Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniele Ceraolo Spurio | 4906 | 50.64% | 4 | 3.28% |
Imre Deak | 2297 | 23.71% | 26 | 21.31% |
Jani Nikula | 643 | 6.64% | 17 | 13.93% |
Matt Roper | 562 | 5.80% | 17 | 13.93% |
José Roberto de Souza | 347 | 3.58% | 13 | 10.66% |
Rodrigo Vivi | 281 | 2.90% | 1 | 0.82% |
Ville Syrjälä | 130 | 1.34% | 14 | 11.48% |
Pankaj Bharadiya | 128 | 1.32% | 2 | 1.64% |
Wambui Karuga | 117 | 1.21% | 1 | 0.82% |
Anshuman Gupta | 59 | 0.61% | 2 | 1.64% |
Stanislav Lisovskiy | 44 | 0.45% | 3 | 2.46% |
Matt Atwood | 35 | 0.36% | 1 | 0.82% |
Lucas De Marchi | 30 | 0.31% | 4 | 3.28% |
Anusha Srivatsa | 30 | 0.31% | 7 | 5.74% |
Bob Paauwe | 26 | 0.27% | 1 | 0.82% |
Mika Kahola | 16 | 0.17% | 1 | 0.82% |
Radhakrishna Sripada | 13 | 0.13% | 1 | 0.82% |
Aditya Swarup | 7 | 0.07% | 2 | 1.64% |
Stuart Summers | 6 | 0.06% | 1 | 0.82% |
Vivek Kasireddy | 4 | 0.04% | 1 | 0.82% |
Ashutosh Dixit | 3 | 0.03% | 1 | 0.82% |
Janusz Krzysztofik | 3 | 0.03% | 1 | 0.82% |
Chris Wilson | 1 | 0.01% | 1 | 0.82% |
Total | 9688 | 122 |
/* SPDX-License-Identifier: MIT */ /* * Copyright © 2019 Intel Corporation */ #include <linux/string_helpers.h> #include "i915_drv.h" #include "i915_irq.h" #include "intel_backlight_regs.h" #include "intel_cdclk.h" #include "intel_combo_phy.h" #include "intel_de.h" #include "intel_display_power.h" #include "intel_display_power_map.h" #include "intel_display_power_well.h" #include "intel_display_types.h" #include "intel_dmc.h" #include "intel_mchbar_regs.h" #include "intel_pch_refclk.h" #include "intel_pcode.h" #include "intel_snps_phy.h" #include "skl_watermark.h" #include "vlv_sideband.h" #define for_each_power_domain_well(__dev_priv, __power_well, __domain) \ for_each_power_well(__dev_priv, __power_well) \ for_each_if(test_bit((__domain), (__power_well)->domains.bits)) #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \ for_each_power_well_reverse(__dev_priv, __power_well) \ for_each_if(test_bit((__domain), (__power_well)->domains.bits)) const char * intel_display_power_domain_str(enum intel_display_power_domain domain) { switch (domain) { case POWER_DOMAIN_DISPLAY_CORE: return "DISPLAY_CORE"; case POWER_DOMAIN_PIPE_A: return "PIPE_A"; case POWER_DOMAIN_PIPE_B: return "PIPE_B"; case POWER_DOMAIN_PIPE_C: return "PIPE_C"; case POWER_DOMAIN_PIPE_D: return "PIPE_D"; case POWER_DOMAIN_PIPE_PANEL_FITTER_A: return "PIPE_PANEL_FITTER_A"; case POWER_DOMAIN_PIPE_PANEL_FITTER_B: return "PIPE_PANEL_FITTER_B"; case POWER_DOMAIN_PIPE_PANEL_FITTER_C: return "PIPE_PANEL_FITTER_C"; case POWER_DOMAIN_PIPE_PANEL_FITTER_D: return "PIPE_PANEL_FITTER_D"; case POWER_DOMAIN_TRANSCODER_A: return "TRANSCODER_A"; case POWER_DOMAIN_TRANSCODER_B: return "TRANSCODER_B"; case POWER_DOMAIN_TRANSCODER_C: return "TRANSCODER_C"; case POWER_DOMAIN_TRANSCODER_D: return "TRANSCODER_D"; case POWER_DOMAIN_TRANSCODER_EDP: return "TRANSCODER_EDP"; case POWER_DOMAIN_TRANSCODER_DSI_A: return "TRANSCODER_DSI_A"; case POWER_DOMAIN_TRANSCODER_DSI_C: return "TRANSCODER_DSI_C"; case POWER_DOMAIN_TRANSCODER_VDSC_PW2: return "TRANSCODER_VDSC_PW2"; case POWER_DOMAIN_PORT_DDI_LANES_A: return "PORT_DDI_LANES_A"; case POWER_DOMAIN_PORT_DDI_LANES_B: return "PORT_DDI_LANES_B"; case POWER_DOMAIN_PORT_DDI_LANES_C: return "PORT_DDI_LANES_C"; case POWER_DOMAIN_PORT_DDI_LANES_D: return "PORT_DDI_LANES_D"; case POWER_DOMAIN_PORT_DDI_LANES_E: return "PORT_DDI_LANES_E"; case POWER_DOMAIN_PORT_DDI_LANES_F: return "PORT_DDI_LANES_F"; case POWER_DOMAIN_PORT_DDI_LANES_TC1: return "PORT_DDI_LANES_TC1"; case POWER_DOMAIN_PORT_DDI_LANES_TC2: return "PORT_DDI_LANES_TC2"; case POWER_DOMAIN_PORT_DDI_LANES_TC3: return "PORT_DDI_LANES_TC3"; case POWER_DOMAIN_PORT_DDI_LANES_TC4: return "PORT_DDI_LANES_TC4"; case POWER_DOMAIN_PORT_DDI_LANES_TC5: return "PORT_DDI_LANES_TC5"; case POWER_DOMAIN_PORT_DDI_LANES_TC6: return "PORT_DDI_LANES_TC6"; case POWER_DOMAIN_PORT_DDI_IO_A: return "PORT_DDI_IO_A"; case POWER_DOMAIN_PORT_DDI_IO_B: return "PORT_DDI_IO_B"; case POWER_DOMAIN_PORT_DDI_IO_C: return "PORT_DDI_IO_C"; case POWER_DOMAIN_PORT_DDI_IO_D: return "PORT_DDI_IO_D"; case POWER_DOMAIN_PORT_DDI_IO_E: return "PORT_DDI_IO_E"; case POWER_DOMAIN_PORT_DDI_IO_F: return "PORT_DDI_IO_F"; case POWER_DOMAIN_PORT_DDI_IO_TC1: return "PORT_DDI_IO_TC1"; case POWER_DOMAIN_PORT_DDI_IO_TC2: return "PORT_DDI_IO_TC2"; case POWER_DOMAIN_PORT_DDI_IO_TC3: return "PORT_DDI_IO_TC3"; case POWER_DOMAIN_PORT_DDI_IO_TC4: return "PORT_DDI_IO_TC4"; case POWER_DOMAIN_PORT_DDI_IO_TC5: return "PORT_DDI_IO_TC5"; case POWER_DOMAIN_PORT_DDI_IO_TC6: return "PORT_DDI_IO_TC6"; case POWER_DOMAIN_PORT_DSI: return "PORT_DSI"; case POWER_DOMAIN_PORT_CRT: return "PORT_CRT"; case POWER_DOMAIN_PORT_OTHER: return "PORT_OTHER"; case POWER_DOMAIN_VGA: return "VGA"; case POWER_DOMAIN_AUDIO_MMIO: return "AUDIO_MMIO"; case POWER_DOMAIN_AUDIO_PLAYBACK: return "AUDIO_PLAYBACK"; case POWER_DOMAIN_AUX_A: return "AUX_A"; case POWER_DOMAIN_AUX_B: return "AUX_B"; case POWER_DOMAIN_AUX_C: return "AUX_C"; case POWER_DOMAIN_AUX_D: return "AUX_D"; case POWER_DOMAIN_AUX_E: return "AUX_E"; case POWER_DOMAIN_AUX_F: return "AUX_F"; case POWER_DOMAIN_AUX_USBC1: return "AUX_USBC1"; case POWER_DOMAIN_AUX_USBC2: return "AUX_USBC2"; case POWER_DOMAIN_AUX_USBC3: return "AUX_USBC3"; case POWER_DOMAIN_AUX_USBC4: return "AUX_USBC4"; case POWER_DOMAIN_AUX_USBC5: return "AUX_USBC5"; case POWER_DOMAIN_AUX_USBC6: return "AUX_USBC6"; case POWER_DOMAIN_AUX_IO_A: return "AUX_IO_A"; case POWER_DOMAIN_AUX_TBT1: return "AUX_TBT1"; case POWER_DOMAIN_AUX_TBT2: return "AUX_TBT2"; case POWER_DOMAIN_AUX_TBT3: return "AUX_TBT3"; case POWER_DOMAIN_AUX_TBT4: return "AUX_TBT4"; case POWER_DOMAIN_AUX_TBT5: return "AUX_TBT5"; case POWER_DOMAIN_AUX_TBT6: return "AUX_TBT6"; case POWER_DOMAIN_GMBUS: return "GMBUS"; case POWER_DOMAIN_INIT: return "INIT"; case POWER_DOMAIN_MODESET: return "MODESET"; case POWER_DOMAIN_GT_IRQ: return "GT_IRQ"; case POWER_DOMAIN_DC_OFF: return "DC_OFF"; case POWER_DOMAIN_TC_COLD_OFF: return "TC_COLD_OFF"; default: MISSING_CASE(domain); return "?"; } } /** * __intel_display_power_is_enabled - unlocked check for a power domain * @dev_priv: i915 device instance * @domain: power domain to check * * This is the unlocked version of intel_display_power_is_enabled() and should * only be used from error capture and recovery code where deadlocks are * possible. * * Returns: * True when the power domain is enabled, false otherwise. */ bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_well *power_well; bool is_enabled; if (dev_priv->runtime_pm.suspended) return false; is_enabled = true; for_each_power_domain_well_reverse(dev_priv, power_well, domain) { if (intel_power_well_is_always_on(power_well)) continue; if (!intel_power_well_is_enabled_cached(power_well)) { is_enabled = false; break; } } return is_enabled; } /** * intel_display_power_is_enabled - check for a power domain * @dev_priv: i915 device instance * @domain: power domain to check * * This function can be used to check the hw power domain state. It is mostly * used in hardware state readout functions. Everywhere else code should rely * upon explicit power domain reference counting to ensure that the hardware * block is powered up before accessing it. * * Callers must hold the relevant modesetting locks to ensure that concurrent * threads can't disable the power well while the caller tries to read a few * registers. * * Returns: * True when the power domain is enabled, false otherwise. */ bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; bool ret; power_domains = &dev_priv->display.power.domains; mutex_lock(&power_domains->lock); ret = __intel_display_power_is_enabled(dev_priv, domain); mutex_unlock(&power_domains->lock); return ret; } static u32 sanitize_target_dc_state(struct drm_i915_private *dev_priv, u32 target_dc_state) { static const u32 states[] = { DC_STATE_EN_UPTO_DC6, DC_STATE_EN_UPTO_DC5, DC_STATE_EN_DC3CO, DC_STATE_DISABLE, }; int i; for (i = 0; i < ARRAY_SIZE(states) - 1; i++) { if (target_dc_state != states[i]) continue; if (dev_priv->display.dmc.allowed_dc_mask & target_dc_state) break; target_dc_state = states[i + 1]; } return target_dc_state; } /** * intel_display_power_set_target_dc_state - Set target dc state. * @dev_priv: i915 device * @state: state which needs to be set as target_dc_state. * * This function set the "DC off" power well target_dc_state, * based upon this target_dc_stste, "DC off" power well will * enable desired DC state. */ void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv, u32 state) { struct i915_power_well *power_well; bool dc_off_enabled; struct i915_power_domains *power_domains = &dev_priv->display.power.domains; mutex_lock(&power_domains->lock); power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF); if (drm_WARN_ON(&dev_priv->drm, !power_well)) goto unlock; state = sanitize_target_dc_state(dev_priv, state); if (state == dev_priv->display.dmc.target_dc_state) goto unlock; dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well); /* * If DC off power well is disabled, need to enable and disable the * DC off power well to effect target DC state. */ if (!dc_off_enabled) intel_power_well_enable(dev_priv, power_well); dev_priv->display.dmc.target_dc_state = state; if (!dc_off_enabled) intel_power_well_disable(dev_priv, power_well); unlock: mutex_unlock(&power_domains->lock); } #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0)) static void __async_put_domains_mask(struct i915_power_domains *power_domains, struct intel_power_domain_mask *mask) { bitmap_or(mask->bits, power_domains->async_put_domains[0].bits, power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) static bool assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) { struct drm_i915_private *i915 = container_of(power_domains, struct drm_i915_private, display.power.domains); return !drm_WARN_ON(&i915->drm, bitmap_intersects(power_domains->async_put_domains[0].bits, power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)); } static bool __async_put_domains_state_ok(struct i915_power_domains *power_domains) { struct drm_i915_private *i915 = container_of(power_domains, struct drm_i915_private, display.power.domains); struct intel_power_domain_mask async_put_mask; enum intel_display_power_domain domain; bool err = false; err |= !assert_async_put_domain_masks_disjoint(power_domains); __async_put_domains_mask(power_domains, &async_put_mask); err |= drm_WARN_ON(&i915->drm, !!power_domains->async_put_wakeref != !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)); for_each_power_domain(domain, &async_put_mask) err |= drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1); return !err; } static void print_power_domains(struct i915_power_domains *power_domains, const char *prefix, struct intel_power_domain_mask *mask) { struct drm_i915_private *i915 = container_of(power_domains, struct drm_i915_private, display.power.domains); enum intel_display_power_domain domain; drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM)); for_each_power_domain(domain, mask) drm_dbg(&i915->drm, "%s use_count %d\n", intel_display_power_domain_str(domain), power_domains->domain_use_count[domain]); } static void print_async_put_domains_state(struct i915_power_domains *power_domains) { struct drm_i915_private *i915 = container_of(power_domains, struct drm_i915_private, display.power.domains); drm_dbg(&i915->drm, "async_put_wakeref %u\n", power_domains->async_put_wakeref); print_power_domains(power_domains, "async_put_domains[0]", &power_domains->async_put_domains[0]); print_power_domains(power_domains, "async_put_domains[1]", &power_domains->async_put_domains[1]); } static void verify_async_put_domains_state(struct i915_power_domains *power_domains) { if (!__async_put_domains_state_ok(power_domains)) print_async_put_domains_state(power_domains); } #else static void assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains) { } static void verify_async_put_domains_state(struct i915_power_domains *power_domains) { } #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */ static void async_put_domains_mask(struct i915_power_domains *power_domains, struct intel_power_domain_mask *mask) { assert_async_put_domain_masks_disjoint(power_domains); __async_put_domains_mask(power_domains, mask); } static void async_put_domains_clear_domain(struct i915_power_domains *power_domains, enum intel_display_power_domain domain) { assert_async_put_domain_masks_disjoint(power_domains); clear_bit(domain, power_domains->async_put_domains[0].bits); clear_bit(domain, power_domains->async_put_domains[1].bits); } static bool intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct intel_power_domain_mask async_put_mask; bool ret = false; async_put_domains_mask(power_domains, &async_put_mask); if (!test_bit(domain, async_put_mask.bits)) goto out_verify; async_put_domains_clear_domain(power_domains, domain); ret = true; async_put_domains_mask(power_domains, &async_put_mask); if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM)) goto out_verify; cancel_delayed_work(&power_domains->async_put_work); intel_runtime_pm_put_raw(&dev_priv->runtime_pm, fetch_and_zero(&power_domains->async_put_wakeref)); out_verify: verify_async_put_domains_state(power_domains); return ret; } static void __intel_display_power_get_domain(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *power_well; if (intel_display_power_grab_async_put_ref(dev_priv, domain)) return; for_each_power_domain_well(dev_priv, power_well, domain) intel_power_well_get(dev_priv, power_well); power_domains->domain_use_count[domain]++; } /** * intel_display_power_get - grab a power domain reference * @dev_priv: i915 device instance * @domain: power domain to reference * * This function grabs a power domain reference for @domain and ensures that the * power domain and all its parents are powered up. Therefore users should only * grab a reference to the innermost power domain they need. * * Any power domain reference obtained by this function must have a symmetric * call to intel_display_power_put() to release the reference again. */ intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); mutex_lock(&power_domains->lock); __intel_display_power_get_domain(dev_priv, domain); mutex_unlock(&power_domains->lock); return wakeref; } /** * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain * @dev_priv: i915 device instance * @domain: power domain to reference * * This function grabs a power domain reference for @domain and ensures that the * power domain and all its parents are powered up. Therefore users should only * grab a reference to the innermost power domain they need. * * Any power domain reference obtained by this function must have a symmetric * call to intel_display_power_put() to release the reference again. */ intel_wakeref_t intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; intel_wakeref_t wakeref; bool is_enabled; wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm); if (!wakeref) return false; mutex_lock(&power_domains->lock); if (__intel_display_power_is_enabled(dev_priv, domain)) { __intel_display_power_get_domain(dev_priv, domain); is_enabled = true; } else { is_enabled = false; } mutex_unlock(&power_domains->lock); if (!is_enabled) { intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); wakeref = 0; } return wakeref; } static void __intel_display_power_put_domain(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains; struct i915_power_well *power_well; const char *name = intel_display_power_domain_str(domain); struct intel_power_domain_mask async_put_mask; power_domains = &dev_priv->display.power.domains; drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain], "Use count on domain %s is already zero\n", name); async_put_domains_mask(power_domains, &async_put_mask); drm_WARN(&dev_priv->drm, test_bit(domain, async_put_mask.bits), "Async disabling of domain %s is pending\n", name); power_domains->domain_use_count[domain]--; for_each_power_domain_well_reverse(dev_priv, power_well, domain) intel_power_well_put(dev_priv, power_well); } static void __intel_display_power_put(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; mutex_lock(&power_domains->lock); __intel_display_power_put_domain(dev_priv, domain); mutex_unlock(&power_domains->lock); } static void queue_async_put_domains_work(struct i915_power_domains *power_domains, intel_wakeref_t wakeref) { struct drm_i915_private *i915 = container_of(power_domains, struct drm_i915_private, display.power.domains); drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref); power_domains->async_put_wakeref = wakeref; drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq, &power_domains->async_put_work, msecs_to_jiffies(100))); } static void release_async_put_domains(struct i915_power_domains *power_domains, struct intel_power_domain_mask *mask) { struct drm_i915_private *dev_priv = container_of(power_domains, struct drm_i915_private, display.power.domains); struct intel_runtime_pm *rpm = &dev_priv->runtime_pm; enum intel_display_power_domain domain; intel_wakeref_t wakeref; /* * The caller must hold already raw wakeref, upgrade that to a proper * wakeref to make the state checker happy about the HW access during * power well disabling. */ assert_rpm_raw_wakeref_held(rpm); wakeref = intel_runtime_pm_get(rpm); for_each_power_domain(domain, mask) { /* Clear before put, so put's sanity check is happy. */ async_put_domains_clear_domain(power_domains, domain); __intel_display_power_put_domain(dev_priv, domain); } intel_runtime_pm_put(rpm, wakeref); } static void intel_display_power_put_async_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, display.power.domains.async_put_work.work); struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct intel_runtime_pm *rpm = &dev_priv->runtime_pm; intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm); intel_wakeref_t old_work_wakeref = 0; mutex_lock(&power_domains->lock); /* * Bail out if all the domain refs pending to be released were grabbed * by subsequent gets or a flush_work. */ old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); if (!old_work_wakeref) goto out_verify; release_async_put_domains(power_domains, &power_domains->async_put_domains[0]); /* Requeue the work if more domains were async put meanwhile. */ if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) { bitmap_copy(power_domains->async_put_domains[0].bits, power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM); bitmap_zero(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM); queue_async_put_domains_work(power_domains, fetch_and_zero(&new_work_wakeref)); } else { /* * Cancel the work that got queued after this one got dequeued, * since here we released the corresponding async-put reference. */ cancel_delayed_work(&power_domains->async_put_work); } out_verify: verify_async_put_domains_state(power_domains); mutex_unlock(&power_domains->lock); if (old_work_wakeref) intel_runtime_pm_put_raw(rpm, old_work_wakeref); if (new_work_wakeref) intel_runtime_pm_put_raw(rpm, new_work_wakeref); } /** * intel_display_power_put_async - release a power domain reference asynchronously * @i915: i915 device instance * @domain: power domain to reference * @wakeref: wakeref acquired for the reference that is being released * * This function drops the power domain reference obtained by * intel_display_power_get*() and schedules a work to power down the * corresponding hardware block if this is the last reference. */ void __intel_display_power_put_async(struct drm_i915_private *i915, enum intel_display_power_domain domain, intel_wakeref_t wakeref) { struct i915_power_domains *power_domains = &i915->display.power.domains; struct intel_runtime_pm *rpm = &i915->runtime_pm; intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm); mutex_lock(&power_domains->lock); if (power_domains->domain_use_count[domain] > 1) { __intel_display_power_put_domain(i915, domain); goto out_verify; } drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1); /* Let a pending work requeue itself or queue a new one. */ if (power_domains->async_put_wakeref) { set_bit(domain, power_domains->async_put_domains[1].bits); } else { set_bit(domain, power_domains->async_put_domains[0].bits); queue_async_put_domains_work(power_domains, fetch_and_zero(&work_wakeref)); } out_verify: verify_async_put_domains_state(power_domains); mutex_unlock(&power_domains->lock); if (work_wakeref) intel_runtime_pm_put_raw(rpm, work_wakeref); intel_runtime_pm_put(rpm, wakeref); } /** * intel_display_power_flush_work - flushes the async display power disabling work * @i915: i915 device instance * * Flushes any pending work that was scheduled by a preceding * intel_display_power_put_async() call, completing the disabling of the * corresponding power domains. * * Note that the work handler function may still be running after this * function returns; to ensure that the work handler isn't running use * intel_display_power_flush_work_sync() instead. */ void intel_display_power_flush_work(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->display.power.domains; struct intel_power_domain_mask async_put_mask; intel_wakeref_t work_wakeref; mutex_lock(&power_domains->lock); work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref); if (!work_wakeref) goto out_verify; async_put_domains_mask(power_domains, &async_put_mask); release_async_put_domains(power_domains, &async_put_mask); cancel_delayed_work(&power_domains->async_put_work); out_verify: verify_async_put_domains_state(power_domains); mutex_unlock(&power_domains->lock); if (work_wakeref) intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref); } /** * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work * @i915: i915 device instance * * Like intel_display_power_flush_work(), but also ensure that the work * handler function is not running any more when this function returns. */ static void intel_display_power_flush_work_sync(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->display.power.domains; intel_display_power_flush_work(i915); cancel_delayed_work_sync(&power_domains->async_put_work); verify_async_put_domains_state(power_domains); drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) /** * intel_display_power_put - release a power domain reference * @dev_priv: i915 device instance * @domain: power domain to reference * @wakeref: wakeref acquired for the reference that is being released * * This function drops the power domain reference obtained by * intel_display_power_get() and might power down the corresponding hardware * block right away if this is the last reference. */ void intel_display_power_put(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain, intel_wakeref_t wakeref) { __intel_display_power_put(dev_priv, domain); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); } #else /** * intel_display_power_put_unchecked - release an unchecked power domain reference * @dev_priv: i915 device instance * @domain: power domain to reference * * This function drops the power domain reference obtained by * intel_display_power_get() and might power down the corresponding hardware * block right away if this is the last reference. * * This function is only for the power domain code's internal use to suppress wakeref * tracking when the correspondig debug kconfig option is disabled, should not * be used otherwise. */ void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv, enum intel_display_power_domain domain) { __intel_display_power_put(dev_priv, domain); intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); } #endif void intel_display_power_get_in_set(struct drm_i915_private *i915, struct intel_display_power_domain_set *power_domain_set, enum intel_display_power_domain domain) { intel_wakeref_t __maybe_unused wf; drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits)); wf = intel_display_power_get(i915, domain); #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) power_domain_set->wakerefs[domain] = wf; #endif set_bit(domain, power_domain_set->mask.bits); } bool intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915, struct intel_display_power_domain_set *power_domain_set, enum intel_display_power_domain domain) { intel_wakeref_t wf; drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits)); wf = intel_display_power_get_if_enabled(i915, domain); if (!wf) return false; #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) power_domain_set->wakerefs[domain] = wf; #endif set_bit(domain, power_domain_set->mask.bits); return true; } void intel_display_power_put_mask_in_set(struct drm_i915_private *i915, struct intel_display_power_domain_set *power_domain_set, struct intel_power_domain_mask *mask) { enum intel_display_power_domain domain; drm_WARN_ON(&i915->drm, !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM)); for_each_power_domain(domain, mask) { intel_wakeref_t __maybe_unused wf = -1; #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) wf = fetch_and_zero(&power_domain_set->wakerefs[domain]); #endif intel_display_power_put(i915, domain, wf); clear_bit(domain, power_domain_set->mask.bits); } } static int sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv, int disable_power_well) { if (disable_power_well >= 0) return !!disable_power_well; return 1; } static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv, int enable_dc) { u32 mask; int requested_dc; int max_dc; if (!HAS_DISPLAY(dev_priv)) return 0; if (IS_DG2(dev_priv)) max_dc = 1; else if (IS_DG1(dev_priv)) max_dc = 3; else if (DISPLAY_VER(dev_priv) >= 12) max_dc = 4; else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) max_dc = 1; else if (DISPLAY_VER(dev_priv) >= 9) max_dc = 2; else max_dc = 0; /* * DC9 has a separate HW flow from the rest of the DC states, * not depending on the DMC firmware. It's needed by system * suspend/resume, so allow it unconditionally. */ mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) || DISPLAY_VER(dev_priv) >= 11 ? DC_STATE_EN_DC9 : 0; if (!dev_priv->params.disable_power_well) max_dc = 0; if (enable_dc >= 0 && enable_dc <= max_dc) { requested_dc = enable_dc; } else if (enable_dc == -1) { requested_dc = max_dc; } else if (enable_dc > max_dc && enable_dc <= 4) { drm_dbg_kms(&dev_priv->drm, "Adjusting requested max DC state (%d->%d)\n", enable_dc, max_dc); requested_dc = max_dc; } else { drm_err(&dev_priv->drm, "Unexpected value for enable_dc (%d)\n", enable_dc); requested_dc = max_dc; } switch (requested_dc) { case 4: mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6; break; case 3: mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5; break; case 2: mask |= DC_STATE_EN_UPTO_DC6; break; case 1: mask |= DC_STATE_EN_UPTO_DC5; break; } drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask); return mask; } /** * intel_power_domains_init - initializes the power domain structures * @dev_priv: i915 device instance * * Initializes the power domain structures for @dev_priv depending upon the * supported platform. */ int intel_power_domains_init(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; dev_priv->params.disable_power_well = sanitize_disable_power_well_option(dev_priv, dev_priv->params.disable_power_well); dev_priv->display.dmc.allowed_dc_mask = get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc); dev_priv->display.dmc.target_dc_state = sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); mutex_init(&power_domains->lock); INIT_DELAYED_WORK(&power_domains->async_put_work, intel_display_power_put_async_work); return intel_display_power_map_init(power_domains); } /** * intel_power_domains_cleanup - clean up power domains resources * @dev_priv: i915 device instance * * Release any resources acquired by intel_power_domains_init() */ void intel_power_domains_cleanup(struct drm_i915_private *dev_priv) { intel_display_power_map_cleanup(&dev_priv->display.power.domains); } static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *power_well; mutex_lock(&power_domains->lock); for_each_power_well(dev_priv, power_well) intel_power_well_sync_hw(dev_priv, power_well); mutex_unlock(&power_domains->lock); } static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv, enum dbuf_slice slice, bool enable) { i915_reg_t reg = DBUF_CTL_S(slice); bool state; intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST, enable ? DBUF_POWER_REQUEST : 0); intel_de_posting_read(dev_priv, reg); udelay(10); state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE; drm_WARN(&dev_priv->drm, enable != state, "DBuf slice %d power %s timeout!\n", slice, str_enable_disable(enable)); } void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv, u8 req_slices) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; u8 slice_mask = INTEL_INFO(dev_priv)->display.dbuf.slice_mask; enum dbuf_slice slice; drm_WARN(&dev_priv->drm, req_slices & ~slice_mask, "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n", req_slices, slice_mask); drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n", req_slices); /* * Might be running this in parallel to gen9_dc_off_power_well_enable * being called from intel_dp_detect for instance, * which causes assertion triggered by race condition, * as gen9_assert_dbuf_enabled might preempt this when registers * were already updated, while dev_priv was not. */ mutex_lock(&power_domains->lock); for_each_dbuf_slice(dev_priv, slice) gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice)); dev_priv->display.dbuf.enabled_slices = req_slices; mutex_unlock(&power_domains->lock); } static void gen9_dbuf_enable(struct drm_i915_private *dev_priv) { dev_priv->display.dbuf.enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); /* * Just power up at least 1 slice, we will * figure out later which slices we have and what we need. */ gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) | dev_priv->display.dbuf.enabled_slices); } static void gen9_dbuf_disable(struct drm_i915_private *dev_priv) { gen9_dbuf_slices_update(dev_priv, 0); } static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv) { enum dbuf_slice slice; if (IS_ALDERLAKE_P(dev_priv)) return; for_each_dbuf_slice(dev_priv, slice) intel_de_rmw(dev_priv, DBUF_CTL_S(slice), DBUF_TRACKER_STATE_SERVICE_MASK, DBUF_TRACKER_STATE_SERVICE(8)); } static void icl_mbus_init(struct drm_i915_private *dev_priv) { unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask; u32 mask, val, i; if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) return; mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK | MBUS_ABOX_BT_CREDIT_POOL2_MASK | MBUS_ABOX_B_CREDIT_MASK | MBUS_ABOX_BW_CREDIT_MASK; val = MBUS_ABOX_BT_CREDIT_POOL1(16) | MBUS_ABOX_BT_CREDIT_POOL2(16) | MBUS_ABOX_B_CREDIT(1) | MBUS_ABOX_BW_CREDIT(1); /* * gen12 platforms that use abox1 and abox2 for pixel data reads still * expect us to program the abox_ctl0 register as well, even though * we don't have to program other instance-0 registers like BW_BUDDY. */ if (DISPLAY_VER(dev_priv) == 12) abox_regs |= BIT(0); for_each_set_bit(i, &abox_regs, sizeof(abox_regs)) intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val); } static void hsw_assert_cdclk(struct drm_i915_private *dev_priv) { u32 val = intel_de_read(dev_priv, LCPLL_CTL); /* * The LCPLL register should be turned on by the BIOS. For now * let's just check its state and print errors in case * something is wrong. Don't even try to turn it on. */ if (val & LCPLL_CD_SOURCE_FCLK) drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n"); if (val & LCPLL_PLL_DISABLE) drm_err(&dev_priv->drm, "LCPLL is disabled\n"); if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC) drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n"); } static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct intel_crtc *crtc; for_each_intel_crtc(dev, crtc) I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n", pipe_name(crtc->pipe)); I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2), "Display power well on\n"); I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n"); I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n"); I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n"); I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON, "Panel power on\n"); I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, "CPU PWM1 enabled\n"); if (IS_HASWELL(dev_priv)) I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, "CPU PWM2 enabled\n"); I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, "PCH PWM1 enabled\n"); I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE, "Utility pin enabled\n"); I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n"); /* * In theory we can still leave IRQs enabled, as long as only the HPD * interrupts remain enabled. We used to check for that, but since it's * gen-specific and since we only disable LCPLL after we fully disable * the interrupts, the check below should be enough. */ I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); } static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv) { if (IS_HASWELL(dev_priv)) return intel_de_read(dev_priv, D_COMP_HSW); else return intel_de_read(dev_priv, D_COMP_BDW); } static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val) { if (IS_HASWELL(dev_priv)) { if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val)) drm_dbg_kms(&dev_priv->drm, "Failed to write to D_COMP\n"); } else { intel_de_write(dev_priv, D_COMP_BDW, val); intel_de_posting_read(dev_priv, D_COMP_BDW); } } /* * This function implements pieces of two sequences from BSpec: * - Sequence for display software to disable LCPLL * - Sequence for display software to allow package C8+ * The steps implemented here are just the steps that actually touch the LCPLL * register. Callers should take care of disabling all the display engine * functions, doing the mode unset, fixing interrupts, etc. */ static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, bool switch_to_fclk, bool allow_power_down) { u32 val; assert_can_disable_lcpll(dev_priv); val = intel_de_read(dev_priv, LCPLL_CTL); if (switch_to_fclk) { val |= LCPLL_CD_SOURCE_FCLK; intel_de_write(dev_priv, LCPLL_CTL, val); if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE, 1)) drm_err(&dev_priv->drm, "Switching to FCLK failed\n"); val = intel_de_read(dev_priv, LCPLL_CTL); } val |= LCPLL_PLL_DISABLE; intel_de_write(dev_priv, LCPLL_CTL, val); intel_de_posting_read(dev_priv, LCPLL_CTL); if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1)) drm_err(&dev_priv->drm, "LCPLL still locked\n"); val = hsw_read_dcomp(dev_priv); val |= D_COMP_COMP_DISABLE; hsw_write_dcomp(dev_priv, val); ndelay(100); if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1)) drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n"); if (allow_power_down) { val = intel_de_read(dev_priv, LCPLL_CTL); val |= LCPLL_POWER_DOWN_ALLOW; intel_de_write(dev_priv, LCPLL_CTL, val); intel_de_posting_read(dev_priv, LCPLL_CTL); } } /* * Fully restores LCPLL, disallowing power down and switching back to LCPLL * source. */ static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) { u32 val; val = intel_de_read(dev_priv, LCPLL_CTL); if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) return; /* * Make sure we're not on PC8 state before disabling PC8, otherwise * we'll hang the machine. To prevent PC8 state, just enable force_wake. */ intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); if (val & LCPLL_POWER_DOWN_ALLOW) { val &= ~LCPLL_POWER_DOWN_ALLOW; intel_de_write(dev_priv, LCPLL_CTL, val); intel_de_posting_read(dev_priv, LCPLL_CTL); } val = hsw_read_dcomp(dev_priv); val |= D_COMP_COMP_FORCE; val &= ~D_COMP_COMP_DISABLE; hsw_write_dcomp(dev_priv, val); val = intel_de_read(dev_priv, LCPLL_CTL); val &= ~LCPLL_PLL_DISABLE; intel_de_write(dev_priv, LCPLL_CTL, val); if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5)) drm_err(&dev_priv->drm, "LCPLL not locked yet\n"); if (val & LCPLL_CD_SOURCE_FCLK) { val = intel_de_read(dev_priv, LCPLL_CTL); val &= ~LCPLL_CD_SOURCE_FCLK; intel_de_write(dev_priv, LCPLL_CTL, val); if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n"); } intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); intel_update_cdclk(dev_priv); intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK"); } /* * Package states C8 and deeper are really deep PC states that can only be * reached when all the devices on the system allow it, so even if the graphics * device allows PC8+, it doesn't mean the system will actually get to these * states. Our driver only allows PC8+ when going into runtime PM. * * The requirements for PC8+ are that all the outputs are disabled, the power * well is disabled and most interrupts are disabled, and these are also * requirements for runtime PM. When these conditions are met, we manually do * the other conditions: disable the interrupts, clocks and switch LCPLL refclk * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard * hang the machine. * * When we really reach PC8 or deeper states (not just when we allow it) we lose * the state of some registers, so when we come back from PC8+ we need to * restore this state. We don't get into PC8+ if we're not in RC6, so we don't * need to take care of the registers kept by RC6. Notice that this happens even * if we don't put the device in PCI D3 state (which is what currently happens * because of the runtime PM support). * * For more, read "Display Sequences for Package C8" on the hardware * documentation. */ static void hsw_enable_pc8(struct drm_i915_private *dev_priv) { u32 val; drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n"); if (HAS_PCH_LPT_LP(dev_priv)) { val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D); val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val); } lpt_disable_clkout_dp(dev_priv); hsw_disable_lcpll(dev_priv, true, true); } static void hsw_disable_pc8(struct drm_i915_private *dev_priv) { u32 val; drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n"); hsw_restore_lcpll(dev_priv); intel_init_pch_refclk(dev_priv); if (HAS_PCH_LPT_LP(dev_priv)) { val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D); val |= PCH_LP_PARTITION_LEVEL_DISABLE; intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val); } } static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv, bool enable) { i915_reg_t reg; u32 reset_bits, val; if (IS_IVYBRIDGE(dev_priv)) { reg = GEN7_MSG_CTL; reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK; } else { reg = HSW_NDE_RSTWRN_OPT; reset_bits = RESET_PCH_HANDSHAKE_ENABLE; } if (DISPLAY_VER(dev_priv) >= 14) reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN; val = intel_de_read(dev_priv, reg); if (enable) val |= reset_bits; else val &= ~reset_bits; intel_de_write(dev_priv, reg, val); } static void skl_display_core_init(struct drm_i915_private *dev_priv, bool resume) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* enable PCH reset handshake */ intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv)); if (!HAS_DISPLAY(dev_priv)) return; /* enable PG1 and Misc I/O */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_enable(dev_priv, well); well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO); intel_power_well_enable(dev_priv, well); mutex_unlock(&power_domains->lock); intel_cdclk_init_hw(dev_priv); gen9_dbuf_enable(dev_priv); if (resume) intel_dmc_load_program(dev_priv); } static void skl_display_core_uninit(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *well; if (!HAS_DISPLAY(dev_priv)) return; gen9_disable_dc_states(dev_priv); /* TODO: disable DMC program */ gen9_dbuf_disable(dev_priv); intel_cdclk_uninit_hw(dev_priv); /* The spec doesn't call for removing the reset handshake flag */ /* disable PG1 and Misc I/O */ mutex_lock(&power_domains->lock); /* * BSpec says to keep the MISC IO power well enabled here, only * remove our request for power well 1. * Note that even though the driver's request is removed power well 1 * may stay enabled after this due to DMC's own request on it. */ well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_disable(dev_priv, well); mutex_unlock(&power_domains->lock); usleep_range(10, 30); /* 10 us delay per Bspec */ } static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *well; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT * or else the reset will hang because there is no PCH to respond. * Move the handshake programming to initialization sequence. * Previously was left up to BIOS. */ intel_pch_reset_handshake(dev_priv, false); if (!HAS_DISPLAY(dev_priv)) return; /* Enable PG1 */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_enable(dev_priv, well); mutex_unlock(&power_domains->lock); intel_cdclk_init_hw(dev_priv); gen9_dbuf_enable(dev_priv); if (resume) intel_dmc_load_program(dev_priv); } static void bxt_display_core_uninit(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *well; if (!HAS_DISPLAY(dev_priv)) return; gen9_disable_dc_states(dev_priv); /* TODO: disable DMC program */ gen9_dbuf_disable(dev_priv); intel_cdclk_uninit_hw(dev_priv); /* The spec doesn't call for removing the reset handshake flag */ /* * Disable PW1 (PG1). * Note that even though the driver's request is removed power well 1 * may stay enabled after this due to DMC's own request on it. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_disable(dev_priv, well); mutex_unlock(&power_domains->lock); usleep_range(10, 30); /* 10 us delay per Bspec */ } struct buddy_page_mask { u32 page_mask; u8 type; u8 num_channels; }; static const struct buddy_page_mask tgl_buddy_page_masks[] = { { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF }, { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF }, { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C }, { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C }, { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F }, { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E }, { .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 }, { .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 }, {} }; static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = { { .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 }, { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 }, { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 }, { .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 }, { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 }, { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 }, { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 }, { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 }, {} }; static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv) { enum intel_dram_type type = dev_priv->dram_info.type; u8 num_channels = dev_priv->dram_info.num_channels; const struct buddy_page_mask *table; unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask; int config, i; /* BW_BUDDY registers are not used on dgpu's beyond DG1 */ if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv)) return; if (IS_ALDERLAKE_S(dev_priv) || IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) || IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) || IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) /* Wa_1409767108:tgl,dg1,adl-s */ table = wa_1409767108_buddy_page_masks; else table = tgl_buddy_page_masks; for (config = 0; table[config].page_mask != 0; config++) if (table[config].num_channels == num_channels && table[config].type == type) break; if (table[config].page_mask == 0) { drm_dbg(&dev_priv->drm, "Unknown memory configuration; disabling address buddy logic.\n"); for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) intel_de_write(dev_priv, BW_BUDDY_CTL(i), BW_BUDDY_DISABLE); } else { for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) { intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i), table[config].page_mask); /* Wa_22010178259:tgl,dg1,rkl,adl-s */ if (DISPLAY_VER(dev_priv) == 12) intel_de_rmw(dev_priv, BW_BUDDY_CTL(i), BW_BUDDY_TLB_REQ_TIMER_MASK, BW_BUDDY_TLB_REQ_TIMER(0x8)); } } } static void icl_display_core_init(struct drm_i915_private *dev_priv, bool resume) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *well; u32 val; gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */ if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && INTEL_PCH_TYPE(dev_priv) < PCH_DG1) intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0, PCH_DPMGUNIT_CLOCK_GATE_DISABLE); /* 1. Enable PCH reset handshake. */ intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv)); if (!HAS_DISPLAY(dev_priv)) return; /* 2. Initialize all combo phys */ intel_combo_phy_init(dev_priv); /* * 3. Enable Power Well 1 (PG1). * The AUX IO power wells will be enabled on demand. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_enable(dev_priv, well); mutex_unlock(&power_domains->lock); /* 4. Enable CDCLK. */ intel_cdclk_init_hw(dev_priv); if (DISPLAY_VER(dev_priv) >= 12) gen12_dbuf_slices_config(dev_priv); /* 5. Enable DBUF. */ gen9_dbuf_enable(dev_priv); /* 6. Setup MBUS. */ icl_mbus_init(dev_priv); /* 7. Program arbiter BW_BUDDY registers */ if (DISPLAY_VER(dev_priv) >= 12) tgl_bw_buddy_init(dev_priv); /* 8. Ensure PHYs have completed calibration and adaptation */ if (IS_DG2(dev_priv)) intel_snps_phy_wait_for_calibration(dev_priv); if (resume) intel_dmc_load_program(dev_priv); /* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */ if (DISPLAY_VER(dev_priv) >= 12) { val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM | DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR; intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val); } /* Wa_14011503030:xelpd */ if (DISPLAY_VER(dev_priv) >= 13) intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0); } static void icl_display_core_uninit(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; struct i915_power_well *well; if (!HAS_DISPLAY(dev_priv)) return; gen9_disable_dc_states(dev_priv); intel_dmc_disable_program(dev_priv); /* 1. Disable all display engine functions -> aready done */ /* 2. Disable DBUF */ gen9_dbuf_disable(dev_priv); /* 3. Disable CD clock */ intel_cdclk_uninit_hw(dev_priv); /* * 4. Disable Power Well 1 (PG1). * The AUX IO power wells are toggled on demand, so they are already * disabled at this point. */ mutex_lock(&power_domains->lock); well = lookup_power_well(dev_priv, SKL_DISP_PW_1); intel_power_well_disable(dev_priv, well); mutex_unlock(&power_domains->lock); /* 5. */ intel_combo_phy_uninit(dev_priv); } static void chv_phy_control_init(struct drm_i915_private *dev_priv) { struct i915_power_well *cmn_bc = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); struct i915_power_well *cmn_d = lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D); /* * DISPLAY_PHY_CONTROL can get corrupted if read. As a * workaround never ever read DISPLAY_PHY_CONTROL, and * instead maintain a shadow copy ourselves. Use the actual * power well state and lane status to reconstruct the * expected initial value. */ dev_priv->display.power.chv_phy_control = PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) | PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) | PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) | PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) | PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0); /* * If all lanes are disabled we leave the override disabled * with all power down bits cleared to match the state we * would use after disabling the port. Otherwise enable the * override and set the lane powerdown bits accding to the * current lane status. */ if (intel_power_well_is_enabled(dev_priv, cmn_bc)) { u32 status = intel_de_read(dev_priv, DPLL(PIPE_A)); unsigned int mask; mask = status & DPLL_PORTB_READY_MASK; if (mask == 0xf) mask = 0x0; else dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0); dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0); mask = (status & DPLL_PORTC_READY_MASK) >> 4; if (mask == 0xf) mask = 0x0; else dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1); dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1); dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0); dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false; } else { dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true; } if (intel_power_well_is_enabled(dev_priv, cmn_d)) { u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS); unsigned int mask; mask = status & DPLL_PORTD_READY_MASK; if (mask == 0xf) mask = 0x0; else dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0); dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0); dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1); dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false; } else { dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true; } drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n", dev_priv->display.power.chv_phy_control); /* Defer application of initial phy_control to enabling the powerwell */ } static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv) { struct i915_power_well *cmn = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); struct i915_power_well *disp2d = lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D); /* If the display might be already active skip this */ if (intel_power_well_is_enabled(dev_priv, cmn) && intel_power_well_is_enabled(dev_priv, disp2d) && intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST) return; drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n"); /* cmnlane needs DPLL registers */ intel_power_well_enable(dev_priv, disp2d); /* * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx: * Need to assert and de-assert PHY SB reset by gating the * common lane power, then un-gating it. * Simply ungating isn't enough to reset the PHY enough to get * ports and lanes running. */ intel_power_well_disable(dev_priv, cmn); } static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0) { bool ret; vlv_punit_get(dev_priv); ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE; vlv_punit_put(dev_priv); return ret; } static void assert_ved_power_gated(struct drm_i915_private *dev_priv) { drm_WARN(&dev_priv->drm, !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0), "VED not power gated\n"); } static void assert_isp_power_gated(struct drm_i915_private *dev_priv) { static const struct pci_device_id isp_ids[] = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)}, {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)}, {} }; drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) && !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0), "ISP not power gated\n"); } static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv); /** * intel_power_domains_init_hw - initialize hardware power domain state * @i915: i915 device instance * @resume: Called from resume code paths or not * * This function initializes the hardware power domain state and enables all * power wells belonging to the INIT power domain. Power wells in other * domains (and not in the INIT domain) are referenced or disabled by * intel_modeset_readout_hw_state(). After that the reference count of each * power well must match its HW enabled state, see * intel_power_domains_verify_state(). * * It will return with power domains disabled (to be enabled later by * intel_power_domains_enable()) and must be paired with * intel_power_domains_driver_remove(). */ void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume) { struct i915_power_domains *power_domains = &i915->display.power.domains; power_domains->initializing = true; if (DISPLAY_VER(i915) >= 11) { icl_display_core_init(i915, resume); } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { bxt_display_core_init(i915, resume); } else if (DISPLAY_VER(i915) == 9) { skl_display_core_init(i915, resume); } else if (IS_CHERRYVIEW(i915)) { mutex_lock(&power_domains->lock); chv_phy_control_init(i915); mutex_unlock(&power_domains->lock); assert_isp_power_gated(i915); } else if (IS_VALLEYVIEW(i915)) { mutex_lock(&power_domains->lock); vlv_cmnlane_wa(i915); mutex_unlock(&power_domains->lock); assert_ved_power_gated(i915); assert_isp_power_gated(i915); } else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) { hsw_assert_cdclk(i915); intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915)); } else if (IS_IVYBRIDGE(i915)) { intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915)); } /* * Keep all power wells enabled for any dependent HW access during * initialization and to make sure we keep BIOS enabled display HW * resources powered until display HW readout is complete. We drop * this reference in intel_power_domains_enable(). */ drm_WARN_ON(&i915->drm, power_domains->init_wakeref); power_domains->init_wakeref = intel_display_power_get(i915, POWER_DOMAIN_INIT); /* Disable power support if the user asked so. */ if (!i915->params.disable_power_well) { drm_WARN_ON(&i915->drm, power_domains->disable_wakeref); i915->display.power.domains.disable_wakeref = intel_display_power_get(i915, POWER_DOMAIN_INIT); } intel_power_domains_sync_hw(i915); power_domains->initializing = false; } /** * intel_power_domains_driver_remove - deinitialize hw power domain state * @i915: i915 device instance * * De-initializes the display power domain HW state. It also ensures that the * device stays powered up so that the driver can be reloaded. * * It must be called with power domains already disabled (after a call to * intel_power_domains_disable()) and must be paired with * intel_power_domains_init_hw(). */ void intel_power_domains_driver_remove(struct drm_i915_private *i915) { intel_wakeref_t wakeref __maybe_unused = fetch_and_zero(&i915->display.power.domains.init_wakeref); /* Remove the refcount we took to keep power well support disabled. */ if (!i915->params.disable_power_well) intel_display_power_put(i915, POWER_DOMAIN_INIT, fetch_and_zero(&i915->display.power.domains.disable_wakeref)); intel_display_power_flush_work_sync(i915); intel_power_domains_verify_state(i915); /* Keep the power well enabled, but cancel its rpm wakeref. */ intel_runtime_pm_put(&i915->runtime_pm, wakeref); } /** * intel_power_domains_sanitize_state - sanitize power domains state * @i915: i915 device instance * * Sanitize the power domains state during driver loading and system resume. * The function will disable all display power wells that BIOS has enabled * without a user for it (any user for a power well has taken a reference * on it by the time this function is called, after the state of all the * pipe, encoder, etc. HW resources have been sanitized). */ void intel_power_domains_sanitize_state(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->display.power.domains; struct i915_power_well *power_well; mutex_lock(&power_domains->lock); for_each_power_well_reverse(i915, power_well) { if (power_well->desc->always_on || power_well->count || !intel_power_well_is_enabled(i915, power_well)) continue; drm_dbg_kms(&i915->drm, "BIOS left unused %s power well enabled, disabling it\n", intel_power_well_name(power_well)); intel_power_well_disable(i915, power_well); } mutex_unlock(&power_domains->lock); } /** * intel_power_domains_enable - enable toggling of display power wells * @i915: i915 device instance * * Enable the ondemand enabling/disabling of the display power wells. Note that * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled * only at specific points of the display modeset sequence, thus they are not * affected by the intel_power_domains_enable()/disable() calls. The purpose * of these function is to keep the rest of power wells enabled until the end * of display HW readout (which will acquire the power references reflecting * the current HW state). */ void intel_power_domains_enable(struct drm_i915_private *i915) { intel_wakeref_t wakeref __maybe_unused = fetch_and_zero(&i915->display.power.domains.init_wakeref); intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref); intel_power_domains_verify_state(i915); } /** * intel_power_domains_disable - disable toggling of display power wells * @i915: i915 device instance * * Disable the ondemand enabling/disabling of the display power wells. See * intel_power_domains_enable() for which power wells this call controls. */ void intel_power_domains_disable(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->display.power.domains; drm_WARN_ON(&i915->drm, power_domains->init_wakeref); power_domains->init_wakeref = intel_display_power_get(i915, POWER_DOMAIN_INIT); intel_power_domains_verify_state(i915); } /** * intel_power_domains_suspend - suspend power domain state * @i915: i915 device instance * @suspend_mode: specifies the target suspend state (idle, mem, hibernation) * * This function prepares the hardware power domain state before entering * system suspend. * * It must be called with power domains already disabled (after a call to * intel_power_domains_disable()) and paired with intel_power_domains_resume(). */ void intel_power_domains_suspend(struct drm_i915_private *i915, enum i915_drm_suspend_mode suspend_mode) { struct i915_power_domains *power_domains = &i915->display.power.domains; intel_wakeref_t wakeref __maybe_unused = fetch_and_zero(&power_domains->init_wakeref); intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref); /* * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9 * support don't manually deinit the power domains. This also means the * DMC firmware will stay active, it will power down any HW * resources as required and also enable deeper system power states * that would be blocked if the firmware was inactive. */ if (!(i915->display.dmc.allowed_dc_mask & DC_STATE_EN_DC9) && suspend_mode == I915_DRM_SUSPEND_IDLE && intel_dmc_has_payload(i915)) { intel_display_power_flush_work(i915); intel_power_domains_verify_state(i915); return; } /* * Even if power well support was disabled we still want to disable * power wells if power domains must be deinitialized for suspend. */ if (!i915->params.disable_power_well) intel_display_power_put(i915, POWER_DOMAIN_INIT, fetch_and_zero(&i915->display.power.domains.disable_wakeref)); intel_display_power_flush_work(i915); intel_power_domains_verify_state(i915); if (DISPLAY_VER(i915) >= 11) icl_display_core_uninit(i915); else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) bxt_display_core_uninit(i915); else if (DISPLAY_VER(i915) == 9) skl_display_core_uninit(i915); power_domains->display_core_suspended = true; } /** * intel_power_domains_resume - resume power domain state * @i915: i915 device instance * * This function resume the hardware power domain state during system resume. * * It will return with power domain support disabled (to be enabled later by * intel_power_domains_enable()) and must be paired with * intel_power_domains_suspend(). */ void intel_power_domains_resume(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->display.power.domains; if (power_domains->display_core_suspended) { intel_power_domains_init_hw(i915, true); power_domains->display_core_suspended = false; } else { drm_WARN_ON(&i915->drm, power_domains->init_wakeref); power_domains->init_wakeref = intel_display_power_get(i915, POWER_DOMAIN_INIT); } intel_power_domains_verify_state(i915); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) static void intel_power_domains_dump_info(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->display.power.domains; struct i915_power_well *power_well; for_each_power_well(i915, power_well) { enum intel_display_power_domain domain; drm_dbg(&i915->drm, "%-25s %d\n", intel_power_well_name(power_well), intel_power_well_refcount(power_well)); for_each_power_domain(domain, intel_power_well_domains(power_well)) drm_dbg(&i915->drm, " %-23s %d\n", intel_display_power_domain_str(domain), power_domains->domain_use_count[domain]); } } /** * intel_power_domains_verify_state - verify the HW/SW state for all power wells * @i915: i915 device instance * * Verify if the reference count of each power well matches its HW enabled * state and the total refcount of the domains it belongs to. This must be * called after modeset HW state sanitization, which is responsible for * acquiring reference counts for any power wells in use and disabling the * ones left on by BIOS but not required by any active output. */ static void intel_power_domains_verify_state(struct drm_i915_private *i915) { struct i915_power_domains *power_domains = &i915->display.power.domains; struct i915_power_well *power_well; bool dump_domain_info; mutex_lock(&power_domains->lock); verify_async_put_domains_state(power_domains); dump_domain_info = false; for_each_power_well(i915, power_well) { enum intel_display_power_domain domain; int domains_count; bool enabled; enabled = intel_power_well_is_enabled(i915, power_well); if ((intel_power_well_refcount(power_well) || intel_power_well_is_always_on(power_well)) != enabled) drm_err(&i915->drm, "power well %s state mismatch (refcount %d/enabled %d)", intel_power_well_name(power_well), intel_power_well_refcount(power_well), enabled); domains_count = 0; for_each_power_domain(domain, intel_power_well_domains(power_well)) domains_count += power_domains->domain_use_count[domain]; if (intel_power_well_refcount(power_well) != domains_count) { drm_err(&i915->drm, "power well %s refcount/domain refcount mismatch " "(refcount %d/domains refcount %d)\n", intel_power_well_name(power_well), intel_power_well_refcount(power_well), domains_count); dump_domain_info = true; } } if (dump_domain_info) { static bool dumped; if (!dumped) { intel_power_domains_dump_info(i915); dumped = true; } } mutex_unlock(&power_domains->lock); } #else static void intel_power_domains_verify_state(struct drm_i915_private *i915) { } #endif void intel_display_power_suspend_late(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { bxt_enable_dc9(i915); } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { hsw_enable_pc8(i915); } /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1) intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS); } void intel_display_power_resume_early(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { gen9_sanitize_dc_state(i915); bxt_disable_dc9(i915); } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { hsw_disable_pc8(i915); } /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */ if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1) intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0); } void intel_display_power_suspend(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 11) { icl_display_core_uninit(i915); bxt_enable_dc9(i915); } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { bxt_display_core_uninit(i915); bxt_enable_dc9(i915); } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { hsw_enable_pc8(i915); } } void intel_display_power_resume(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 11) { bxt_disable_dc9(i915); icl_display_core_init(i915, true); if (intel_dmc_has_payload(i915)) { if (i915->display.dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC6) skl_enable_dc6(i915); else if (i915->display.dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5) gen9_enable_dc5(i915); } } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) { bxt_disable_dc9(i915); bxt_display_core_init(i915, true); if (intel_dmc_has_payload(i915) && (i915->display.dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)) gen9_enable_dc5(i915); } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { hsw_disable_pc8(i915); } } void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m) { struct i915_power_domains *power_domains = &i915->display.power.domains; int i; mutex_lock(&power_domains->lock); seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); for (i = 0; i < power_domains->power_well_count; i++) { struct i915_power_well *power_well; enum intel_display_power_domain power_domain; power_well = &power_domains->power_wells[i]; seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well), intel_power_well_refcount(power_well)); for_each_power_domain(power_domain, intel_power_well_domains(power_well)) seq_printf(m, " %-23s %d\n", intel_display_power_domain_str(power_domain), power_domains->domain_use_count[power_domain]); } mutex_unlock(&power_domains->lock); } struct intel_ddi_port_domains { enum port port_start; enum port port_end; enum aux_ch aux_ch_start; enum aux_ch aux_ch_end; enum intel_display_power_domain ddi_lanes; enum intel_display_power_domain ddi_io; enum intel_display_power_domain aux_legacy_usbc; enum intel_display_power_domain aux_tbt; }; static const struct intel_ddi_port_domains i9xx_port_domains[] = { { .port_start = PORT_A, .port_end = PORT_F, .aux_ch_start = AUX_CH_A, .aux_ch_end = AUX_CH_F, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, .aux_legacy_usbc = POWER_DOMAIN_AUX_A, .aux_tbt = POWER_DOMAIN_INVALID, }, }; static const struct intel_ddi_port_domains d11_port_domains[] = { { .port_start = PORT_A, .port_end = PORT_B, .aux_ch_start = AUX_CH_A, .aux_ch_end = AUX_CH_B, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, .aux_legacy_usbc = POWER_DOMAIN_AUX_A, .aux_tbt = POWER_DOMAIN_INVALID, }, { .port_start = PORT_C, .port_end = PORT_F, .aux_ch_start = AUX_CH_C, .aux_ch_end = AUX_CH_F, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_C, .aux_legacy_usbc = POWER_DOMAIN_AUX_C, .aux_tbt = POWER_DOMAIN_AUX_TBT1, }, }; static const struct intel_ddi_port_domains d12_port_domains[] = { { .port_start = PORT_A, .port_end = PORT_C, .aux_ch_start = AUX_CH_A, .aux_ch_end = AUX_CH_C, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, .aux_legacy_usbc = POWER_DOMAIN_AUX_A, .aux_tbt = POWER_DOMAIN_INVALID, }, { .port_start = PORT_TC1, .port_end = PORT_TC6, .aux_ch_start = AUX_CH_USBC1, .aux_ch_end = AUX_CH_USBC6, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, .aux_tbt = POWER_DOMAIN_AUX_TBT1, }, }; static const struct intel_ddi_port_domains d13_port_domains[] = { { .port_start = PORT_A, .port_end = PORT_C, .aux_ch_start = AUX_CH_A, .aux_ch_end = AUX_CH_C, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A, .aux_legacy_usbc = POWER_DOMAIN_AUX_A, .aux_tbt = POWER_DOMAIN_INVALID, }, { .port_start = PORT_TC1, .port_end = PORT_TC4, .aux_ch_start = AUX_CH_USBC1, .aux_ch_end = AUX_CH_USBC4, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1, .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1, .aux_tbt = POWER_DOMAIN_AUX_TBT1, }, { .port_start = PORT_D_XELPD, .port_end = PORT_E_XELPD, .aux_ch_start = AUX_CH_D_XELPD, .aux_ch_end = AUX_CH_E_XELPD, .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D, .ddi_io = POWER_DOMAIN_PORT_DDI_IO_D, .aux_legacy_usbc = POWER_DOMAIN_AUX_D, .aux_tbt = POWER_DOMAIN_INVALID, }, }; static void intel_port_domains_for_platform(struct drm_i915_private *i915, const struct intel_ddi_port_domains **domains, int *domains_size) { if (DISPLAY_VER(i915) >= 13) { *domains = d13_port_domains; *domains_size = ARRAY_SIZE(d13_port_domains); } else if (DISPLAY_VER(i915) >= 12) { *domains = d12_port_domains; *domains_size = ARRAY_SIZE(d12_port_domains); } else if (DISPLAY_VER(i915) >= 11) { *domains = d11_port_domains; *domains_size = ARRAY_SIZE(d11_port_domains); } else { *domains = i9xx_port_domains; *domains_size = ARRAY_SIZE(i9xx_port_domains); } } static const struct intel_ddi_port_domains * intel_port_domains_for_port(struct drm_i915_private *i915, enum port port) { const struct intel_ddi_port_domains *domains; int domains_size; int i; intel_port_domains_for_platform(i915, &domains, &domains_size); for (i = 0; i < domains_size; i++) if (port >= domains[i].port_start && port <= domains[i].port_end) return &domains[i]; return NULL; } enum intel_display_power_domain intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port) { const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port); if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID)) return POWER_DOMAIN_PORT_DDI_IO_A; return domains->ddi_io + (int)(port - domains->port_start); } enum intel_display_power_domain intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port) { const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port); if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID)) return POWER_DOMAIN_PORT_DDI_LANES_A; return domains->ddi_lanes + (int)(port - domains->port_start); } static const struct intel_ddi_port_domains * intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch) { const struct intel_ddi_port_domains *domains; int domains_size; int i; intel_port_domains_for_platform(i915, &domains, &domains_size); for (i = 0; i < domains_size; i++) if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end) return &domains[i]; return NULL; } enum intel_display_power_domain intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch) { const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch); if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)) return POWER_DOMAIN_AUX_A; return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start); } enum intel_display_power_domain intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch) { const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch); if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID)) return POWER_DOMAIN_AUX_TBT1; return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1