Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Evan Quan | 11551 | 63.14% | 82 | 40.80% |
Darren Powell | 1315 | 7.19% | 4 | 1.99% |
Huang Rui | 1251 | 6.84% | 9 | 4.48% |
Alex Deucher | 1187 | 6.49% | 24 | 11.94% |
Kevin Wang | 861 | 4.71% | 31 | 15.42% |
Luben Tuikov | 386 | 2.11% | 4 | 1.99% |
Matt Coffin | 368 | 2.01% | 6 | 2.99% |
Kenneth Feng | 290 | 1.59% | 10 | 4.98% |
David M Nieto | 287 | 1.57% | 2 | 1.00% |
Graham Sider | 204 | 1.12% | 1 | 0.50% |
Wenhui Sheng | 125 | 0.68% | 1 | 0.50% |
Tao Zhou | 102 | 0.56% | 3 | 1.49% |
Lijo Lazar | 96 | 0.52% | 3 | 1.49% |
Leo Liu | 64 | 0.35% | 1 | 0.50% |
Andrey Grodzovsky | 58 | 0.32% | 2 | 1.00% |
Hersen Wu | 33 | 0.18% | 3 | 1.49% |
Xiaojie Yuan | 24 | 0.13% | 3 | 1.49% |
Jack Xiao | 14 | 0.08% | 2 | 1.00% |
Nirmoy Das | 14 | 0.08% | 1 | 0.50% |
Lang Yu | 13 | 0.07% | 1 | 0.50% |
Yifan Zha | 11 | 0.06% | 2 | 1.00% |
Kees Cook | 10 | 0.05% | 1 | 0.50% |
Jingwen Chen | 10 | 0.05% | 1 | 0.50% |
tianci yin | 9 | 0.05% | 1 | 0.50% |
Likun Gao | 6 | 0.03% | 1 | 0.50% |
Hawking Zhang | 2 | 0.01% | 1 | 0.50% |
Eric Huang | 2 | 0.01% | 1 | 0.50% |
Total | 18293 | 201 |
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include <linux/firmware.h> #include <linux/pci.h> #include <linux/i2c.h> #include "amdgpu.h" #include "amdgpu_dpm.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_atombios.h" #include "soc15_common.h" #include "smu_v11_0.h" #include "smu11_driver_if_navi10.h" #include "atom.h" #include "navi10_ppt.h" #include "smu_v11_0_pptable.h" #include "smu_v11_0_ppsmc.h" #include "nbio/nbio_2_3_offset.h" #include "nbio/nbio_2_3_sh_mask.h" #include "thm/thm_11_0_2_offset.h" #include "thm/thm_11_0_2_sh_mask.h" #include "asic_reg/mp/mp_11_0_sh_mask.h" #include "smu_cmn.h" #include "smu_11_0_cdr_table.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | \ FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_GFX_PACE_BIT) | \ FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \ FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT)) #define SMU_11_0_GFX_BUSY_THRESHOLD 15 static struct cmn2asic_msg_mapping navi10_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0), MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0), MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0), MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0), MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 0), MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 0), MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 0), MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 0), MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow, 1), MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh, 1), MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 0), MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1), MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0), MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0), MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0), MSG_MAP(UseBackupPPTable, PPSMC_MSG_UseBackupPPTable, 0), MSG_MAP(RunBtc, PPSMC_MSG_RunBtc, 0), MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0), MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 1), MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 1), MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 0), MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0), MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 1), MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 1), MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1), MSG_MAP(SetMemoryChannelConfig, PPSMC_MSG_SetMemoryChannelConfig, 0), MSG_MAP(SetGeminiMode, PPSMC_MSG_SetGeminiMode, 0), MSG_MAP(SetGeminiApertureHigh, PPSMC_MSG_SetGeminiApertureHigh, 0), MSG_MAP(SetGeminiApertureLow, PPSMC_MSG_SetGeminiApertureLow, 0), MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters, 0), MSG_MAP(SetMinDeepSleepDcefclk, PPSMC_MSG_SetMinDeepSleepDcefclk, 0), MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt, 0), MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource, 0), MSG_MAP(SetUclkFastSwitch, PPSMC_MSG_SetUclkFastSwitch, 0), MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps, 0), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 1), MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0), MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0), MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0), MSG_MAP(ConfigureGfxDidt, PPSMC_MSG_ConfigureGfxDidt, 0), MSG_MAP(NumOfDisplays, PPSMC_MSG_NumOfDisplays, 0), MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh, 0), MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow, 0), MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0), MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq, 1), MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData, 0), MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0), MSG_MAP(PrepareMp1ForReset, PPSMC_MSG_PrepareMp1ForReset, 0), MSG_MAP(PrepareMp1ForShutdown, PPSMC_MSG_PrepareMp1ForShutdown, 0), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0), MSG_MAP(BacoAudioD3PME, PPSMC_MSG_BacoAudioD3PME, 0), MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0), MSG_MAP(DAL_DISABLE_DUMMY_PSTATE_CHANGE,PPSMC_MSG_DALDisableDummyPstateChange, 0), MSG_MAP(DAL_ENABLE_DUMMY_PSTATE_CHANGE, PPSMC_MSG_DALEnableDummyPstateChange, 0), MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm, 0), MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive, 0), MSG_MAP(SetMGpuFanBoostLimitRpm, PPSMC_MSG_SetMGpuFanBoostLimitRpm, 0), MSG_MAP(SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_HIGH, PPSMC_MSG_SetDriverDummyTableDramAddrHigh, 0), MSG_MAP(SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_LOW, PPSMC_MSG_SetDriverDummyTableDramAddrLow, 0), MSG_MAP(GET_UMC_FW_WA, PPSMC_MSG_GetUMCFWWA, 0), }; static struct cmn2asic_mapping navi10_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(SCLK, PPCLK_GFXCLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(FCLK, PPCLK_SOCCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(MCLK, PPCLK_UCLK), CLK_MAP(DCLK, PPCLK_DCLK), CLK_MAP(VCLK, PPCLK_VCLK), CLK_MAP(DCEFCLK, PPCLK_DCEFCLK), CLK_MAP(DISPCLK, PPCLK_DISPCLK), CLK_MAP(PIXCLK, PPCLK_PIXCLK), CLK_MAP(PHYCLK, PPCLK_PHYCLK), }; static struct cmn2asic_mapping navi10_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(DPM_PREFETCHER), FEA_MAP(DPM_GFXCLK), FEA_MAP(DPM_GFX_PACE), FEA_MAP(DPM_UCLK), FEA_MAP(DPM_SOCCLK), FEA_MAP(DPM_MP0CLK), FEA_MAP(DPM_LINK), FEA_MAP(DPM_DCEFCLK), FEA_MAP(MEM_VDDCI_SCALING), FEA_MAP(MEM_MVDD_SCALING), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_DCEFCLK), FEA_MAP(DS_UCLK), FEA_MAP(GFX_ULV), FEA_MAP(FW_DSTATE), FEA_MAP(GFXOFF), FEA_MAP(BACO), FEA_MAP(VCN_PG), FEA_MAP(JPEG_PG), FEA_MAP(USB_PG), FEA_MAP(RSMU_SMN_CG), FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(GFX_EDC), FEA_MAP(APCC_PLUS), FEA_MAP(GTHR), FEA_MAP(ACDC), FEA_MAP(VR0HOT), FEA_MAP(VR1HOT), FEA_MAP(FW_CTF), FEA_MAP(FAN_CONTROL), FEA_MAP(THERMAL), FEA_MAP(GFX_DCS), FEA_MAP(RM), FEA_MAP(LED_DISPLAY), FEA_MAP(GFX_SS), FEA_MAP(OUT_OF_BAND_MONITOR), FEA_MAP(TEMP_DEPENDENT_VMIN), FEA_MAP(MMHUB_PG), FEA_MAP(ATHUB_PG), FEA_MAP(APCC_DFLL), }; static struct cmn2asic_mapping navi10_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(WATERMARKS), TAB_MAP(AVFS), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(AVFS_FUSE_OVERRIDE), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(ACTIVITY_MONITOR_COEFF), TAB_MAP(OVERDRIVE), TAB_MAP(I2C_COMMANDS), TAB_MAP(PACE), }; static struct cmn2asic_mapping navi10_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { PWR_MAP(AC), PWR_MAP(DC), }; static struct cmn2asic_mapping navi10_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static const uint8_t navi1x_throttler_map[] = { [THROTTLER_TEMP_EDGE_BIT] = (SMU_THROTTLER_TEMP_EDGE_BIT), [THROTTLER_TEMP_HOTSPOT_BIT] = (SMU_THROTTLER_TEMP_HOTSPOT_BIT), [THROTTLER_TEMP_MEM_BIT] = (SMU_THROTTLER_TEMP_MEM_BIT), [THROTTLER_TEMP_VR_GFX_BIT] = (SMU_THROTTLER_TEMP_VR_GFX_BIT), [THROTTLER_TEMP_VR_MEM0_BIT] = (SMU_THROTTLER_TEMP_VR_MEM0_BIT), [THROTTLER_TEMP_VR_MEM1_BIT] = (SMU_THROTTLER_TEMP_VR_MEM1_BIT), [THROTTLER_TEMP_VR_SOC_BIT] = (SMU_THROTTLER_TEMP_VR_SOC_BIT), [THROTTLER_TEMP_LIQUID0_BIT] = (SMU_THROTTLER_TEMP_LIQUID0_BIT), [THROTTLER_TEMP_LIQUID1_BIT] = (SMU_THROTTLER_TEMP_LIQUID1_BIT), [THROTTLER_TDC_GFX_BIT] = (SMU_THROTTLER_TDC_GFX_BIT), [THROTTLER_TDC_SOC_BIT] = (SMU_THROTTLER_TDC_SOC_BIT), [THROTTLER_PPT0_BIT] = (SMU_THROTTLER_PPT0_BIT), [THROTTLER_PPT1_BIT] = (SMU_THROTTLER_PPT1_BIT), [THROTTLER_PPT2_BIT] = (SMU_THROTTLER_PPT2_BIT), [THROTTLER_PPT3_BIT] = (SMU_THROTTLER_PPT3_BIT), [THROTTLER_FIT_BIT] = (SMU_THROTTLER_FIT_BIT), [THROTTLER_PPM_BIT] = (SMU_THROTTLER_PPM_BIT), [THROTTLER_APCC_BIT] = (SMU_THROTTLER_APCC_BIT), }; static bool is_asic_secure(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; bool is_secure = true; uint32_t mp0_fw_intf; mp0_fw_intf = RREG32_PCIE(MP0_Public | (smnMP0_FW_INTF & 0xffffffff)); if (!(mp0_fw_intf & (1 << 19))) is_secure = false; return is_secure; } static int navi10_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { struct amdgpu_device *adev = smu->adev; if (num > 2) return -EINVAL; memset(feature_mask, 0, sizeof(uint32_t) * num); *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | FEATURE_MASK(FEATURE_RSMU_SMN_CG_BIT) | FEATURE_MASK(FEATURE_DS_SOCCLK_BIT) | FEATURE_MASK(FEATURE_PPT_BIT) | FEATURE_MASK(FEATURE_TDC_BIT) | FEATURE_MASK(FEATURE_GFX_EDC_BIT) | FEATURE_MASK(FEATURE_APCC_PLUS_BIT) | FEATURE_MASK(FEATURE_VR0HOT_BIT) | FEATURE_MASK(FEATURE_FAN_CONTROL_BIT) | FEATURE_MASK(FEATURE_THERMAL_BIT) | FEATURE_MASK(FEATURE_LED_DISPLAY_BIT) | FEATURE_MASK(FEATURE_DS_LCLK_BIT) | FEATURE_MASK(FEATURE_DS_DCEFCLK_BIT) | FEATURE_MASK(FEATURE_FW_DSTATE_BIT) | FEATURE_MASK(FEATURE_BACO_BIT) | FEATURE_MASK(FEATURE_GFX_SS_BIT) | FEATURE_MASK(FEATURE_APCC_DFLL_BIT) | FEATURE_MASK(FEATURE_FW_CTF_BIT) | FEATURE_MASK(FEATURE_OUT_OF_BAND_MONITOR_BIT); if (adev->pm.pp_feature & PP_SCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT); if (adev->pm.pp_feature & PP_PCIE_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_LINK_BIT); if (adev->pm.pp_feature & PP_DCEFCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT); if (adev->pm.pp_feature & PP_ULV_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_ULV_BIT); if (adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DS_GFXCLK_BIT); if (adev->pm.pp_feature & PP_GFXOFF_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFXOFF_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_MMHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MMHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_ATHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ATHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_VCN) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_VCN_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_JPEG) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_JPEG_PG_BIT); if (smu->dc_controlled_by_gpio) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ACDC_BIT); if (adev->pm.pp_feature & PP_SOCCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT); /* DPM UCLK enablement should be skipped for navi10 A0 secure board */ if (!(is_asic_secure(smu) && (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0)) && (adev->rev_id == 0)) && (adev->pm.pp_feature & PP_MCLK_DPM_MASK)) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT) | FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT); /* DS SOCCLK enablement should be skipped for navi10 A0 secure board */ if (is_asic_secure(smu) && (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0)) && (adev->rev_id == 0)) *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DS_SOCCLK_BIT); return 0; } static void navi10_check_bxco_support(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; struct smu_baco_context *smu_baco = &smu->smu_baco; struct amdgpu_device *adev = smu->adev; uint32_t val; if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_BACO || powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_MACO) { val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0); smu_baco->platform_support = (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) ? true : false; } } static int navi10_check_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_HARDWAREDC) smu->dc_controlled_by_gpio = true; navi10_check_bxco_support(smu); table_context->thermal_controller_type = powerplay_table->thermal_controller_type; /* * Instead of having its own buffer space and get overdrive_table copied, * smu->od_settings just points to the actual overdrive_table */ smu->od_settings = &powerplay_table->overdrive_table; return 0; } static int navi10_append_powerplay_table(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct atom_smc_dpm_info_v4_5 *smc_dpm_table; struct atom_smc_dpm_info_v4_7 *smc_dpm_table_v4_7; int index, ret; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = amdgpu_atombios_get_data_table(adev, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; dev_info(adev->dev, "smc_dpm_info table revision(format.content): %d.%d\n", smc_dpm_table->table_header.format_revision, smc_dpm_table->table_header.content_revision); if (smc_dpm_table->table_header.format_revision != 4) { dev_err(adev->dev, "smc_dpm_info table format revision is not 4!\n"); return -EINVAL; } switch (smc_dpm_table->table_header.content_revision) { case 5: /* nv10 and nv14 */ smu_memcpy_trailing(smc_pptable, I2cControllers, BoardReserved, smc_dpm_table, I2cControllers); break; case 7: /* nv12 */ ret = amdgpu_atombios_get_data_table(adev, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table_v4_7); if (ret) return ret; smu_memcpy_trailing(smc_pptable, I2cControllers, BoardReserved, smc_dpm_table_v4_7, I2cControllers); break; default: dev_err(smu->adev->dev, "smc_dpm_info with unsupported content revision %d!\n", smc_dpm_table->table_header.content_revision); return -EINVAL; } if (adev->pm.pp_feature & PP_GFXOFF_MASK) { /* TODO: remove it once SMU fw fix it */ smc_pptable->DebugOverrides |= DPM_OVERRIDE_DISABLE_DFLL_PLL_SHUTDOWN; } return 0; } static int navi10_store_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable, sizeof(PPTable_t)); return 0; } static int navi10_setup_pptable(struct smu_context *smu) { int ret = 0; ret = smu_v11_0_setup_pptable(smu); if (ret) return ret; ret = navi10_store_powerplay_table(smu); if (ret) return ret; ret = navi10_append_powerplay_table(smu); if (ret) return ret; ret = navi10_check_powerplay_table(smu); if (ret) return ret; return ret; } static int navi10_tables_init(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_NV1X_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_DRIVER_SMU_CONFIG, sizeof(DriverSmuConfig_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_NV1X_t), GFP_KERNEL); if (!smu_table->metrics_table) goto err0_out; smu_table->metrics_time = 0; smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3); smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL); if (!smu_table->gpu_metrics_table) goto err1_out; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) goto err2_out; smu_table->driver_smu_config_table = kzalloc(tables[SMU_TABLE_DRIVER_SMU_CONFIG].size, GFP_KERNEL); if (!smu_table->driver_smu_config_table) goto err3_out; return 0; err3_out: kfree(smu_table->watermarks_table); err2_out: kfree(smu_table->gpu_metrics_table); err1_out: kfree(smu_table->metrics_table); err0_out: return -ENOMEM; } static int navi10_get_legacy_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_legacy_t *metrics = (SmuMetrics_legacy_t *)smu_table->metrics_table; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) return ret; switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK]; break; case METRICS_CURR_DCEFCLK: *value = metrics->CurrClock[PPCLK_DCEFCLK]; break; case METRICS_AVERAGE_GFXCLK: *value = metrics->AverageGfxclkFrequency; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->AverageSocclkFrequency; break; case METRICS_AVERAGE_UCLK: *value = metrics->AverageUclkFrequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->TemperatureMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->TemperatureVrGfx * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->TemperatureVrSoc * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_CURR_FANSPEED: *value = metrics->CurrFanSpeed; break; default: *value = UINT_MAX; break; } return ret; } static int navi10_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) return ret; switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK]; break; case METRICS_CURR_DCEFCLK: *value = metrics->CurrClock[PPCLK_DCEFCLK]; break; case METRICS_AVERAGE_GFXCLK: if (metrics->AverageGfxActivity > SMU_11_0_GFX_BUSY_THRESHOLD) *value = metrics->AverageGfxclkFrequencyPreDs; else *value = metrics->AverageGfxclkFrequencyPostDs; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->AverageSocclkFrequency; break; case METRICS_AVERAGE_UCLK: *value = metrics->AverageUclkFrequencyPostDs; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->TemperatureMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->TemperatureVrGfx * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->TemperatureVrSoc * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_CURR_FANSPEED: *value = metrics->CurrFanSpeed; break; default: *value = UINT_MAX; break; } return ret; } static int navi12_get_legacy_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_NV12_legacy_t *metrics = (SmuMetrics_NV12_legacy_t *)smu_table->metrics_table; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) return ret; switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK]; break; case METRICS_CURR_DCEFCLK: *value = metrics->CurrClock[PPCLK_DCEFCLK]; break; case METRICS_AVERAGE_GFXCLK: *value = metrics->AverageGfxclkFrequency; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->AverageSocclkFrequency; break; case METRICS_AVERAGE_UCLK: *value = metrics->AverageUclkFrequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->TemperatureMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->TemperatureVrGfx * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->TemperatureVrSoc * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_CURR_FANSPEED: *value = metrics->CurrFanSpeed; break; default: *value = UINT_MAX; break; } return ret; } static int navi12_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_NV12_t *metrics = (SmuMetrics_NV12_t *)smu_table->metrics_table; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) return ret; switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK]; break; case METRICS_CURR_DCEFCLK: *value = metrics->CurrClock[PPCLK_DCEFCLK]; break; case METRICS_AVERAGE_GFXCLK: if (metrics->AverageGfxActivity > SMU_11_0_GFX_BUSY_THRESHOLD) *value = metrics->AverageGfxclkFrequencyPreDs; else *value = metrics->AverageGfxclkFrequencyPostDs; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->AverageSocclkFrequency; break; case METRICS_AVERAGE_UCLK: *value = metrics->AverageUclkFrequencyPostDs; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->TemperatureMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->TemperatureVrGfx * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->TemperatureVrSoc * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_CURR_FANSPEED: *value = metrics->CurrFanSpeed; break; default: *value = UINT_MAX; break; } return ret; } static int navi1x_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t smu_version; int ret = 0; ret = smu_cmn_get_smc_version(smu, NULL, &smu_version); if (ret) { dev_err(adev->dev, "Failed to get smu version!\n"); return ret; } switch (adev->ip_versions[MP1_HWIP][0]) { case IP_VERSION(11, 0, 9): if (smu_version > 0x00341C00) ret = navi12_get_smu_metrics_data(smu, member, value); else ret = navi12_get_legacy_smu_metrics_data(smu, member, value); break; case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 5): default: if (((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 5)) && smu_version > 0x00351F00) || ((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0)) && smu_version > 0x002A3B00)) ret = navi10_get_smu_metrics_data(smu, member, value); else ret = navi10_get_legacy_smu_metrics_data(smu, member, value); break; } return ret; } static int navi10_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } static int navi10_init_smc_tables(struct smu_context *smu) { int ret = 0; ret = navi10_tables_init(smu); if (ret) return ret; ret = navi10_allocate_dpm_context(smu); if (ret) return ret; return smu_v11_0_init_smc_tables(smu); } static int navi10_set_default_dpm_table(struct smu_context *smu) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; PPTable_t *driver_ppt = smu->smu_table.driver_pptable; struct smu_11_0_dpm_table *dpm_table; int ret = 0; /* socclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.soc_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_SOCCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* gfxclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.gfx_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_GFXCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* uclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.uclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_UCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* vclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.vclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_VCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_VCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* dclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.dclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_DCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* dcefclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.dcef_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DCEFCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_DCEFCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* pixelclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.pixel_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_PIXCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_PIXCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* displayclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.display_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DISPCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_DISPCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* phyclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.phy_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_PHYCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_PHYCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } return 0; } static int navi10_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) { /* vcn dpm on is a prerequisite for vcn power gate messages */ if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 1, NULL); if (ret) return ret; } } else { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerDownVcn, NULL); if (ret) return ret; } } return ret; } static int navi10_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerUpJpeg, NULL); if (ret) return ret; } } else { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerDownJpeg, NULL); if (ret) return ret; } } return ret; } static int navi10_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { MetricsMember_t member_type; int clk_id = 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; switch (clk_id) { case PPCLK_GFXCLK: member_type = METRICS_CURR_GFXCLK; break; case PPCLK_UCLK: member_type = METRICS_CURR_UCLK; break; case PPCLK_SOCCLK: member_type = METRICS_CURR_SOCCLK; break; case PPCLK_VCLK: member_type = METRICS_CURR_VCLK; break; case PPCLK_DCLK: member_type = METRICS_CURR_DCLK; break; case PPCLK_DCEFCLK: member_type = METRICS_CURR_DCEFCLK; break; default: return -EINVAL; } return navi1x_get_smu_metrics_data(smu, member_type, value); } static bool navi10_is_support_fine_grained_dpm(struct smu_context *smu, enum smu_clk_type clk_type) { PPTable_t *pptable = smu->smu_table.driver_pptable; DpmDescriptor_t *dpm_desc = NULL; uint32_t clk_index = 0; clk_index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); dpm_desc = &pptable->DpmDescriptor[clk_index]; /* 0 - Fine grained DPM, 1 - Discrete DPM */ return dpm_desc->SnapToDiscrete == 0; } static inline bool navi10_od_feature_is_supported(struct smu_11_0_overdrive_table *od_table, enum SMU_11_0_ODFEATURE_CAP cap) { return od_table->cap[cap]; } static void navi10_od_setting_get_range(struct smu_11_0_overdrive_table *od_table, enum SMU_11_0_ODSETTING_ID setting, uint32_t *min, uint32_t *max) { if (min) *min = od_table->min[setting]; if (max) *max = od_table->max[setting]; } static int navi10_emit_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf, int *offset) { uint16_t *curve_settings; int ret = 0; uint32_t cur_value = 0, value = 0; uint32_t freq_values[3] = {0}; uint32_t i, levels, mark_index = 0, count = 0; struct smu_table_context *table_context = &smu->smu_table; uint32_t gen_speed, lane_width; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context; PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable; OverDriveTable_t *od_table = (OverDriveTable_t *)table_context->overdrive_table; struct smu_11_0_overdrive_table *od_settings = smu->od_settings; uint32_t min_value, max_value; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: case SMU_VCLK: case SMU_DCLK: case SMU_DCEFCLK: ret = navi10_get_current_clk_freq_by_table(smu, clk_type, &cur_value); if (ret) return ret; ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &count); if (ret) return ret; if (!navi10_is_support_fine_grained_dpm(smu, clk_type)) { for (i = 0; i < count; i++) { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &value); if (ret) return ret; *offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); } } else { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]); if (ret) return ret; ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]); if (ret) return ret; freq_values[1] = cur_value; mark_index = cur_value == freq_values[0] ? 0 : cur_value == freq_values[2] ? 2 : 1; levels = 3; if (mark_index != 1) { levels = 2; freq_values[1] = freq_values[2]; } for (i = 0; i < levels; i++) { *offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n", i, freq_values[i], i == mark_index ? "*" : ""); } } break; case SMU_PCIE: gen_speed = smu_v11_0_get_current_pcie_link_speed_level(smu); lane_width = smu_v11_0_get_current_pcie_link_width_level(smu); for (i = 0; i < NUM_LINK_LEVELS; i++) { *offset += sysfs_emit_at(buf, *offset, "%d: %s %s %dMhz %s\n", i, (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 0) ? "2.5GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 1) ? "5.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 2) ? "8.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 3) ? "16.0GT/s," : "", (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 1) ? "x1" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 2) ? "x2" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 3) ? "x4" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 4) ? "x8" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 5) ? "x12" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 6) ? "x16" : "", pptable->LclkFreq[i], (gen_speed == dpm_context->dpm_tables.pcie_table.pcie_gen[i]) && (lane_width == dpm_context->dpm_tables.pcie_table.pcie_lane[i]) ? "*" : ""); } break; case SMU_OD_SCLK: if (!smu->od_enabled || !od_table || !od_settings) return -EOPNOTSUPP; if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) break; *offset += sysfs_emit_at(buf, *offset, "OD_SCLK:\n0: %uMhz\n1: %uMhz\n", od_table->GfxclkFmin, od_table->GfxclkFmax); break; case SMU_OD_MCLK: if (!smu->od_enabled || !od_table || !od_settings) return -EOPNOTSUPP; if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) break; *offset += sysfs_emit_at(buf, *offset, "OD_MCLK:\n1: %uMHz\n", od_table->UclkFmax); break; case SMU_OD_VDDC_CURVE: if (!smu->od_enabled || !od_table || !od_settings) return -EOPNOTSUPP; if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) break; *offset += sysfs_emit_at(buf, *offset, "OD_VDDC_CURVE:\n"); for (i = 0; i < 3; i++) { switch (i) { case 0: curve_settings = &od_table->GfxclkFreq1; break; case 1: curve_settings = &od_table->GfxclkFreq2; break; case 2: curve_settings = &od_table->GfxclkFreq3; break; default: break; } *offset += sysfs_emit_at(buf, *offset, "%d: %uMHz %umV\n", i, curve_settings[0], curve_settings[1] / NAVI10_VOLTAGE_SCALE); } break; case SMU_OD_RANGE: if (!smu->od_enabled || !od_table || !od_settings) return -EOPNOTSUPP; *offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_RANGE"); if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) { navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMIN, &min_value, NULL); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMAX, NULL, &max_value); *offset += sysfs_emit_at(buf, *offset, "SCLK: %7uMhz %10uMhz\n", min_value, max_value); } if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) { navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_UCLKFMAX, &min_value, &max_value); *offset += sysfs_emit_at(buf, *offset, "MCLK: %7uMhz %10uMhz\n", min_value, max_value); } if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) { navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P1, &min_value, &max_value); *offset += sysfs_emit_at(buf, *offset, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P1, &min_value, &max_value); *offset += sysfs_emit_at(buf, *offset, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P2, &min_value, &max_value); *offset += sysfs_emit_at(buf, *offset, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P2, &min_value, &max_value); *offset += sysfs_emit_at(buf, *offset, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P3, &min_value, &max_value); *offset += sysfs_emit_at(buf, *offset, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P3, &min_value, &max_value); *offset += sysfs_emit_at(buf, *offset, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n", min_value, max_value); } break; default: break; } return 0; } static int navi10_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { uint16_t *curve_settings; int i, levels, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0; uint32_t freq_values[3] = {0}; uint32_t mark_index = 0; struct smu_table_context *table_context = &smu->smu_table; uint32_t gen_speed, lane_width; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context; PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable; OverDriveTable_t *od_table = (OverDriveTable_t *)table_context->overdrive_table; struct smu_11_0_overdrive_table *od_settings = smu->od_settings; uint32_t min_value, max_value; smu_cmn_get_sysfs_buf(&buf, &size); switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: case SMU_VCLK: case SMU_DCLK: case SMU_DCEFCLK: ret = navi10_get_current_clk_freq_by_table(smu, clk_type, &cur_value); if (ret) return size; ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &count); if (ret) return size; if (!navi10_is_support_fine_grained_dpm(smu, clk_type)) { for (i = 0; i < count; i++) { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &value); if (ret) return size; size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); } } else { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]); if (ret) return size; ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]); if (ret) return size; freq_values[1] = cur_value; mark_index = cur_value == freq_values[0] ? 0 : cur_value == freq_values[2] ? 2 : 1; levels = 3; if (mark_index != 1) { levels = 2; freq_values[1] = freq_values[2]; } for (i = 0; i < levels; i++) { size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, freq_values[i], i == mark_index ? "*" : ""); } } break; case SMU_PCIE: gen_speed = smu_v11_0_get_current_pcie_link_speed_level(smu); lane_width = smu_v11_0_get_current_pcie_link_width_level(smu); for (i = 0; i < NUM_LINK_LEVELS; i++) size += sysfs_emit_at(buf, size, "%d: %s %s %dMhz %s\n", i, (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 0) ? "2.5GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 1) ? "5.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 2) ? "8.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 3) ? "16.0GT/s," : "", (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 1) ? "x1" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 2) ? "x2" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 3) ? "x4" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 4) ? "x8" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 5) ? "x12" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 6) ? "x16" : "", pptable->LclkFreq[i], (gen_speed == dpm_context->dpm_tables.pcie_table.pcie_gen[i]) && (lane_width == dpm_context->dpm_tables.pcie_table.pcie_lane[i]) ? "*" : ""); break; case SMU_OD_SCLK: if (!smu->od_enabled || !od_table || !od_settings) break; if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) break; size += sysfs_emit_at(buf, size, "OD_SCLK:\n"); size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMhz\n", od_table->GfxclkFmin, od_table->GfxclkFmax); break; case SMU_OD_MCLK: if (!smu->od_enabled || !od_table || !od_settings) break; if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) break; size += sysfs_emit_at(buf, size, "OD_MCLK:\n"); size += sysfs_emit_at(buf, size, "1: %uMHz\n", od_table->UclkFmax); break; case SMU_OD_VDDC_CURVE: if (!smu->od_enabled || !od_table || !od_settings) break; if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) break; size += sysfs_emit_at(buf, size, "OD_VDDC_CURVE:\n"); for (i = 0; i < 3; i++) { switch (i) { case 0: curve_settings = &od_table->GfxclkFreq1; break; case 1: curve_settings = &od_table->GfxclkFreq2; break; case 2: curve_settings = &od_table->GfxclkFreq3; break; default: break; } size += sysfs_emit_at(buf, size, "%d: %uMHz %umV\n", i, curve_settings[0], curve_settings[1] / NAVI10_VOLTAGE_SCALE); } break; case SMU_OD_RANGE: if (!smu->od_enabled || !od_table || !od_settings) break; size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) { navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMIN, &min_value, NULL); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMAX, NULL, &max_value); size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n", min_value, max_value); } if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) { navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_UCLKFMAX, &min_value, &max_value); size += sysfs_emit_at(buf, size, "MCLK: %7uMhz %10uMhz\n", min_value, max_value); } if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) { navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P1, &min_value, &max_value); size += sysfs_emit_at(buf, size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P1, &min_value, &max_value); size += sysfs_emit_at(buf, size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P2, &min_value, &max_value); size += sysfs_emit_at(buf, size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P2, &min_value, &max_value); size += sysfs_emit_at(buf, size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P3, &min_value, &max_value); size += sysfs_emit_at(buf, size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n", min_value, max_value); navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P3, &min_value, &max_value); size += sysfs_emit_at(buf, size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n", min_value, max_value); } break; default: break; } return size; } static int navi10_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { int ret = 0, size = 0; uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: /* There is only 2 levels for fine grained DPM */ if (navi10_is_support_fine_grained_dpm(smu, clk_type)) { soft_max_level = (soft_max_level >= 1 ? 1 : 0); soft_min_level = (soft_min_level >= 1 ? 1 : 0); } ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq); if (ret) return size; ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq); if (ret) return size; ret = smu_v11_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq); if (ret) return size; break; case SMU_DCEFCLK: dev_info(smu->adev->dev,"Setting DCEFCLK min/max dpm level is not supported!\n"); break; default: break; } return size; } static int navi10_populate_umd_state_clk(struct smu_context *smu) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_11_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_11_0_dpm_table *mem_table = &dpm_context->dpm_tables.uclk_table; struct smu_11_0_dpm_table *soc_table = &dpm_context->dpm_tables.soc_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; struct amdgpu_device *adev = smu->adev; uint32_t sclk_freq; pstate_table->gfxclk_pstate.min = gfx_table->min; switch (adev->ip_versions[MP1_HWIP][0]) { case IP_VERSION(11, 0, 0): switch (adev->pdev->revision) { case 0xf0: /* XTX */ case 0xc0: sclk_freq = NAVI10_PEAK_SCLK_XTX; break; case 0xf1: /* XT */ case 0xc1: sclk_freq = NAVI10_PEAK_SCLK_XT; break; default: /* XL */ sclk_freq = NAVI10_PEAK_SCLK_XL; break; } break; case IP_VERSION(11, 0, 5): switch (adev->pdev->revision) { case 0xc7: /* XT */ case 0xf4: sclk_freq = NAVI14_UMD_PSTATE_PEAK_XT_GFXCLK; break; case 0xc1: /* XTM */ case 0xf2: sclk_freq = NAVI14_UMD_PSTATE_PEAK_XTM_GFXCLK; break; case 0xc3: /* XLM */ case 0xf3: sclk_freq = NAVI14_UMD_PSTATE_PEAK_XLM_GFXCLK; break; case 0xc5: /* XTX */ case 0xf6: sclk_freq = NAVI14_UMD_PSTATE_PEAK_XLM_GFXCLK; break; default: /* XL */ sclk_freq = NAVI14_UMD_PSTATE_PEAK_XL_GFXCLK; break; } break; case IP_VERSION(11, 0, 9): sclk_freq = NAVI12_UMD_PSTATE_PEAK_GFXCLK; break; default: sclk_freq = gfx_table->dpm_levels[gfx_table->count - 1].value; break; } pstate_table->gfxclk_pstate.peak = sclk_freq; pstate_table->uclk_pstate.min = mem_table->min; pstate_table->uclk_pstate.peak = mem_table->max; pstate_table->socclk_pstate.min = soc_table->min; pstate_table->socclk_pstate.peak = soc_table->max; if (gfx_table->max > NAVI10_UMD_PSTATE_PROFILING_GFXCLK && mem_table->max > NAVI10_UMD_PSTATE_PROFILING_MEMCLK && soc_table->max > NAVI10_UMD_PSTATE_PROFILING_SOCCLK) { pstate_table->gfxclk_pstate.standard = NAVI10_UMD_PSTATE_PROFILING_GFXCLK; pstate_table->uclk_pstate.standard = NAVI10_UMD_PSTATE_PROFILING_MEMCLK; pstate_table->socclk_pstate.standard = NAVI10_UMD_PSTATE_PROFILING_SOCCLK; } else { pstate_table->gfxclk_pstate.standard = pstate_table->gfxclk_pstate.min; pstate_table->uclk_pstate.standard = pstate_table->uclk_pstate.min; pstate_table->socclk_pstate.standard = pstate_table->socclk_pstate.min; } return 0; } static int navi10_get_clock_by_type_with_latency(struct smu_context *smu, enum smu_clk_type clk_type, struct pp_clock_levels_with_latency *clocks) { int ret = 0, i = 0; uint32_t level_count = 0, freq = 0; switch (clk_type) { case SMU_GFXCLK: case SMU_DCEFCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &level_count); if (ret) return ret; level_count = min(level_count, (uint32_t)MAX_NUM_CLOCKS); clocks->num_levels = level_count; for (i = 0; i < level_count; i++) { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &freq); if (ret) return ret; clocks->data[i].clocks_in_khz = freq * 1000; clocks->data[i].latency_in_us = 0; } break; default: break; } return ret; } static int navi10_pre_display_config_changed(struct smu_context *smu) { int ret = 0; uint32_t max_freq = 0; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0, NULL); if (ret) return ret; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &max_freq); if (ret) return ret; ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, max_freq); if (ret) return ret; } return ret; } static int navi10_display_config_changed(struct smu_context *smu) { int ret = 0; if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, smu->display_config->num_display, NULL); if (ret) return ret; } return ret; } static bool navi10_is_dpm_running(struct smu_context *smu) { int ret = 0; uint64_t feature_enabled; ret = smu_cmn_get_enabled_mask(smu, &feature_enabled); if (ret) return false; return !!(feature_enabled & SMC_DPM_FEATURE); } static int navi10_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed) { int ret = 0; if (!speed) return -EINVAL; switch (smu_v11_0_get_fan_control_mode(smu)) { case AMD_FAN_CTRL_AUTO: ret = navi10_get_smu_metrics_data(smu, METRICS_CURR_FANSPEED, speed); break; default: ret = smu_v11_0_get_fan_speed_rpm(smu, speed); break; } return ret; } static int navi10_get_fan_parameters(struct smu_context *smu) { PPTable_t *pptable = smu->smu_table.driver_pptable; smu->fan_max_rpm = pptable->FanMaximumRpm; return 0; } static int navi10_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffInt_t activity_monitor; uint32_t i, size = 0; int16_t workload_type = 0; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "MinFreqType", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int result = 0; if (!buf) return -EINVAL; size += sysfs_emit_at(buf, size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, i); if (workload_type < 0) return -EINVAL; result = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, (void *)(&activity_monitor), false); if (result) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return result; } size += sysfs_emit_at(buf, size, "%2d %14s%s:\n", i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor.Gfx_FPS, activity_monitor.Gfx_MinFreqStep, activity_monitor.Gfx_MinActiveFreqType, activity_monitor.Gfx_MinActiveFreq, activity_monitor.Gfx_BoosterFreqType, activity_monitor.Gfx_BoosterFreq, activity_monitor.Gfx_PD_Data_limit_c, activity_monitor.Gfx_PD_Data_error_coeff, activity_monitor.Gfx_PD_Data_error_rate_coeff); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "SOCCLK", activity_monitor.Soc_FPS, activity_monitor.Soc_MinFreqStep, activity_monitor.Soc_MinActiveFreqType, activity_monitor.Soc_MinActiveFreq, activity_monitor.Soc_BoosterFreqType, activity_monitor.Soc_BoosterFreq, activity_monitor.Soc_PD_Data_limit_c, activity_monitor.Soc_PD_Data_error_coeff, activity_monitor.Soc_PD_Data_error_rate_coeff); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 2, "MEMLK", activity_monitor.Mem_FPS, activity_monitor.Mem_MinFreqStep, activity_monitor.Mem_MinActiveFreqType, activity_monitor.Mem_MinActiveFreq, activity_monitor.Mem_BoosterFreqType, activity_monitor.Mem_BoosterFreq, activity_monitor.Mem_PD_Data_limit_c, activity_monitor.Mem_PD_Data_error_coeff, activity_monitor.Mem_PD_Data_error_rate_coeff); } return size; } static int navi10_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffInt_t activity_monitor; int workload_type, ret = 0; smu->power_profile_mode = input[size]; if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { dev_err(smu->adev->dev, "Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), false); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor.Gfx_FPS = input[1]; activity_monitor.Gfx_MinFreqStep = input[2]; activity_monitor.Gfx_MinActiveFreqType = input[3]; activity_monitor.Gfx_MinActiveFreq = input[4]; activity_monitor.Gfx_BoosterFreqType = input[5]; activity_monitor.Gfx_BoosterFreq = input[6]; activity_monitor.Gfx_PD_Data_limit_c = input[7]; activity_monitor.Gfx_PD_Data_error_coeff = input[8]; activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Socclk */ activity_monitor.Soc_FPS = input[1]; activity_monitor.Soc_MinFreqStep = input[2]; activity_monitor.Soc_MinActiveFreqType = input[3]; activity_monitor.Soc_MinActiveFreq = input[4]; activity_monitor.Soc_BoosterFreqType = input[5]; activity_monitor.Soc_BoosterFreq = input[6]; activity_monitor.Soc_PD_Data_limit_c = input[7]; activity_monitor.Soc_PD_Data_error_coeff = input[8]; activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; break; case 2: /* Memlk */ activity_monitor.Mem_FPS = input[1]; activity_monitor.Mem_MinFreqStep = input[2]; activity_monitor.Mem_MinActiveFreqType = input[3]; activity_monitor.Mem_MinActiveFreq = input[4]; activity_monitor.Mem_BoosterFreqType = input[5]; activity_monitor.Mem_BoosterFreq = input[6]; activity_monitor.Mem_PD_Data_limit_c = input[7]; activity_monitor.Mem_PD_Data_error_coeff = input[8]; activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; break; } ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), true); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__); return ret; } } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, smu->power_profile_mode); if (workload_type < 0) return -EINVAL; smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type, NULL); return ret; } static int navi10_notify_smc_display_config(struct smu_context *smu) { struct smu_clocks min_clocks = {0}; struct pp_display_clock_request clock_req; int ret = 0; min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk; min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memory_clock = smu->display_config->min_mem_set_clock; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10; ret = smu_v11_0_display_clock_voltage_request(smu, &clock_req); if (!ret) { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, min_clocks.dcef_clock_in_sr/100, NULL); if (ret) { dev_err(smu->adev->dev, "Attempt to set divider for DCEFCLK Failed!"); return ret; } } } else { dev_info(smu->adev->dev, "Attempt to set Hard Min for DCEFCLK Failed!"); } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_clocks.memory_clock/100, 0); if (ret) { dev_err(smu->adev->dev, "[%s] Set hard min uclk failed!", __func__); return ret; } } return 0; } static int navi10_set_watermarks_table(struct smu_context *smu, struct pp_smu_wm_range_sets *clock_ranges) { Watermarks_t *table = smu->smu_table.watermarks_table; int ret = 0; int i; if (clock_ranges) { if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES || clock_ranges->num_writer_wm_sets > NUM_WM_RANGES) return -EINVAL; for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) { table->WatermarkRow[WM_DCEFCLK][i].MinClock = clock_ranges->reader_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].MaxClock = clock_ranges->reader_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].MinUclk = clock_ranges->reader_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].MaxUclk = clock_ranges->reader_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].WmSetting = clock_ranges->reader_wm_sets[i].wm_inst; } for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) { table->WatermarkRow[WM_SOCCLK][i].MinClock = clock_ranges->writer_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxClock = clock_ranges->writer_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MinUclk = clock_ranges->writer_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxUclk = clock_ranges->writer_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].WmSetting = clock_ranges->writer_wm_sets[i].wm_inst; } smu->watermarks_bitmap |= WATERMARKS_EXIST; } /* pass data to smu controller */ if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_cmn_write_watermarks_table(smu); if (ret) { dev_err(smu->adev->dev, "Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } return 0; } static int navi10_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; if(!data || !size) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *(uint32_t *)data = pptable->FanMaximumRpm; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_LOAD: ret = navi1x_get_smu_metrics_data(smu, METRICS_AVERAGE_MEMACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: ret = navi1x_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = navi1x_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = navi1x_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = navi1x_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = navi1x_get_smu_metrics_data(smu, METRICS_TEMPERATURE_MEM, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = navi10_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = navi1x_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; default: ret = -EOPNOTSUPP; break; } return ret; } static int navi10_get_uclk_dpm_states(struct smu_context *smu, uint32_t *clocks_in_khz, uint32_t *num_states) { uint32_t num_discrete_levels = 0; uint16_t *dpm_levels = NULL; uint16_t i = 0; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *driver_ppt = NULL; if (!clocks_in_khz || !num_states || !table_context->driver_pptable) return -EINVAL; driver_ppt = table_context->driver_pptable; num_discrete_levels = driver_ppt->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels; dpm_levels = driver_ppt->FreqTableUclk; if (num_discrete_levels == 0 || dpm_levels == NULL) return -EINVAL; *num_states = num_discrete_levels; for (i = 0; i < num_discrete_levels; i++) { /* convert to khz */ *clocks_in_khz = (*dpm_levels) * 1000; clocks_in_khz++; dpm_levels++; } return 0; } static int navi10_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; PPTable_t *pptable = smu->smu_table.driver_pptable; if (!range) return -EINVAL; memcpy(range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range)); range->max = pptable->TedgeLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_crit_max = pptable->ThotspotLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_crit_max = pptable->TmemLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_MEM)* SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->software_shutdown_temp = powerplay_table->software_shutdown_temp; return 0; } static int navi10_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch) { int ret = 0; struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks = (struct smu_11_0_max_sustainable_clocks *) smu->smu_table.max_sustainable_clocks; uint32_t min_memory_clock = smu->hard_min_uclk_req_from_dal; uint32_t max_memory_clock = max_sustainable_clocks->uclock; if(smu->disable_uclk_switch == disable_memory_clock_switch) return 0; if(disable_memory_clock_switch) ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, max_memory_clock, 0); else ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_memory_clock, 0); if(!ret) smu->disable_uclk_switch = disable_memory_clock_switch; return ret; } static int navi10_get_power_limit(struct smu_context *smu, uint32_t *current_power_limit, uint32_t *default_power_limit, uint32_t *max_power_limit) { struct smu_11_0_powerplay_table *powerplay_table = (struct smu_11_0_powerplay_table *)smu->smu_table.power_play_table; struct smu_11_0_overdrive_table *od_settings = smu->od_settings; PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t power_limit, od_percent; if (smu_v11_0_get_current_power_limit(smu, &power_limit)) { /* the last hope to figure out the ppt limit */ if (!pptable) { dev_err(smu->adev->dev, "Cannot get PPT limit due to pptable missing!"); return -EINVAL; } power_limit = pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0]; } if (current_power_limit) *current_power_limit = power_limit; if (default_power_limit) *default_power_limit = power_limit; if (max_power_limit) { if (smu->od_enabled && navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_POWER_LIMIT)) { od_percent = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]); dev_dbg(smu->adev->dev, "ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_percent, power_limit); power_limit *= (100 + od_percent); power_limit /= 100; } *max_power_limit = power_limit; } return 0; } static int navi10_update_pcie_parameters(struct smu_context *smu, uint32_t pcie_gen_cap, uint32_t pcie_width_cap) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t smu_pcie_arg; int ret, i; /* lclk dpm table setup */ for (i = 0; i < MAX_PCIE_CONF; i++) { dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pptable->PcieGenSpeed[i]; dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pptable->PcieLaneCount[i]; } for (i = 0; i < NUM_LINK_LEVELS; i++) { smu_pcie_arg = (i << 16) | ((pptable->PcieGenSpeed[i] <= pcie_gen_cap) ? (pptable->PcieGenSpeed[i] << 8) : (pcie_gen_cap << 8)) | ((pptable->PcieLaneCount[i] <= pcie_width_cap) ? pptable->PcieLaneCount[i] : pcie_width_cap); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_OverridePcieParameters, smu_pcie_arg, NULL); if (ret) return ret; if (pptable->PcieGenSpeed[i] > pcie_gen_cap) dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pcie_gen_cap; if (pptable->PcieLaneCount[i] > pcie_width_cap) dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pcie_width_cap; } return 0; } static inline void navi10_dump_od_table(struct smu_context *smu, OverDriveTable_t *od_table) { dev_dbg(smu->adev->dev, "OD: Gfxclk: (%d, %d)\n", od_table->GfxclkFmin, od_table->GfxclkFmax); dev_dbg(smu->adev->dev, "OD: Gfx1: (%d, %d)\n", od_table->GfxclkFreq1, od_table->GfxclkVolt1); dev_dbg(smu->adev->dev, "OD: Gfx2: (%d, %d)\n", od_table->GfxclkFreq2, od_table->GfxclkVolt2); dev_dbg(smu->adev->dev, "OD: Gfx3: (%d, %d)\n", od_table->GfxclkFreq3, od_table->GfxclkVolt3); dev_dbg(smu->adev->dev, "OD: UclkFmax: %d\n", od_table->UclkFmax); dev_dbg(smu->adev->dev, "OD: OverDrivePct: %d\n", od_table->OverDrivePct); } static int navi10_od_setting_check_range(struct smu_context *smu, struct smu_11_0_overdrive_table *od_table, enum SMU_11_0_ODSETTING_ID setting, uint32_t value) { if (value < od_table->min[setting]) { dev_warn(smu->adev->dev, "OD setting (%d, %d) is less than the minimum allowed (%d)\n", setting, value, od_table->min[setting]); return -EINVAL; } if (value > od_table->max[setting]) { dev_warn(smu->adev->dev, "OD setting (%d, %d) is greater than the maximum allowed (%d)\n", setting, value, od_table->max[setting]); return -EINVAL; } return 0; } static int navi10_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu, uint16_t *voltage, uint32_t freq) { uint32_t param = (freq & 0xFFFF) | (PPCLK_GFXCLK << 16); uint32_t value = 0; int ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetVoltageByDpm, param, &value); if (ret) { dev_err(smu->adev->dev, "[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!"); return ret; } *voltage = (uint16_t)value; return 0; } static int navi10_baco_enter(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; /* * This aims the case below: * amdgpu driver loaded -> runpm suspend kicked -> sound driver loaded * * For NAVI10 and later ASICs, we rely on PMFW to handle the runpm. To * make that possible, PMFW needs to acknowledge the dstate transition * process for both gfx(function 0) and audio(function 1) function of * the ASIC. * * The PCI device's initial runpm status is RUNPM_SUSPENDED. So as the * device representing the audio function of the ASIC. And that means * even if the sound driver(snd_hda_intel) was not loaded yet, it's still * possible runpm suspend kicked on the ASIC. However without the dstate * transition notification from audio function, pmfw cannot handle the * BACO in/exit correctly. And that will cause driver hang on runpm * resuming. * * To address this, we revert to legacy message way(driver masters the * timing for BACO in/exit) on sound driver missing. */ if (adev->in_runpm && smu_cmn_is_audio_func_enabled(adev)) return smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO); else return smu_v11_0_baco_enter(smu); } static int navi10_baco_exit(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (adev->in_runpm && smu_cmn_is_audio_func_enabled(adev)) { /* Wait for PMFW handling for the Dstate change */ msleep(10); return smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_ULPS); } else { return smu_v11_0_baco_exit(smu); } } static int navi10_set_default_od_settings(struct smu_context *smu) { OverDriveTable_t *od_table = (OverDriveTable_t *)smu->smu_table.overdrive_table; OverDriveTable_t *boot_od_table = (OverDriveTable_t *)smu->smu_table.boot_overdrive_table; OverDriveTable_t *user_od_table = (OverDriveTable_t *)smu->smu_table.user_overdrive_table; int ret = 0; /* * For S3/S4/Runpm resume, no need to setup those overdrive tables again as * - either they already have the default OD settings got during cold bootup * - or they have some user customized OD settings which cannot be overwritten */ if (smu->adev->in_suspend) return 0; ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)boot_od_table, false); if (ret) { dev_err(smu->adev->dev, "Failed to get overdrive table!\n"); return ret; } if (!boot_od_table->GfxclkVolt1) { ret = navi10_overdrive_get_gfx_clk_base_voltage(smu, &boot_od_table->GfxclkVolt1, boot_od_table->GfxclkFreq1); if (ret) return ret; } if (!boot_od_table->GfxclkVolt2) { ret = navi10_overdrive_get_gfx_clk_base_voltage(smu, &boot_od_table->GfxclkVolt2, boot_od_table->GfxclkFreq2); if (ret) return ret; } if (!boot_od_table->GfxclkVolt3) { ret = navi10_overdrive_get_gfx_clk_base_voltage(smu, &boot_od_table->GfxclkVolt3, boot_od_table->GfxclkFreq3); if (ret) return ret; } navi10_dump_od_table(smu, boot_od_table); memcpy(od_table, boot_od_table, sizeof(OverDriveTable_t)); memcpy(user_od_table, boot_od_table, sizeof(OverDriveTable_t)); return 0; } static int navi10_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { int i; int ret = 0; struct smu_table_context *table_context = &smu->smu_table; OverDriveTable_t *od_table; struct smu_11_0_overdrive_table *od_settings; enum SMU_11_0_ODSETTING_ID freq_setting, voltage_setting; uint16_t *freq_ptr, *voltage_ptr; od_table = (OverDriveTable_t *)table_context->overdrive_table; if (!smu->od_enabled) { dev_warn(smu->adev->dev, "OverDrive is not enabled!\n"); return -EINVAL; } if (!smu->od_settings) { dev_err(smu->adev->dev, "OD board limits are not set!\n"); return -ENOENT; } od_settings = smu->od_settings; switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) { dev_warn(smu->adev->dev, "GFXCLK_LIMITS not supported!\n"); return -ENOTSUPP; } if (!table_context->overdrive_table) { dev_err(smu->adev->dev, "Overdrive is not initialized\n"); return -EINVAL; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { dev_info(smu->adev->dev, "invalid number of input parameters %d\n", size); return -EINVAL; } switch (input[i]) { case 0: freq_setting = SMU_11_0_ODSETTING_GFXCLKFMIN; freq_ptr = &od_table->GfxclkFmin; if (input[i + 1] > od_table->GfxclkFmax) { dev_info(smu->adev->dev, "GfxclkFmin (%ld) must be <= GfxclkFmax (%u)!\n", input[i + 1], od_table->GfxclkFmin); return -EINVAL; } break; case 1: freq_setting = SMU_11_0_ODSETTING_GFXCLKFMAX; freq_ptr = &od_table->GfxclkFmax; if (input[i + 1] < od_table->GfxclkFmin) { dev_info(smu->adev->dev, "GfxclkFmax (%ld) must be >= GfxclkFmin (%u)!\n", input[i + 1], od_table->GfxclkFmax); return -EINVAL; } break; default: dev_info(smu->adev->dev, "Invalid SCLK_VDDC_TABLE index: %ld\n", input[i]); dev_info(smu->adev->dev, "Supported indices: [0:min,1:max]\n"); return -EINVAL; } ret = navi10_od_setting_check_range(smu, od_settings, freq_setting, input[i + 1]); if (ret) return ret; *freq_ptr = input[i + 1]; } break; case PP_OD_EDIT_MCLK_VDDC_TABLE: if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) { dev_warn(smu->adev->dev, "UCLK_MAX not supported!\n"); return -ENOTSUPP; } if (size < 2) { dev_info(smu->adev->dev, "invalid number of parameters: %d\n", size); return -EINVAL; } if (input[0] != 1) { dev_info(smu->adev->dev, "Invalid MCLK_VDDC_TABLE index: %ld\n", input[0]); dev_info(smu->adev->dev, "Supported indices: [1:max]\n"); return -EINVAL; } ret = navi10_od_setting_check_range(smu, od_settings, SMU_11_0_ODSETTING_UCLKFMAX, input[1]); if (ret) return ret; od_table->UclkFmax = input[1]; break; case PP_OD_RESTORE_DEFAULT_TABLE: if (!(table_context->overdrive_table && table_context->boot_overdrive_table)) { dev_err(smu->adev->dev, "Overdrive table was not initialized!\n"); return -EINVAL; } memcpy(table_context->overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTable_t)); break; case PP_OD_COMMIT_DPM_TABLE: if (memcmp(od_table, table_context->user_overdrive_table, sizeof(OverDriveTable_t))) { navi10_dump_od_table(smu, od_table); ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)od_table, true); if (ret) { dev_err(smu->adev->dev, "Failed to import overdrive table!\n"); return ret; } memcpy(table_context->user_overdrive_table, od_table, sizeof(OverDriveTable_t)); smu->user_dpm_profile.user_od = true; if (!memcmp(table_context->user_overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTable_t))) smu->user_dpm_profile.user_od = false; } break; case PP_OD_EDIT_VDDC_CURVE: if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) { dev_warn(smu->adev->dev, "GFXCLK_CURVE not supported!\n"); return -ENOTSUPP; } if (size < 3) { dev_info(smu->adev->dev, "invalid number of parameters: %d\n", size); return -EINVAL; } if (!od_table) { dev_info(smu->adev->dev, "Overdrive is not initialized\n"); return -EINVAL; } switch (input[0]) { case 0: freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P1; voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P1; freq_ptr = &od_table->GfxclkFreq1; voltage_ptr = &od_table->GfxclkVolt1; break; case 1: freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P2; voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P2; freq_ptr = &od_table->GfxclkFreq2; voltage_ptr = &od_table->GfxclkVolt2; break; case 2: freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P3; voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P3; freq_ptr = &od_table->GfxclkFreq3; voltage_ptr = &od_table->GfxclkVolt3; break; default: dev_info(smu->adev->dev, "Invalid VDDC_CURVE index: %ld\n", input[0]); dev_info(smu->adev->dev, "Supported indices: [0, 1, 2]\n"); return -EINVAL; } ret = navi10_od_setting_check_range(smu, od_settings, freq_setting, input[1]); if (ret) return ret; // Allow setting zero to disable the OverDrive VDDC curve if (input[2] != 0) { ret = navi10_od_setting_check_range(smu, od_settings, voltage_setting, input[2]); if (ret) return ret; *freq_ptr = input[1]; *voltage_ptr = ((uint16_t)input[2]) * NAVI10_VOLTAGE_SCALE; dev_dbg(smu->adev->dev, "OD: set curve %ld: (%d, %d)\n", input[0], *freq_ptr, *voltage_ptr); } else { // If setting 0, disable all voltage curve settings od_table->GfxclkVolt1 = 0; od_table->GfxclkVolt2 = 0; od_table->GfxclkVolt3 = 0; } navi10_dump_od_table(smu, od_table); break; default: return -ENOSYS; } return ret; } static int navi10_run_btc(struct smu_context *smu) { int ret = 0; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_RunBtc, NULL); if (ret) dev_err(smu->adev->dev, "RunBtc failed!\n"); return ret; } static bool navi10_need_umc_cdr_workaround(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) return false; if (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0) || adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 5)) return true; return false; } static int navi10_umc_hybrid_cdr_workaround(struct smu_context *smu) { uint32_t uclk_count, uclk_min, uclk_max; int ret = 0; /* This workaround can be applied only with uclk dpm enabled */ if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) return 0; ret = smu_v11_0_get_dpm_level_count(smu, SMU_UCLK, &uclk_count); if (ret) return ret; ret = smu_v11_0_get_dpm_freq_by_index(smu, SMU_UCLK, (uint16_t)(uclk_count - 1), &uclk_max); if (ret) return ret; /* * The NAVI10_UMC_HYBRID_CDR_WORKAROUND_UCLK_THRESHOLD is 750Mhz. * This workaround is needed only when the max uclk frequency * not greater than that. */ if (uclk_max > 0x2EE) return 0; ret = smu_v11_0_get_dpm_freq_by_index(smu, SMU_UCLK, (uint16_t)0, &uclk_min); if (ret) return ret; /* Force UCLK out of the highest DPM */ ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, uclk_min); if (ret) return ret; /* Revert the UCLK Hardmax */ ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, uclk_max); if (ret) return ret; /* * In this case, SMU already disabled dummy pstate during enablement * of UCLK DPM, we have to re-enabled it. */ return smu_cmn_send_smc_msg(smu, SMU_MSG_DAL_ENABLE_DUMMY_PSTATE_CHANGE, NULL); } static int navi10_set_dummy_pstates_table_location(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *dummy_read_table = &smu_table->dummy_read_1_table; char *dummy_table = dummy_read_table->cpu_addr; int ret = 0; uint32_t i; for (i = 0; i < 0x40000; i += 0x1000 * 2) { memcpy(dummy_table, &NoDbiPrbs7[0], 0x1000); dummy_table += 0x1000; memcpy(dummy_table, &DbiPrbs7[0], 0x1000); dummy_table += 0x1000; } amdgpu_asic_flush_hdp(smu->adev, NULL); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_HIGH, upper_32_bits(dummy_read_table->mc_address), NULL); if (ret) return ret; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_LOW, lower_32_bits(dummy_read_table->mc_address), NULL); } static int navi10_run_umc_cdr_workaround(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint8_t umc_fw_greater_than_v136 = false; uint8_t umc_fw_disable_cdr = false; uint32_t pmfw_version; uint32_t param; int ret = 0; if (!navi10_need_umc_cdr_workaround(smu)) return 0; ret = smu_cmn_get_smc_version(smu, NULL, &pmfw_version); if (ret) { dev_err(adev->dev, "Failed to get smu version!\n"); return ret; } /* * The messages below are only supported by Navi10 42.53.0 and later * PMFWs and Navi14 53.29.0 and later PMFWs. * - PPSMC_MSG_SetDriverDummyTableDramAddrHigh * - PPSMC_MSG_SetDriverDummyTableDramAddrLow * - PPSMC_MSG_GetUMCFWWA */ if (((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0)) && (pmfw_version >= 0x2a3500)) || ((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 5)) && (pmfw_version >= 0x351D00))) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GET_UMC_FW_WA, 0, ¶m); if (ret) return ret; /* First bit indicates if the UMC f/w is above v137 */ umc_fw_greater_than_v136 = param & 0x1; /* Second bit indicates if hybrid-cdr is disabled */ umc_fw_disable_cdr = param & 0x2; /* w/a only allowed if UMC f/w is <= 136 */ if (umc_fw_greater_than_v136) return 0; if (umc_fw_disable_cdr) { if (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0)) return navi10_umc_hybrid_cdr_workaround(smu); } else { return navi10_set_dummy_pstates_table_location(smu); } } else { if (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0)) return navi10_umc_hybrid_cdr_workaround(smu); } return 0; } static ssize_t navi10_get_legacy_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v1_3 *gpu_metrics = (struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table; SmuMetrics_legacy_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, true); if (ret) return ret; memcpy(&metrics, smu_table->metrics_table, sizeof(SmuMetrics_legacy_t)); smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3); gpu_metrics->temperature_edge = metrics.TemperatureEdge; gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot; gpu_metrics->temperature_mem = metrics.TemperatureMem; gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx; gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc; gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem0; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_umc_activity = metrics.AverageUclkActivity; gpu_metrics->average_socket_power = metrics.AverageSocketPower; gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency; gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK]; gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus, navi1x_throttler_map); gpu_metrics->current_fan_speed = metrics.CurrFanSpeed; gpu_metrics->pcie_link_width = smu_v11_0_get_current_pcie_link_width(smu); gpu_metrics->pcie_link_speed = smu_v11_0_get_current_pcie_link_speed(smu); gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); if (metrics.CurrGfxVoltageOffset) gpu_metrics->voltage_gfx = (155000 - 625 * metrics.CurrGfxVoltageOffset) / 100; if (metrics.CurrMemVidOffset) gpu_metrics->voltage_mem = (155000 - 625 * metrics.CurrMemVidOffset) / 100; if (metrics.CurrSocVoltageOffset) gpu_metrics->voltage_soc = (155000 - 625 * metrics.CurrSocVoltageOffset) / 100; *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_3); } static int navi10_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msg, int num_msgs) { struct amdgpu_smu_i2c_bus *smu_i2c = i2c_get_adapdata(i2c_adap); struct amdgpu_device *adev = smu_i2c->adev; struct smu_context *smu = adev->powerplay.pp_handle; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *table = &smu_table->driver_table; SwI2cRequest_t *req, *res = (SwI2cRequest_t *)table->cpu_addr; int i, j, r, c; u16 dir; if (!adev->pm.dpm_enabled) return -EBUSY; req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; req->I2CcontrollerPort = smu_i2c->port; req->I2CSpeed = I2C_SPEED_FAST_400K; req->SlaveAddress = msg[0].addr << 1; /* wants an 8-bit address */ dir = msg[0].flags & I2C_M_RD; for (c = i = 0; i < num_msgs; i++) { for (j = 0; j < msg[i].len; j++, c++) { SwI2cCmd_t *cmd = &req->SwI2cCmds[c]; if (!(msg[i].flags & I2C_M_RD)) { /* write */ cmd->Cmd = I2C_CMD_WRITE; cmd->RegisterAddr = msg[i].buf[j]; } if ((dir ^ msg[i].flags) & I2C_M_RD) { /* The direction changes. */ dir = msg[i].flags & I2C_M_RD; cmd->CmdConfig |= CMDCONFIG_RESTART_MASK; } req->NumCmds++; /* * Insert STOP if we are at the last byte of either last * message for the transaction or the client explicitly * requires a STOP at this particular message. */ if ((j == msg[i].len - 1) && ((i == num_msgs - 1) || (msg[i].flags & I2C_M_STOP))) { cmd->CmdConfig &= ~CMDCONFIG_RESTART_MASK; cmd->CmdConfig |= CMDCONFIG_STOP_MASK; } } } mutex_lock(&adev->pm.mutex); r = smu_cmn_update_table(smu, SMU_TABLE_I2C_COMMANDS, 0, req, true); mutex_unlock(&adev->pm.mutex); if (r) goto fail; for (c = i = 0; i < num_msgs; i++) { if (!(msg[i].flags & I2C_M_RD)) { c += msg[i].len; continue; } for (j = 0; j < msg[i].len; j++, c++) { SwI2cCmd_t *cmd = &res->SwI2cCmds[c]; msg[i].buf[j] = cmd->Data; } } r = num_msgs; fail: kfree(req); return r; } static u32 navi10_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm navi10_i2c_algo = { .master_xfer = navi10_i2c_xfer, .functionality = navi10_i2c_func, }; static const struct i2c_adapter_quirks navi10_i2c_control_quirks = { .flags = I2C_AQ_COMB | I2C_AQ_COMB_SAME_ADDR | I2C_AQ_NO_ZERO_LEN, .max_read_len = MAX_SW_I2C_COMMANDS, .max_write_len = MAX_SW_I2C_COMMANDS, .max_comb_1st_msg_len = 2, .max_comb_2nd_msg_len = MAX_SW_I2C_COMMANDS - 2, }; static int navi10_i2c_control_init(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int res, i; for (i = 0; i < MAX_SMU_I2C_BUSES; i++) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; smu_i2c->adev = adev; smu_i2c->port = i; mutex_init(&smu_i2c->mutex); control->owner = THIS_MODULE; control->class = I2C_CLASS_HWMON; control->dev.parent = &adev->pdev->dev; control->algo = &navi10_i2c_algo; snprintf(control->name, sizeof(control->name), "AMDGPU SMU %d", i); control->quirks = &navi10_i2c_control_quirks; i2c_set_adapdata(control, smu_i2c); res = i2c_add_adapter(control); if (res) { DRM_ERROR("Failed to register hw i2c, err: %d\n", res); goto Out_err; } } adev->pm.ras_eeprom_i2c_bus = &adev->pm.smu_i2c[0].adapter; adev->pm.fru_eeprom_i2c_bus = &adev->pm.smu_i2c[1].adapter; return 0; Out_err: for ( ; i >= 0; i--) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; i2c_del_adapter(control); } return res; } static void navi10_i2c_control_fini(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int i; for (i = 0; i < MAX_SMU_I2C_BUSES; i++) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; i2c_del_adapter(control); } adev->pm.ras_eeprom_i2c_bus = NULL; adev->pm.fru_eeprom_i2c_bus = NULL; } static ssize_t navi10_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v1_3 *gpu_metrics = (struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table; SmuMetrics_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, true); if (ret) return ret; memcpy(&metrics, smu_table->metrics_table, sizeof(SmuMetrics_t)); smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3); gpu_metrics->temperature_edge = metrics.TemperatureEdge; gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot; gpu_metrics->temperature_mem = metrics.TemperatureMem; gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx; gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc; gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem0; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_umc_activity = metrics.AverageUclkActivity; gpu_metrics->average_socket_power = metrics.AverageSocketPower; if (metrics.AverageGfxActivity > SMU_11_0_GFX_BUSY_THRESHOLD) gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequencyPreDs; else gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequencyPostDs; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequencyPostDs; gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK]; gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus, navi1x_throttler_map); gpu_metrics->current_fan_speed = metrics.CurrFanSpeed; gpu_metrics->pcie_link_width = metrics.PcieWidth; gpu_metrics->pcie_link_speed = link_speed[metrics.PcieRate]; gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); if (metrics.CurrGfxVoltageOffset) gpu_metrics->voltage_gfx = (155000 - 625 * metrics.CurrGfxVoltageOffset) / 100; if (metrics.CurrMemVidOffset) gpu_metrics->voltage_mem = (155000 - 625 * metrics.CurrMemVidOffset) / 100; if (metrics.CurrSocVoltageOffset) gpu_metrics->voltage_soc = (155000 - 625 * metrics.CurrSocVoltageOffset) / 100; *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_3); } static ssize_t navi12_get_legacy_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v1_3 *gpu_metrics = (struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table; SmuMetrics_NV12_legacy_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, true); if (ret) return ret; memcpy(&metrics, smu_table->metrics_table, sizeof(SmuMetrics_NV12_legacy_t)); smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3); gpu_metrics->temperature_edge = metrics.TemperatureEdge; gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot; gpu_metrics->temperature_mem = metrics.TemperatureMem; gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx; gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc; gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem0; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_umc_activity = metrics.AverageUclkActivity; gpu_metrics->average_socket_power = metrics.AverageSocketPower; gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency; gpu_metrics->energy_accumulator = metrics.EnergyAccumulator; gpu_metrics->average_vclk0_frequency = metrics.AverageVclkFrequency; gpu_metrics->average_dclk0_frequency = metrics.AverageDclkFrequency; gpu_metrics->average_mm_activity = metrics.VcnActivityPercentage; gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK]; gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus, navi1x_throttler_map); gpu_metrics->current_fan_speed = metrics.CurrFanSpeed; gpu_metrics->pcie_link_width = smu_v11_0_get_current_pcie_link_width(smu); gpu_metrics->pcie_link_speed = smu_v11_0_get_current_pcie_link_speed(smu); gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); if (metrics.CurrGfxVoltageOffset) gpu_metrics->voltage_gfx = (155000 - 625 * metrics.CurrGfxVoltageOffset) / 100; if (metrics.CurrMemVidOffset) gpu_metrics->voltage_mem = (155000 - 625 * metrics.CurrMemVidOffset) / 100; if (metrics.CurrSocVoltageOffset) gpu_metrics->voltage_soc = (155000 - 625 * metrics.CurrSocVoltageOffset) / 100; *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_3); } static ssize_t navi12_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v1_3 *gpu_metrics = (struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table; SmuMetrics_NV12_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, true); if (ret) return ret; memcpy(&metrics, smu_table->metrics_table, sizeof(SmuMetrics_NV12_t)); smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3); gpu_metrics->temperature_edge = metrics.TemperatureEdge; gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot; gpu_metrics->temperature_mem = metrics.TemperatureMem; gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx; gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc; gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem0; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_umc_activity = metrics.AverageUclkActivity; gpu_metrics->average_socket_power = metrics.AverageSocketPower; if (metrics.AverageGfxActivity > SMU_11_0_GFX_BUSY_THRESHOLD) gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequencyPreDs; else gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequencyPostDs; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequencyPostDs; gpu_metrics->energy_accumulator = metrics.EnergyAccumulator; gpu_metrics->average_vclk0_frequency = metrics.AverageVclkFrequency; gpu_metrics->average_dclk0_frequency = metrics.AverageDclkFrequency; gpu_metrics->average_mm_activity = metrics.VcnActivityPercentage; gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK]; gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus, navi1x_throttler_map); gpu_metrics->current_fan_speed = metrics.CurrFanSpeed; gpu_metrics->pcie_link_width = metrics.PcieWidth; gpu_metrics->pcie_link_speed = link_speed[metrics.PcieRate]; gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); if (metrics.CurrGfxVoltageOffset) gpu_metrics->voltage_gfx = (155000 - 625 * metrics.CurrGfxVoltageOffset) / 100; if (metrics.CurrMemVidOffset) gpu_metrics->voltage_mem = (155000 - 625 * metrics.CurrMemVidOffset) / 100; if (metrics.CurrSocVoltageOffset) gpu_metrics->voltage_soc = (155000 - 625 * metrics.CurrSocVoltageOffset) / 100; *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_3); } static ssize_t navi1x_get_gpu_metrics(struct smu_context *smu, void **table) { struct amdgpu_device *adev = smu->adev; uint32_t smu_version; int ret = 0; ret = smu_cmn_get_smc_version(smu, NULL, &smu_version); if (ret) { dev_err(adev->dev, "Failed to get smu version!\n"); return ret; } switch (adev->ip_versions[MP1_HWIP][0]) { case IP_VERSION(11, 0, 9): if (smu_version > 0x00341C00) ret = navi12_get_gpu_metrics(smu, table); else ret = navi12_get_legacy_gpu_metrics(smu, table); break; case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 5): default: if (((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 5)) && smu_version > 0x00351F00) || ((adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 0)) && smu_version > 0x002A3B00)) ret = navi10_get_gpu_metrics(smu, table); else ret =navi10_get_legacy_gpu_metrics(smu, table); break; } return ret; } static int navi10_enable_mgpu_fan_boost(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct amdgpu_device *adev = smu->adev; uint32_t param = 0; /* Navi12 does not support this */ if (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(11, 0, 9)) return 0; /* * Skip the MGpuFanBoost setting for those ASICs * which do not support it */ if (!smc_pptable->MGpuFanBoostLimitRpm) return 0; /* Workaround for WS SKU */ if (adev->pdev->device == 0x7312 && adev->pdev->revision == 0) param = 0xD188; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMGpuFanBoostLimitRpm, param, NULL); } static int navi10_post_smu_init(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; if (amdgpu_sriov_vf(adev)) return 0; ret = navi10_run_umc_cdr_workaround(smu); if (ret) { dev_err(adev->dev, "Failed to apply umc cdr workaround!\n"); return ret; } if (!smu->dc_controlled_by_gpio) { /* * For Navi1X, manually switch it to AC mode as PMFW * may boot it with DC mode. */ ret = smu_v11_0_set_power_source(smu, adev->pm.ac_power ? SMU_POWER_SOURCE_AC : SMU_POWER_SOURCE_DC); if (ret) { dev_err(adev->dev, "Failed to switch to %s mode!\n", adev->pm.ac_power ? "AC" : "DC"); return ret; } } return ret; } static int navi10_get_default_config_table_settings(struct smu_context *smu, struct config_table_setting *table) { if (!table) return -EINVAL; table->gfxclk_average_tau = 10; table->socclk_average_tau = 10; table->uclk_average_tau = 10; table->gfx_activity_average_tau = 10; table->mem_activity_average_tau = 10; table->socket_power_average_tau = 10; return 0; } static int navi10_set_config_table(struct smu_context *smu, struct config_table_setting *table) { DriverSmuConfig_t driver_smu_config_table; if (!table) return -EINVAL; memset(&driver_smu_config_table, 0, sizeof(driver_smu_config_table)); driver_smu_config_table.GfxclkAverageLpfTau = table->gfxclk_average_tau; driver_smu_config_table.SocclkAverageLpfTau = table->socclk_average_tau; driver_smu_config_table.UclkAverageLpfTau = table->uclk_average_tau; driver_smu_config_table.GfxActivityLpfTau = table->gfx_activity_average_tau; driver_smu_config_table.UclkActivityLpfTau = table->mem_activity_average_tau; driver_smu_config_table.SocketPowerLpfTau = table->socket_power_average_tau; return smu_cmn_update_table(smu, SMU_TABLE_DRIVER_SMU_CONFIG, 0, (void *)&driver_smu_config_table, true); } static const struct pptable_funcs navi10_ppt_funcs = { .get_allowed_feature_mask = navi10_get_allowed_feature_mask, .set_default_dpm_table = navi10_set_default_dpm_table, .dpm_set_vcn_enable = navi10_dpm_set_vcn_enable, .dpm_set_jpeg_enable = navi10_dpm_set_jpeg_enable, .i2c_init = navi10_i2c_control_init, .i2c_fini = navi10_i2c_control_fini, .print_clk_levels = navi10_print_clk_levels, .emit_clk_levels = navi10_emit_clk_levels, .force_clk_levels = navi10_force_clk_levels, .populate_umd_state_clk = navi10_populate_umd_state_clk, .get_clock_by_type_with_latency = navi10_get_clock_by_type_with_latency, .pre_display_config_changed = navi10_pre_display_config_changed, .display_config_changed = navi10_display_config_changed, .notify_smc_display_config = navi10_notify_smc_display_config, .is_dpm_running = navi10_is_dpm_running, .get_fan_speed_pwm = smu_v11_0_get_fan_speed_pwm, .get_fan_speed_rpm = navi10_get_fan_speed_rpm, .get_power_profile_mode = navi10_get_power_profile_mode, .set_power_profile_mode = navi10_set_power_profile_mode, .set_watermarks_table = navi10_set_watermarks_table, .read_sensor = navi10_read_sensor, .get_uclk_dpm_states = navi10_get_uclk_dpm_states, .set_performance_level = smu_v11_0_set_performance_level, .get_thermal_temperature_range = navi10_get_thermal_temperature_range, .display_disable_memory_clock_switch = navi10_display_disable_memory_clock_switch, .get_power_limit = navi10_get_power_limit, .update_pcie_parameters = navi10_update_pcie_parameters, .init_microcode = smu_v11_0_init_microcode, .load_microcode = smu_v11_0_load_microcode, .fini_microcode = smu_v11_0_fini_microcode, .init_smc_tables = navi10_init_smc_tables, .fini_smc_tables = smu_v11_0_fini_smc_tables, .init_power = smu_v11_0_init_power, .fini_power = smu_v11_0_fini_power, .check_fw_status = smu_v11_0_check_fw_status, .setup_pptable = navi10_setup_pptable, .get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values, .check_fw_version = smu_v11_0_check_fw_version, .write_pptable = smu_cmn_write_pptable, .set_driver_table_location = smu_v11_0_set_driver_table_location, .set_tool_table_location = smu_v11_0_set_tool_table_location, .notify_memory_pool_location = smu_v11_0_notify_memory_pool_location, .system_features_control = smu_v11_0_system_features_control, .send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param, .send_smc_msg = smu_cmn_send_smc_msg, .init_display_count = smu_v11_0_init_display_count, .set_allowed_mask = smu_v11_0_set_allowed_mask, .get_enabled_mask = smu_cmn_get_enabled_mask, .feature_is_enabled = smu_cmn_feature_is_enabled, .disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception, .notify_display_change = smu_v11_0_notify_display_change, .set_power_limit = smu_v11_0_set_power_limit, .init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks, .enable_thermal_alert = smu_v11_0_enable_thermal_alert, .disable_thermal_alert = smu_v11_0_disable_thermal_alert, .set_min_dcef_deep_sleep = smu_v11_0_set_min_deep_sleep_dcefclk, .display_clock_voltage_request = smu_v11_0_display_clock_voltage_request, .get_fan_control_mode = smu_v11_0_get_fan_control_mode, .set_fan_control_mode = smu_v11_0_set_fan_control_mode, .set_fan_speed_pwm = smu_v11_0_set_fan_speed_pwm, .set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm, .set_xgmi_pstate = smu_v11_0_set_xgmi_pstate, .gfx_off_control = smu_v11_0_gfx_off_control, .register_irq_handler = smu_v11_0_register_irq_handler, .set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme, .get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc, .baco_is_support = smu_v11_0_baco_is_support, .baco_get_state = smu_v11_0_baco_get_state, .baco_set_state = smu_v11_0_baco_set_state, .baco_enter = navi10_baco_enter, .baco_exit = navi10_baco_exit, .get_dpm_ultimate_freq = smu_v11_0_get_dpm_ultimate_freq, .set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range, .set_default_od_settings = navi10_set_default_od_settings, .od_edit_dpm_table = navi10_od_edit_dpm_table, .restore_user_od_settings = smu_v11_0_restore_user_od_settings, .run_btc = navi10_run_btc, .set_power_source = smu_v11_0_set_power_source, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_pp_feature_mask = smu_cmn_set_pp_feature_mask, .get_gpu_metrics = navi1x_get_gpu_metrics, .enable_mgpu_fan_boost = navi10_enable_mgpu_fan_boost, .gfx_ulv_control = smu_v11_0_gfx_ulv_control, .deep_sleep_control = smu_v11_0_deep_sleep_control, .get_fan_parameters = navi10_get_fan_parameters, .post_init = navi10_post_smu_init, .interrupt_work = smu_v11_0_interrupt_work, .set_mp1_state = smu_cmn_set_mp1_state, .get_default_config_table_settings = navi10_get_default_config_table_settings, .set_config_table = navi10_set_config_table, }; void navi10_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &navi10_ppt_funcs; smu->message_map = navi10_message_map; smu->clock_map = navi10_clk_map; smu->feature_map = navi10_feature_mask_map; smu->table_map = navi10_table_map; smu->pwr_src_map = navi10_pwr_src_map; smu->workload_map = navi10_workload_map; smu_v11_0_set_smu_mailbox_registers(smu); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1