Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marek Vašut | 2586 | 82.88% | 8 | 38.10% |
Laurent Pinchart | 216 | 6.92% | 4 | 19.05% |
Maxime Ripard | 196 | 6.28% | 2 | 9.52% |
Alexander Stein | 114 | 3.65% | 4 | 19.05% |
José Expósito | 4 | 0.13% | 1 | 4.76% |
Ville Syrjälä | 3 | 0.10% | 1 | 4.76% |
Uwe Kleine-König | 1 | 0.03% | 1 | 4.76% |
Total | 3120 | 21 |
// SPDX-License-Identifier: GPL-2.0 /* * TI SN65DSI83,84,85 driver * * Currently supported: * - SN65DSI83 * = 1x Single-link DSI ~ 1x Single-link LVDS * - Supported * - Single-link LVDS mode tested * - SN65DSI84 * = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS * - Supported * - Dual-link LVDS mode tested * - 2x Single-link LVDS mode unsupported * (should be easy to add by someone who has the HW) * - SN65DSI85 * = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS * - Unsupported * (should be easy to add by someone who has the HW) * * Copyright (C) 2021 Marek Vasut <marex@denx.de> * * Based on previous work of: * Valentin Raevsky <valentin@compulab.co.il> * Philippe Schenker <philippe.schenker@toradex.com> */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/of_graph.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> /* ID registers */ #define REG_ID(n) (0x00 + (n)) /* Reset and clock registers */ #define REG_RC_RESET 0x09 #define REG_RC_RESET_SOFT_RESET BIT(0) #define REG_RC_LVDS_PLL 0x0a #define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7) #define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1) #define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0) #define REG_RC_DSI_CLK 0x0b #define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3) #define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3) #define REG_RC_PLL_EN 0x0d #define REG_RC_PLL_EN_PLL_EN BIT(0) /* DSI registers */ #define REG_DSI_LANE 0x10 #define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */ #define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */ #define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */ #define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5) #define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3) #define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1) #define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0) #define REG_DSI_EQ 0x11 #define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6) #define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2) #define REG_DSI_CLK 0x12 #define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff) /* LVDS registers */ #define REG_LVDS_FMT 0x18 #define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7) #define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6) #define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5) #define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */ #define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3) #define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2) #define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1) #define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0) #define REG_LVDS_VCOM 0x19 #define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6) #define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4) #define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2) #define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3) #define REG_LVDS_LANE 0x1a #define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6) #define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5) #define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4) #define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1) #define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0) #define REG_LVDS_CM 0x1b #define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4) #define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3) /* Video registers */ #define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25 #define REG_VID_CHA_SYNC_DELAY_LOW 0x28 #define REG_VID_CHA_SYNC_DELAY_HIGH 0x29 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c #define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d #define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31 #define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34 #define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36 #define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38 #define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a #define REG_VID_CHA_TEST_PATTERN 0x3c /* IRQ registers */ #define REG_IRQ_GLOBAL 0xe0 #define REG_IRQ_GLOBAL_IRQ_EN BIT(0) #define REG_IRQ_EN 0xe1 #define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7) #define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6) #define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5) #define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4) #define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3) #define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2) #define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0) #define REG_IRQ_STAT 0xe5 #define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7) #define REG_IRQ_STAT_CHA_CRC_ERR BIT(6) #define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5) #define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4) #define REG_IRQ_STAT_CHA_LLP_ERR BIT(3) #define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2) #define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0) enum sn65dsi83_model { MODEL_SN65DSI83, MODEL_SN65DSI84, }; struct sn65dsi83 { struct drm_bridge bridge; struct device *dev; struct regmap *regmap; struct mipi_dsi_device *dsi; struct drm_bridge *panel_bridge; struct gpio_desc *enable_gpio; struct regulator *vcc; bool lvds_dual_link; bool lvds_dual_link_even_odd_swap; }; static const struct regmap_range sn65dsi83_readable_ranges[] = { regmap_reg_range(REG_ID(0), REG_ID(8)), regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK), regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN), regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK), regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM), regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH), regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH), regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW, REG_VID_CHA_SYNC_DELAY_HIGH), regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH), regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH), regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH, REG_VID_CHA_HORIZONTAL_BACK_PORCH), regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH, REG_VID_CHA_VERTICAL_BACK_PORCH), regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH, REG_VID_CHA_HORIZONTAL_FRONT_PORCH), regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH, REG_VID_CHA_VERTICAL_FRONT_PORCH), regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN), regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN), regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), }; static const struct regmap_access_table sn65dsi83_readable_table = { .yes_ranges = sn65dsi83_readable_ranges, .n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges), }; static const struct regmap_range sn65dsi83_writeable_ranges[] = { regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK), regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN), regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK), regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM), regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH), regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH), regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW, REG_VID_CHA_SYNC_DELAY_HIGH), regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH), regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH), regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH, REG_VID_CHA_HORIZONTAL_BACK_PORCH), regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH, REG_VID_CHA_VERTICAL_BACK_PORCH), regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH, REG_VID_CHA_HORIZONTAL_FRONT_PORCH), regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH, REG_VID_CHA_VERTICAL_FRONT_PORCH), regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN), regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN), regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), }; static const struct regmap_access_table sn65dsi83_writeable_table = { .yes_ranges = sn65dsi83_writeable_ranges, .n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges), }; static const struct regmap_range sn65dsi83_volatile_ranges[] = { regmap_reg_range(REG_RC_RESET, REG_RC_RESET), regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL), regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT), }; static const struct regmap_access_table sn65dsi83_volatile_table = { .yes_ranges = sn65dsi83_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges), }; static const struct regmap_config sn65dsi83_regmap_config = { .reg_bits = 8, .val_bits = 8, .rd_table = &sn65dsi83_readable_table, .wr_table = &sn65dsi83_writeable_table, .volatile_table = &sn65dsi83_volatile_table, .cache_type = REGCACHE_RBTREE, .max_register = REG_IRQ_STAT, }; static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge) { return container_of(bridge, struct sn65dsi83, bridge); } static int sn65dsi83_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); return drm_bridge_attach(bridge->encoder, ctx->panel_bridge, &ctx->bridge, flags); } static void sn65dsi83_detach(struct drm_bridge *bridge) { struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); if (!ctx->dsi) return; ctx->dsi = NULL; } static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx, const struct drm_display_mode *mode) { /* * The encoding of the LVDS_CLK_RANGE is as follows: * 000 - 25 MHz <= LVDS_CLK < 37.5 MHz * 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz * 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz * 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz * 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz * 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz * which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that * the ends of the ranges are clamped to the supported range. Since * sn65dsi83_mode_valid() already filters the valid modes and limits * the clock to 25..154 MHz, the range calculation can be simplified * as follows: */ int mode_clock = mode->clock; if (ctx->lvds_dual_link) mode_clock /= 2; return (mode_clock - 12500) / 25000; } static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx, const struct drm_display_mode *mode) { /* * The encoding of the CHA_DSI_CLK_RANGE is as follows: * 0x00 through 0x07 - Reserved * 0x08 - 40 <= DSI_CLK < 45 MHz * 0x09 - 45 <= DSI_CLK < 50 MHz * ... * 0x63 - 495 <= DSI_CLK < 500 MHz * 0x64 - 500 MHz * 0x65 through 0xFF - Reserved * which is DSI clock in 5 MHz steps, clamped to 40..500 MHz. * The DSI clock are calculated as: * DSI_CLK = mode clock * bpp / dsi_data_lanes / 2 * the 2 is there because the bus is DDR. */ return DIV_ROUND_UP(clamp((unsigned int)mode->clock * mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) / ctx->dsi->lanes / 2, 40000U, 500000U), 5000U); } static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx) { /* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */ unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format); dsi_div /= ctx->dsi->lanes; if (!ctx->lvds_dual_link) dsi_div /= 2; return dsi_div - 1; } static void sn65dsi83_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); struct drm_atomic_state *state = old_bridge_state->base.state; const struct drm_bridge_state *bridge_state; const struct drm_crtc_state *crtc_state; const struct drm_display_mode *mode; struct drm_connector *connector; struct drm_crtc *crtc; bool lvds_format_24bpp; bool lvds_format_jeida; unsigned int pval; __le16 le16val; u16 val; int ret; ret = regulator_enable(ctx->vcc); if (ret) { dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret); return; } /* Deassert reset */ gpiod_set_value_cansleep(ctx->enable_gpio, 1); usleep_range(1000, 1100); /* Get the LVDS format from the bridge state. */ bridge_state = drm_atomic_get_new_bridge_state(state, bridge); switch (bridge_state->output_bus_cfg.format) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: lvds_format_24bpp = false; lvds_format_jeida = true; break; case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: lvds_format_24bpp = true; lvds_format_jeida = true; break; case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: lvds_format_24bpp = true; lvds_format_jeida = false; break; default: /* * Some bridges still don't set the correct * LVDS bus pixel format, use SPWG24 default * format until those are fixed. */ lvds_format_24bpp = true; lvds_format_jeida = false; dev_warn(ctx->dev, "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n", bridge_state->output_bus_cfg.format); break; } /* * Retrieve the CRTC adjusted mode. This requires a little dance to go * from the bridge to the encoder, to the connector and to the CRTC. */ connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder); crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; crtc_state = drm_atomic_get_new_crtc_state(state, crtc); mode = &crtc_state->adjusted_mode; /* Clear reset, disable PLL */ regmap_write(ctx->regmap, REG_RC_RESET, 0x00); regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00); /* Reference clock derived from DSI link clock. */ regmap_write(ctx->regmap, REG_RC_LVDS_PLL, REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) | REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY); regmap_write(ctx->regmap, REG_DSI_CLK, REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode))); regmap_write(ctx->regmap, REG_RC_DSI_CLK, REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx))); /* Set number of DSI lanes and LVDS link config. */ regmap_write(ctx->regmap, REG_DSI_LANE, REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE | REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) | /* CHB is DSI85-only, set to default on DSI83/DSI84 */ REG_DSI_LANE_CHB_DSI_LANES(3)); /* No equalization. */ regmap_write(ctx->regmap, REG_DSI_EQ, 0x00); /* Set up sync signal polarity. */ val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? REG_LVDS_FMT_HS_NEG_POLARITY : 0) | (mode->flags & DRM_MODE_FLAG_NVSYNC ? REG_LVDS_FMT_VS_NEG_POLARITY : 0); /* Set up bits-per-pixel, 18bpp or 24bpp. */ if (lvds_format_24bpp) { val |= REG_LVDS_FMT_CHA_24BPP_MODE; if (ctx->lvds_dual_link) val |= REG_LVDS_FMT_CHB_24BPP_MODE; } /* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */ if (lvds_format_jeida) { val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1; if (ctx->lvds_dual_link) val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1; } /* Set up LVDS output config (DSI84,DSI85) */ if (!ctx->lvds_dual_link) val |= REG_LVDS_FMT_LVDS_LINK_CFG; regmap_write(ctx->regmap, REG_LVDS_FMT, val); regmap_write(ctx->regmap, REG_LVDS_VCOM, 0x05); regmap_write(ctx->regmap, REG_LVDS_LANE, (ctx->lvds_dual_link_even_odd_swap ? REG_LVDS_LANE_EVEN_ODD_SWAP : 0) | REG_LVDS_LANE_CHA_LVDS_TERM | REG_LVDS_LANE_CHB_LVDS_TERM); regmap_write(ctx->regmap, REG_LVDS_CM, 0x00); le16val = cpu_to_le16(mode->hdisplay); regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW, &le16val, 2); le16val = cpu_to_le16(mode->vdisplay); regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW, &le16val, 2); /* 32 + 1 pixel clock to ensure proper operation */ le16val = cpu_to_le16(32 + 1); regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2); le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start); regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW, &le16val, 2); le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start); regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW, &le16val, 2); regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH, mode->htotal - mode->hsync_end); regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH, mode->vtotal - mode->vsync_end); regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH, mode->hsync_start - mode->hdisplay); regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH, mode->vsync_start - mode->vdisplay); regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00); /* Enable PLL */ regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN); usleep_range(3000, 4000); ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval, pval & REG_RC_LVDS_PLL_PLL_EN_STAT, 1000, 100000); if (ret) { dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret); /* On failure, disable PLL again and exit. */ regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00); return; } /* Trigger reset after CSR register update. */ regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET); /* Clear all errors that got asserted during initialization. */ regmap_read(ctx->regmap, REG_IRQ_STAT, &pval); regmap_write(ctx->regmap, REG_IRQ_STAT, pval); usleep_range(10000, 12000); regmap_read(ctx->regmap, REG_IRQ_STAT, &pval); if (pval) dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval); } static void sn65dsi83_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge); int ret; /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */ gpiod_set_value_cansleep(ctx->enable_gpio, 0); usleep_range(10000, 11000); ret = regulator_disable(ctx->vcc); if (ret) dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret); regcache_mark_dirty(ctx->regmap); } static enum drm_mode_status sn65dsi83_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { /* LVDS output clock range 25..154 MHz */ if (mode->clock < 25000) return MODE_CLOCK_LOW; if (mode->clock > 154000) return MODE_CLOCK_HIGH; return MODE_OK; } #define MAX_INPUT_SEL_FORMATS 1 static u32 * sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { u32 *input_fmts; *num_input_fmts = 0; input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts), GFP_KERNEL); if (!input_fmts) return NULL; /* This is the DSI-end bus format */ input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24; *num_input_fmts = 1; return input_fmts; } static const struct drm_bridge_funcs sn65dsi83_funcs = { .attach = sn65dsi83_attach, .detach = sn65dsi83_detach, .atomic_enable = sn65dsi83_atomic_enable, .atomic_disable = sn65dsi83_atomic_disable, .mode_valid = sn65dsi83_mode_valid, .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts, }; static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model) { struct drm_bridge *panel_bridge; struct device *dev = ctx->dev; ctx->lvds_dual_link = false; ctx->lvds_dual_link_even_odd_swap = false; if (model != MODEL_SN65DSI83) { struct device_node *port2, *port3; int dual_link; port2 = of_graph_get_port_by_id(dev->of_node, 2); port3 = of_graph_get_port_by_id(dev->of_node, 3); dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3); of_node_put(port2); of_node_put(port3); if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) { ctx->lvds_dual_link = true; /* Odd pixels to LVDS Channel A, even pixels to B */ ctx->lvds_dual_link_even_odd_swap = false; } else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) { ctx->lvds_dual_link = true; /* Even pixels to LVDS Channel A, odd pixels to B */ ctx->lvds_dual_link_even_odd_swap = true; } } panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0); if (IS_ERR(panel_bridge)) return PTR_ERR(panel_bridge); ctx->panel_bridge = panel_bridge; ctx->vcc = devm_regulator_get(dev, "vcc"); if (IS_ERR(ctx->vcc)) return dev_err_probe(dev, PTR_ERR(ctx->vcc), "Failed to get supply 'vcc'\n"); return 0; } static int sn65dsi83_host_attach(struct sn65dsi83 *ctx) { struct device *dev = ctx->dev; struct device_node *host_node; struct device_node *endpoint; struct mipi_dsi_device *dsi; struct mipi_dsi_host *host; const struct mipi_dsi_device_info info = { .type = "sn65dsi83", .channel = 0, .node = NULL, }; int dsi_lanes, ret; endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1); dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4); host_node = of_graph_get_remote_port_parent(endpoint); host = of_find_mipi_dsi_host_by_node(host_node); of_node_put(host_node); of_node_put(endpoint); if (!host) return -EPROBE_DEFER; if (dsi_lanes < 0) return dsi_lanes; dsi = devm_mipi_dsi_device_register_full(dev, host, &info); if (IS_ERR(dsi)) return dev_err_probe(dev, PTR_ERR(dsi), "failed to create dsi device\n"); ctx->dsi = dsi; dsi->lanes = dsi_lanes; dsi->format = MIPI_DSI_FMT_RGB888; dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST; ret = devm_mipi_dsi_attach(dev, dsi); if (ret < 0) { dev_err(dev, "failed to attach dsi to host: %d\n", ret); return ret; } return 0; } static int sn65dsi83_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; enum sn65dsi83_model model; struct sn65dsi83 *ctx; int ret; ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = dev; if (dev->of_node) { model = (enum sn65dsi83_model)(uintptr_t) of_device_get_match_data(dev); } else { model = id->driver_data; } /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */ ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(ctx->enable_gpio)) return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n"); usleep_range(10000, 11000); ret = sn65dsi83_parse_dt(ctx, model); if (ret) return ret; ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config); if (IS_ERR(ctx->regmap)) return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n"); dev_set_drvdata(dev, ctx); i2c_set_clientdata(client, ctx); ctx->bridge.funcs = &sn65dsi83_funcs; ctx->bridge.of_node = dev->of_node; drm_bridge_add(&ctx->bridge); ret = sn65dsi83_host_attach(ctx); if (ret) goto err_remove_bridge; return 0; err_remove_bridge: drm_bridge_remove(&ctx->bridge); return ret; } static void sn65dsi83_remove(struct i2c_client *client) { struct sn65dsi83 *ctx = i2c_get_clientdata(client); drm_bridge_remove(&ctx->bridge); } static struct i2c_device_id sn65dsi83_id[] = { { "ti,sn65dsi83", MODEL_SN65DSI83 }, { "ti,sn65dsi84", MODEL_SN65DSI84 }, {}, }; MODULE_DEVICE_TABLE(i2c, sn65dsi83_id); static const struct of_device_id sn65dsi83_match_table[] = { { .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 }, { .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 }, {}, }; MODULE_DEVICE_TABLE(of, sn65dsi83_match_table); static struct i2c_driver sn65dsi83_driver = { .probe = sn65dsi83_probe, .remove = sn65dsi83_remove, .id_table = sn65dsi83_id, .driver = { .name = "sn65dsi83", .of_match_table = sn65dsi83_match_table, }, }; module_i2c_driver(sn65dsi83_driver); MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1