->LedPin2); pr_info("padding8_4 = 0x%x\n", pptable->padding8_4); pr_info("PllGfxclkSpreadEnabled = %d\n", pptable->PllGfxclkSpreadEnabled); pr_info("PllGfxclkSpreadPercent = %d\n", pptable->PllGfxclkSpreadPercent); pr_info("PllGfxclkSpreadFreq = %d\n", pptable->PllGfxclkSpreadFreq); pr_info("UclkSpreadEnabled = %d\n", pptable->UclkSpreadEnabled); pr_info("UclkSpreadPercent = %d\n", pptable->UclkSpreadPercent); pr_info("UclkSpreadFreq = %d\n", pptable->UclkSpreadFreq); pr_info("FclkSpreadEnabled = %d\n", pptable->FclkSpreadEnabled); pr_info("FclkSpreadPercent = %d\n", pptable->FclkSpreadPercent); pr_info("FclkSpreadFreq = %d\n", pptable->FclkSpreadFreq); pr_info("FllGfxclkSpreadEnabled = %d\n", pptable->FllGfxclkSpreadEnabled); pr_info("FllGfxclkSpreadPercent = %d\n", pptable->FllGfxclkSpreadPercent); pr_info("FllGfxclkSpreadFreq = %d\n", pptable->FllGfxclkSpreadFreq); for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) { pr_info("I2cControllers[%d]:\n", i); pr_info(" .Enabled = %d\n", pptable->I2cControllers[i].Enabled); pr_info(" .SlaveAddress = 0x%x\n", pptable->I2cControllers[i].SlaveAddress); pr_info(" .ControllerPort = %d\n", pptable->I2cControllers[i].ControllerPort); pr_info(" .ControllerName = %d\n", pptable->I2cControllers[i].ControllerName); pr_info(" .ThermalThrottler = %d\n", pptable->I2cControllers[i].ThermalThrottler); pr_info(" .I2cProtocol = %d\n", pptable->I2cControllers[i].I2cProtocol); pr_info(" .I2cSpeed = %d\n", pptable->I2cControllers[i].I2cSpeed); } for (i = 0; i < 10; i++) pr_info("BoardReserved[%d] = 0x%x\n", i, pptable->BoardReserved[i]); for (i = 0; i < 8; i++) pr_info("MmHubPadding[%d] = 0x%x\n", i, pptable->MmHubPadding[i]); } #endif static int check_powerplay_tables( struct pp_hwmgr *hwmgr, const ATOM_Vega20_POWERPLAYTABLE *powerplay_table) { PP_ASSERT_WITH_CODE((powerplay_table->sHeader.format_revision >= ATOM_VEGA20_TABLE_REVISION_VEGA20), "Unsupported PPTable format!", return -1); PP_ASSERT_WITH_CODE(powerplay_table->sHeader.structuresize > 0, "Invalid PowerPlay Table!", return -1); if (powerplay_table->smcPPTable.Version != PPTABLE_V20_SMU_VERSION) { pr_info("Unmatch PPTable version: " "pptable from VBIOS is V%d while driver supported is V%d!", powerplay_table->smcPPTable.Version, PPTABLE_V20_SMU_VERSION); return -EINVAL; } //dump_pptable(&powerplay_table->smcPPTable); return 0; } static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps) { set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_POWERPLAY), PHM_PlatformCaps_PowerPlaySupport); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), PHM_PlatformCaps_BiosPowerSourceControl); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_BACO), PHM_PlatformCaps_BACO); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_VEGA20_PP_PLATFORM_CAP_BAMACO), PHM_PlatformCaps_BAMACO); return 0; } static int copy_overdrive_feature_capabilities_array( struct pp_hwmgr *hwmgr, uint8_t **pptable_info_array, const uint8_t *pptable_array, uint8_t od_feature_count) { uint32_t array_size, i; uint8_t *table; bool od_supported = false; array_size = sizeof(uint8_t) * od_feature_count; table = kzalloc(array_size, GFP_KERNEL); if (NULL == table) return -ENOMEM; for (i = 0; i < od_feature_count; i++) { table[i] = le32_to_cpu(pptable_array[i]); if (table[i]) od_supported = true; } *pptable_info_array = table; if (od_supported) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ACOverdriveSupport); return 0; } static int append_vbios_pptable(struct pp_hwmgr *hwmgr, PPTable_t *ppsmc_pptable) { struct atom_smc_dpm_info_v4_4 *smc_dpm_table; int index = GetIndexIntoMasterDataTable(smc_dpm_info); int i; PP_ASSERT_WITH_CODE( smc_dpm_table = smu_atom_get_data_table(hwmgr->adev, index, NULL, NULL, NULL), "[appendVbiosPPTable] Failed to retrieve Smc Dpm Table from VBIOS!", return -1); ppsmc_pptable->MaxVoltageStepGfx = smc_dpm_table->maxvoltagestepgfx; ppsmc_pptable->MaxVoltageStepSoc = smc_dpm_table->maxvoltagestepsoc; ppsmc_pptable->VddGfxVrMapping = smc_dpm_table->vddgfxvrmapping; ppsmc_pptable->VddSocVrMapping = smc_dpm_table->vddsocvrmapping; ppsmc_pptable->VddMem0VrMapping = smc_dpm_table->vddmem0vrmapping; ppsmc_pptable->VddMem1VrMapping = smc_dpm_table->vddmem1vrmapping; ppsmc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->gfxulvphasesheddingmask; ppsmc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->soculvphasesheddingmask; ppsmc_pptable->ExternalSensorPresent = smc_dpm_table->externalsensorpresent; ppsmc_pptable->GfxMaxCurrent = smc_dpm_table->gfxmaxcurrent; ppsmc_pptable->GfxOffset = smc_dpm_table->gfxoffset; ppsmc_pptable->Padding_TelemetryGfx = smc_dpm_table->padding_telemetrygfx; ppsmc_pptable->SocMaxCurrent = smc_dpm_table->socmaxcurrent; ppsmc_pptable->SocOffset = smc_dpm_table->socoffset; ppsmc_pptable->Padding_TelemetrySoc = smc_dpm_table->padding_telemetrysoc; ppsmc_pptable->Mem0MaxCurrent = smc_dpm_table->mem0maxcurrent; ppsmc_pptable->Mem0Offset = smc_dpm_table->mem0offset; ppsmc_pptable->Padding_TelemetryMem0 = smc_dpm_table->padding_telemetrymem0; ppsmc_pptable->Mem1MaxCurrent = smc_dpm_table->mem1maxcurrent; ppsmc_pptable->Mem1Offset = smc_dpm_table->mem1offset; ppsmc_pptable->Padding_TelemetryMem1 = smc_dpm_table->padding_telemetrymem1; ppsmc_pptable->AcDcGpio = smc_dpm_table->acdcgpio; ppsmc_pptable->AcDcPolarity = smc_dpm_table->acdcpolarity; ppsmc_pptable->VR0HotGpio = smc_dpm_table->vr0hotgpio; ppsmc_pptable->VR0HotPolarity = smc_dpm_table->vr0hotpolarity; ppsmc_pptable->VR1HotGpio = smc_dpm_table->vr1hotgpio; ppsmc_pptable->VR1HotPolarity = smc_dpm_table->vr1hotpolarity; ppsmc_pptable->Padding1 = smc_dpm_table->padding1; ppsmc_pptable->Padding2 = smc_dpm_table->padding2; ppsmc_pptable->LedPin0 = smc_dpm_table->ledpin0; ppsmc_pptable->LedPin1 = smc_dpm_table->ledpin1; ppsmc_pptable->LedPin2 = smc_dpm_table->ledpin2; ppsmc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->pllgfxclkspreadenabled; ppsmc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->pllgfxclkspreadpercent; ppsmc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->pllgfxclkspreadfreq; ppsmc_pptable->UclkSpreadEnabled = 0; ppsmc_pptable->UclkSpreadPercent = smc_dpm_table->uclkspreadpercent; ppsmc_pptable->UclkSpreadFreq = smc_dpm_table->uclkspreadfreq; ppsmc_pptable->FclkSpreadEnabled = smc_dpm_table->fclkspreadenabled; ppsmc_pptable->FclkSpreadPercent = smc_dpm_table->fclkspreadpercent; ppsmc_pptable->FclkSpreadFreq = smc_dpm_table->fclkspreadfreq; ppsmc_pptable->FllGfxclkSpreadEnabled = smc_dpm_table->fllgfxclkspreadenabled; ppsmc_pptable->FllGfxclkSpreadPercent = smc_dpm_table->fllgfxclkspreadpercent; ppsmc_pptable->FllGfxclkSpreadFreq = smc_dpm_table->fllgfxclkspreadfreq; for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) { ppsmc_pptable->I2cControllers[i].Enabled = smc_dpm_table->i2ccontrollers[i].enabled; ppsmc_pptable->I2cControllers[i].SlaveAddress = smc_dpm_table->i2ccontrollers[i].slaveaddress; ppsmc_pptable->I2cControllers[i].ControllerPort = smc_dpm_table->i2ccontrollers[i].controllerport; ppsmc_pptable->I2cControllers[i].ThermalThrottler = smc_dpm_table->i2ccontrollers[i].thermalthrottler; ppsmc_pptable->I2cControllers[i].I2cProtocol = smc_dpm_table->i2ccontrollers[i].i2cprotocol; ppsmc_pptable->I2cControllers[i].I2cSpeed = smc_dpm_table->i2ccontrollers[i].i2cspeed; } return 0; } static int override_powerplay_table_fantargettemperature(struct pp_hwmgr *hwmgr) { struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; PPTable_t *ppsmc_pptable = (PPTable_t *)(pptable_information->smc_pptable); ppsmc_pptable->FanTargetTemperature = VEGA20_FAN_TARGET_TEMPERATURE_OVERRIDE; return 0; } #define VEGA20_ENGINECLOCK_HARDMAX 198000 static int init_powerplay_table_information( struct pp_hwmgr *hwmgr, const ATOM_Vega20_POWERPLAYTABLE *powerplay_table) { struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; uint32_t disable_power_control = 0; uint32_t od_feature_count, od_setting_count, power_saving_clock_count; int result; hwmgr->thermal_controller.ucType = powerplay_table->ucThermalControllerType; pptable_information->uc_thermal_controller_type = powerplay_table->ucThermalControllerType; hwmgr->thermal_controller.fanInfo.ulMinRPM = 0; hwmgr->thermal_controller.fanInfo.ulMaxRPM = powerplay_table->smcPPTable.FanMaximumRpm; set_hw_cap(hwmgr, ATOM_VEGA20_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, PHM_PlatformCaps_ThermalController); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); if (powerplay_table->OverDrive8Table.ucODTableRevision == 1) { od_feature_count = (le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount) > ATOM_VEGA20_ODFEATURE_COUNT) ? ATOM_VEGA20_ODFEATURE_COUNT : le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount); od_setting_count = (le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount) > ATOM_VEGA20_ODSETTING_COUNT) ? ATOM_VEGA20_ODSETTING_COUNT : le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount); copy_overdrive_feature_capabilities_array(hwmgr, &pptable_information->od_feature_capabilities, powerplay_table->OverDrive8Table.ODFeatureCapabilities, od_feature_count); phm_copy_overdrive_settings_limits_array(hwmgr, &pptable_information->od_settings_max, powerplay_table->OverDrive8Table.ODSettingsMax, od_setting_count); phm_copy_overdrive_settings_limits_array(hwmgr, &pptable_information->od_settings_min, powerplay_table->OverDrive8Table.ODSettingsMin, od_setting_count); } pptable_information->us_small_power_limit1 = le16_to_cpu(powerplay_table->usSmallPowerLimit1); pptable_information->us_small_power_limit2 = le16_to_cpu(powerplay_table->usSmallPowerLimit2); pptable_information->us_boost_power_limit = le16_to_cpu(powerplay_table->usBoostPowerLimit); pptable_information->us_od_turbo_power_limit = le16_to_cpu(powerplay_table->usODTurboPowerLimit); pptable_information->us_od_powersave_power_limit = le16_to_cpu(powerplay_table->usODPowerSavePowerLimit); pptable_information->us_software_shutdown_temp = le16_to_cpu(powerplay_table->usSoftwareShutdownTemp); hwmgr->platform_descriptor.TDPODLimit = le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingsMax[ATOM_VEGA20_ODSETTING_POWERPERCENTAGE]); disable_power_control = 0; if (!disable_power_control && hwmgr->platform_descriptor.TDPODLimit) /* enable TDP overdrive (PowerControl) feature as well if supported */ phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerControl); if (powerplay_table->PowerSavingClockTable.ucTableRevision == 1) { power_saving_clock_count = (le32_to_cpu(powerplay_table->PowerSavingClockTable.PowerSavingClockCount) >= ATOM_VEGA20_PPCLOCK_COUNT) ? ATOM_VEGA20_PPCLOCK_COUNT : le32_to_cpu(powerplay_table->PowerSavingClockTable.PowerSavingClockCount); phm_copy_clock_limits_array(hwmgr, &pptable_information->power_saving_clock_max, powerplay_table->PowerSavingClockTable.PowerSavingClockMax, power_saving_clock_count); phm_copy_clock_limits_array(hwmgr, &pptable_information->power_saving_clock_min, powerplay_table->PowerSavingClockTable.PowerSavingClockMin, power_saving_clock_count); } pptable_information->smc_pptable = kmemdup(&(powerplay_table->smcPPTable), sizeof(PPTable_t), GFP_KERNEL); if (pptable_information->smc_pptable == NULL) return -ENOMEM; result = append_vbios_pptable(hwmgr, (pptable_information->smc_pptable)); if (result) return result; result = override_powerplay_table_fantargettemperature(hwmgr); return result; } static int vega20_pp_tables_initialize(struct pp_hwmgr *hwmgr) { int result = 0; const ATOM_Vega20_POWERPLAYTABLE *powerplay_table; hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v3_information), GFP_KERNEL); PP_ASSERT_WITH_CODE((hwmgr->pptable != NULL), "Failed to allocate hwmgr->pptable!", return -ENOMEM); powerplay_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((powerplay_table != NULL), "Missing PowerPlay Table!", return -1); result = check_powerplay_tables(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "check_powerplay_tables failed", return result); result = set_platform_caps(hwmgr, le32_to_cpu(powerplay_table->ulPlatformCaps)); PP_ASSERT_WITH_CODE((result == 0), "set_platform_caps failed", return result); result = init_powerplay_table_information(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_powerplay_table_information failed", return result); return result; } static int vega20_pp_tables_uninitialize(struct pp_hwmgr *hwmgr) { struct phm_ppt_v3_information *pp_table_info = (struct phm_ppt_v3_information *)(hwmgr->pptable); kfree(pp_table_info->power_saving_clock_max); pp_table_info->power_saving_clock_max = NULL; kfree(pp_table_info->power_saving_clock_min); pp_table_info->power_saving_clock_min = NULL; kfree(pp_table_info->od_feature_capabilities); pp_table_info->od_feature_capabilities = NULL; kfree(pp_table_info->od_settings_max); pp_table_info->od_settings_max = NULL; kfree(pp_table_info->od_settings_min); pp_table_info->od_settings_min = NULL; kfree(pp_table_info->smc_pptable); pp_table_info->smc_pptable = NULL; kfree(hwmgr->pptable); hwmgr->pptable = NULL; return 0; } const struct pp_table_func vega20_pptable_funcs = { .pptable_init = vega20_pp_tables_initialize, .pptable_fini = vega20_pp_tables_uninitialize, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1