Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 2101 | 97.58% | 1 | 12.50% |
Kees Cook | 20 | 0.93% | 1 | 12.50% |
Darek Marcinkiewicz | 14 | 0.65% | 1 | 12.50% |
Hans Verkuil | 14 | 0.65% | 2 | 25.00% |
Thomas Gleixner | 2 | 0.09% | 1 | 12.50% |
Colin Ian King | 1 | 0.05% | 1 | 12.50% |
Uwe Kleine-König | 1 | 0.05% | 1 | 12.50% |
Total | 2153 | 8 |
// SPDX-License-Identifier: GPL-2.0-only /* * TDA9950 Consumer Electronics Control driver * * The NXP TDA9950 implements the HDMI Consumer Electronics Control * interface. The host interface is similar to a mailbox: the data * registers starting at REG_CDR0 are written to send a command to the * internal CPU, and replies are read from these registers. * * As the data registers represent a mailbox, they must be accessed * as a single I2C transaction. See the TDA9950 data sheet for details. */ #include <linux/delay.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/platform_data/tda9950.h> #include <linux/slab.h> #include <drm/drm_edid.h> #include <media/cec.h> #include <media/cec-notifier.h> enum { REG_CSR = 0x00, CSR_BUSY = BIT(7), CSR_INT = BIT(6), CSR_ERR = BIT(5), REG_CER = 0x01, REG_CVR = 0x02, REG_CCR = 0x03, CCR_RESET = BIT(7), CCR_ON = BIT(6), REG_ACKH = 0x04, REG_ACKL = 0x05, REG_CCONR = 0x06, CCONR_ENABLE_ERROR = BIT(4), CCONR_RETRY_MASK = 7, REG_CDR0 = 0x07, CDR1_REQ = 0x00, CDR1_CNF = 0x01, CDR1_IND = 0x81, CDR1_ERR = 0x82, CDR1_IER = 0x83, CDR2_CNF_SUCCESS = 0x00, CDR2_CNF_OFF_STATE = 0x80, CDR2_CNF_BAD_REQ = 0x81, CDR2_CNF_CEC_ACCESS = 0x82, CDR2_CNF_ARB_ERROR = 0x83, CDR2_CNF_BAD_TIMING = 0x84, CDR2_CNF_NACK_ADDR = 0x85, CDR2_CNF_NACK_DATA = 0x86, }; struct tda9950_priv { struct i2c_client *client; struct device *hdmi; struct cec_adapter *adap; struct tda9950_glue *glue; u16 addresses; struct cec_msg rx_msg; struct cec_notifier *notify; bool open; }; static int tda9950_write_range(struct i2c_client *client, u8 addr, u8 *p, int cnt) { struct i2c_msg msg; u8 buf[CEC_MAX_MSG_SIZE + 3]; int ret; if (WARN_ON(cnt > sizeof(buf) - 1)) return -EINVAL; buf[0] = addr; memcpy(buf + 1, p, cnt); msg.addr = client->addr; msg.flags = 0; msg.len = cnt + 1; msg.buf = buf; dev_dbg(&client->dev, "wr 0x%02x: %*ph\n", addr, cnt, p); ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr); return ret < 0 ? ret : 0; } static void tda9950_write(struct i2c_client *client, u8 addr, u8 val) { tda9950_write_range(client, addr, &val, 1); } static int tda9950_read_range(struct i2c_client *client, u8 addr, u8 *p, int cnt) { struct i2c_msg msg[2]; int ret; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].len = 1; msg[0].buf = &addr; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].len = cnt; msg[1].buf = p; ret = i2c_transfer(client->adapter, msg, 2); if (ret < 0) dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr); dev_dbg(&client->dev, "rd 0x%02x: %*ph\n", addr, cnt, p); return ret; } static u8 tda9950_read(struct i2c_client *client, u8 addr) { int ret; u8 val; ret = tda9950_read_range(client, addr, &val, 1); if (ret < 0) val = 0; return val; } static irqreturn_t tda9950_irq(int irq, void *data) { struct tda9950_priv *priv = data; unsigned int tx_status; u8 csr, cconr, buf[19]; u8 arb_lost_cnt, nack_cnt, err_cnt; if (!priv->open) return IRQ_NONE; csr = tda9950_read(priv->client, REG_CSR); if (!(csr & CSR_INT)) return IRQ_NONE; cconr = tda9950_read(priv->client, REG_CCONR) & CCONR_RETRY_MASK; tda9950_read_range(priv->client, REG_CDR0, buf, sizeof(buf)); /* * This should never happen: the data sheet says that there will * always be a valid message if the interrupt line is asserted. */ if (buf[0] == 0) { dev_warn(&priv->client->dev, "interrupt pending, but no message?\n"); return IRQ_NONE; } switch (buf[1]) { case CDR1_CNF: /* transmit result */ arb_lost_cnt = nack_cnt = err_cnt = 0; switch (buf[2]) { case CDR2_CNF_SUCCESS: tx_status = CEC_TX_STATUS_OK; break; case CDR2_CNF_ARB_ERROR: tx_status = CEC_TX_STATUS_ARB_LOST; arb_lost_cnt = cconr; break; case CDR2_CNF_NACK_ADDR: tx_status = CEC_TX_STATUS_NACK; nack_cnt = cconr; break; default: /* some other error, refer to TDA9950 docs */ dev_err(&priv->client->dev, "CNF reply error 0x%02x\n", buf[2]); tx_status = CEC_TX_STATUS_ERROR; err_cnt = cconr; break; } /* TDA9950 executes all retries for us */ if (tx_status != CEC_TX_STATUS_OK) tx_status |= CEC_TX_STATUS_MAX_RETRIES; cec_transmit_done(priv->adap, tx_status, arb_lost_cnt, nack_cnt, 0, err_cnt); break; case CDR1_IND: priv->rx_msg.len = buf[0] - 2; if (priv->rx_msg.len > CEC_MAX_MSG_SIZE) priv->rx_msg.len = CEC_MAX_MSG_SIZE; memcpy(priv->rx_msg.msg, buf + 2, priv->rx_msg.len); cec_received_msg(priv->adap, &priv->rx_msg); break; default: /* unknown */ dev_err(&priv->client->dev, "unknown service id 0x%02x\n", buf[1]); break; } return IRQ_HANDLED; } static int tda9950_cec_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct tda9950_priv *priv = adap->priv; u8 buf[CEC_MAX_MSG_SIZE + 2]; buf[0] = 2 + msg->len; buf[1] = CDR1_REQ; memcpy(buf + 2, msg->msg, msg->len); if (attempts > 5) attempts = 5; tda9950_write(priv->client, REG_CCONR, attempts); return tda9950_write_range(priv->client, REG_CDR0, buf, 2 + msg->len); } static int tda9950_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) { struct tda9950_priv *priv = adap->priv; u16 addresses; u8 buf[2]; if (addr == CEC_LOG_ADDR_INVALID) addresses = priv->addresses = 0; else addresses = priv->addresses |= BIT(addr); /* TDA9950 doesn't want address 15 set */ addresses &= 0x7fff; buf[0] = addresses >> 8; buf[1] = addresses; return tda9950_write_range(priv->client, REG_ACKH, buf, 2); } /* * When operating as part of the TDA998x, we need additional handling * to initialise and shut down the TDA9950 part of the device. These * two hooks are provided to allow the TDA998x code to perform those * activities. */ static int tda9950_glue_open(struct tda9950_priv *priv) { int ret = 0; if (priv->glue && priv->glue->open) ret = priv->glue->open(priv->glue->data); priv->open = true; return ret; } static void tda9950_glue_release(struct tda9950_priv *priv) { priv->open = false; if (priv->glue && priv->glue->release) priv->glue->release(priv->glue->data); } static int tda9950_open(struct tda9950_priv *priv) { struct i2c_client *client = priv->client; int ret; ret = tda9950_glue_open(priv); if (ret) return ret; /* Reset the TDA9950, and wait 250ms for it to recover */ tda9950_write(client, REG_CCR, CCR_RESET); msleep(250); tda9950_cec_adap_log_addr(priv->adap, CEC_LOG_ADDR_INVALID); /* Start the command processor */ tda9950_write(client, REG_CCR, CCR_ON); return 0; } static void tda9950_release(struct tda9950_priv *priv) { struct i2c_client *client = priv->client; int timeout = 50; u8 csr; /* Stop the command processor */ tda9950_write(client, REG_CCR, 0); /* Wait up to .5s for it to signal non-busy */ do { csr = tda9950_read(client, REG_CSR); if (!(csr & CSR_BUSY) || !--timeout) break; msleep(10); } while (1); /* Warn the user that their IRQ may die if it's shared. */ if (csr & CSR_BUSY) dev_warn(&client->dev, "command processor failed to stop, irq%d may die (csr=0x%02x)\n", client->irq, csr); tda9950_glue_release(priv); } static int tda9950_cec_adap_enable(struct cec_adapter *adap, bool enable) { struct tda9950_priv *priv = adap->priv; if (!enable) { tda9950_release(priv); return 0; } else { return tda9950_open(priv); } } static const struct cec_adap_ops tda9950_cec_ops = { .adap_enable = tda9950_cec_adap_enable, .adap_log_addr = tda9950_cec_adap_log_addr, .adap_transmit = tda9950_cec_transmit, }; /* * When operating as part of the TDA998x, we need to claim additional * resources. These two hooks permit the management of those resources. */ static void tda9950_devm_glue_exit(void *data) { struct tda9950_glue *glue = data; if (glue && glue->exit) glue->exit(glue->data); } static int tda9950_devm_glue_init(struct device *dev, struct tda9950_glue *glue) { int ret; if (glue && glue->init) { ret = glue->init(glue->data); if (ret) return ret; } ret = devm_add_action(dev, tda9950_devm_glue_exit, glue); if (ret) tda9950_devm_glue_exit(glue); return ret; } static void tda9950_cec_del(void *data) { struct tda9950_priv *priv = data; cec_delete_adapter(priv->adap); } static int tda9950_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct tda9950_glue *glue = client->dev.platform_data; struct device *dev = &client->dev; struct tda9950_priv *priv; unsigned long irqflags; int ret; u8 cvr; /* * We must have I2C functionality: our multi-byte accesses * must be performed as a single contiguous transaction. */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "adapter does not support I2C functionality\n"); return -ENXIO; } /* We must have an interrupt to be functional. */ if (client->irq <= 0) { dev_err(&client->dev, "driver requires an interrupt\n"); return -ENXIO; } priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->client = client; priv->glue = glue; i2c_set_clientdata(client, priv); /* * If we're part of a TDA998x, we want the class devices to be * associated with the HDMI Tx so we have a tight relationship * between the HDMI interface and the CEC interface. */ priv->hdmi = dev; if (glue && glue->parent) priv->hdmi = glue->parent; priv->adap = cec_allocate_adapter(&tda9950_cec_ops, priv, "tda9950", CEC_CAP_DEFAULTS | CEC_CAP_CONNECTOR_INFO, CEC_MAX_LOG_ADDRS); if (IS_ERR(priv->adap)) return PTR_ERR(priv->adap); ret = devm_add_action(dev, tda9950_cec_del, priv); if (ret) { cec_delete_adapter(priv->adap); return ret; } ret = tda9950_devm_glue_init(dev, glue); if (ret) return ret; ret = tda9950_glue_open(priv); if (ret) return ret; cvr = tda9950_read(client, REG_CVR); dev_info(&client->dev, "TDA9950 CEC interface, hardware version %u.%u\n", cvr >> 4, cvr & 15); tda9950_glue_release(priv); irqflags = IRQF_TRIGGER_FALLING; if (glue) irqflags = glue->irq_flags; ret = devm_request_threaded_irq(dev, client->irq, NULL, tda9950_irq, irqflags | IRQF_SHARED | IRQF_ONESHOT, dev_name(&client->dev), priv); if (ret < 0) return ret; priv->notify = cec_notifier_cec_adap_register(priv->hdmi, NULL, priv->adap); if (!priv->notify) return -ENOMEM; ret = cec_register_adapter(priv->adap, priv->hdmi); if (ret < 0) { cec_notifier_cec_adap_unregister(priv->notify, priv->adap); return ret; } /* * CEC documentation says we must not call cec_delete_adapter * after a successful call to cec_register_adapter(). */ devm_remove_action(dev, tda9950_cec_del, priv); return 0; } static void tda9950_remove(struct i2c_client *client) { struct tda9950_priv *priv = i2c_get_clientdata(client); cec_notifier_cec_adap_unregister(priv->notify, priv->adap); cec_unregister_adapter(priv->adap); } static struct i2c_device_id tda9950_ids[] = { { "tda9950", 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, tda9950_ids); static struct i2c_driver tda9950_driver = { .probe = tda9950_probe, .remove = tda9950_remove, .driver = { .name = "tda9950", }, .id_table = tda9950_ids, }; module_i2c_driver(tda9950_driver); MODULE_AUTHOR("Russell King <rmk+kernel@armlinux.org.uk>"); MODULE_DESCRIPTION("TDA9950/TDA998x Consumer Electronics Control Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1