Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Imre Deak | 8026 | 98.08% | 11 | 57.89% |
Jani Nikula | 147 | 1.80% | 6 | 31.58% |
Ashutosh Dixit | 6 | 0.07% | 1 | 5.26% |
Ville Syrjälä | 4 | 0.05% | 1 | 5.26% |
Total | 8183 | 19 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "i915_drv.h" #include "i915_irq.h" #include "intel_backlight_regs.h" #include "intel_combo_phy.h" #include "intel_combo_phy_regs.h" #include "intel_crt.h" #include "intel_de.h" #include "intel_display_power_well.h" #include "intel_display_types.h" #include "intel_dkl_phy.h" #include "intel_dmc.h" #include "intel_dpio_phy.h" #include "intel_dpll.h" #include "intel_hotplug.h" #include "intel_pcode.h" #include "intel_pps.h" #include "intel_tc.h" #include "intel_vga.h" #include "skl_watermark.h" #include "vlv_sideband.h" #include "vlv_sideband_reg.h" struct i915_power_well_regs { i915_reg_t bios; i915_reg_t driver; i915_reg_t kvmr; i915_reg_t debug; }; struct i915_power_well_ops { const struct i915_power_well_regs *regs; /* * Synchronize the well's hw state to match the current sw state, for * example enable/disable it based on the current refcount. Called * during driver init and resume time, possibly after first calling * the enable/disable handlers. */ void (*sync_hw)(struct drm_i915_private *i915, struct i915_power_well *power_well); /* * Enable the well and resources that depend on it (for example * interrupts located on the well). Called after the 0->1 refcount * transition. */ void (*enable)(struct drm_i915_private *i915, struct i915_power_well *power_well); /* * Disable the well and resources that depend on it. Called after * the 1->0 refcount transition. */ void (*disable)(struct drm_i915_private *i915, struct i915_power_well *power_well); /* Returns the hw enabled state. */ bool (*is_enabled)(struct drm_i915_private *i915, struct i915_power_well *power_well); }; static const struct i915_power_well_instance * i915_power_well_instance(const struct i915_power_well *power_well) { return &power_well->desc->instances->list[power_well->instance_idx]; } struct i915_power_well * lookup_power_well(struct drm_i915_private *i915, enum i915_power_well_id power_well_id) { struct i915_power_well *power_well; for_each_power_well(i915, power_well) if (i915_power_well_instance(power_well)->id == power_well_id) return power_well; /* * It's not feasible to add error checking code to the callers since * this condition really shouldn't happen and it doesn't even make sense * to abort things like display initialization sequences. Just return * the first power well and hope the WARN gets reported so we can fix * our driver. */ drm_WARN(&i915->drm, 1, "Power well %d not defined for this platform\n", power_well_id); return &i915->display.power.domains.power_wells[0]; } void intel_power_well_enable(struct drm_i915_private *i915, struct i915_power_well *power_well) { drm_dbg_kms(&i915->drm, "enabling %s\n", intel_power_well_name(power_well)); power_well->desc->ops->enable(i915, power_well); power_well->hw_enabled = true; } void intel_power_well_disable(struct drm_i915_private *i915, struct i915_power_well *power_well) { drm_dbg_kms(&i915->drm, "disabling %s\n", intel_power_well_name(power_well)); power_well->hw_enabled = false; power_well->desc->ops->disable(i915, power_well); } void intel_power_well_sync_hw(struct drm_i915_private *i915, struct i915_power_well *power_well) { power_well->desc->ops->sync_hw(i915, power_well); power_well->hw_enabled = power_well->desc->ops->is_enabled(i915, power_well); } void intel_power_well_get(struct drm_i915_private *i915, struct i915_power_well *power_well) { if (!power_well->count++) intel_power_well_enable(i915, power_well); } void intel_power_well_put(struct drm_i915_private *i915, struct i915_power_well *power_well) { drm_WARN(&i915->drm, !power_well->count, "Use count on power well %s is already zero", i915_power_well_instance(power_well)->name); if (!--power_well->count) intel_power_well_disable(i915, power_well); } bool intel_power_well_is_enabled(struct drm_i915_private *i915, struct i915_power_well *power_well) { return power_well->desc->ops->is_enabled(i915, power_well); } bool intel_power_well_is_enabled_cached(struct i915_power_well *power_well) { return power_well->hw_enabled; } bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv, enum i915_power_well_id power_well_id) { struct i915_power_well *power_well; power_well = lookup_power_well(dev_priv, power_well_id); return intel_power_well_is_enabled(dev_priv, power_well); } bool intel_power_well_is_always_on(struct i915_power_well *power_well) { return power_well->desc->always_on; } const char *intel_power_well_name(struct i915_power_well *power_well) { return i915_power_well_instance(power_well)->name; } struct intel_power_domain_mask *intel_power_well_domains(struct i915_power_well *power_well) { return &power_well->domains; } int intel_power_well_refcount(struct i915_power_well *power_well) { return power_well->count; } /* * Starting with Haswell, we have a "Power Down Well" that can be turned off * when not needed anymore. We have 4 registers that can request the power well * to be enabled, and it will only be disabled if none of the registers is * requesting it to be enabled. */ static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv, u8 irq_pipe_mask, bool has_vga) { if (has_vga) intel_vga_reset_io_mem(dev_priv); if (irq_pipe_mask) gen8_irq_power_well_post_enable(dev_priv, irq_pipe_mask); } static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv, u8 irq_pipe_mask) { if (irq_pipe_mask) gen8_irq_power_well_pre_disable(dev_priv, irq_pipe_mask); } #define ICL_AUX_PW_TO_CH(pw_idx) \ ((pw_idx) - ICL_PW_CTL_IDX_AUX_A + AUX_CH_A) #define ICL_TBT_AUX_PW_TO_CH(pw_idx) \ ((pw_idx) - ICL_PW_CTL_IDX_AUX_TBT1 + AUX_CH_C) static enum aux_ch icl_aux_pw_to_ch(const struct i915_power_well *power_well) { int pw_idx = i915_power_well_instance(power_well)->hsw.idx; return power_well->desc->is_tc_tbt ? ICL_TBT_AUX_PW_TO_CH(pw_idx) : ICL_AUX_PW_TO_CH(pw_idx); } static struct intel_digital_port * aux_ch_to_digital_port(struct drm_i915_private *dev_priv, enum aux_ch aux_ch) { struct intel_digital_port *dig_port = NULL; struct intel_encoder *encoder; for_each_intel_encoder(&dev_priv->drm, encoder) { /* We'll check the MST primary port */ if (encoder->type == INTEL_OUTPUT_DP_MST) continue; dig_port = enc_to_dig_port(encoder); if (!dig_port) continue; if (dig_port->aux_ch != aux_ch) { dig_port = NULL; continue; } break; } return dig_port; } static enum phy icl_aux_pw_to_phy(struct drm_i915_private *i915, const struct i915_power_well *power_well) { enum aux_ch aux_ch = icl_aux_pw_to_ch(power_well); struct intel_digital_port *dig_port = aux_ch_to_digital_port(i915, aux_ch); return intel_port_to_phy(i915, dig_port->base.port); } static void hsw_wait_for_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool timeout_expected) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; /* * For some power wells we're not supposed to watch the status bit for * an ack, but rather just wait a fixed amount of time and then * proceed. This is only used on DG2. */ if (IS_DG2(dev_priv) && power_well->desc->fixed_enable_delay) { usleep_range(600, 1200); return; } /* Timeout for PW1:10 us, AUX:not specified, other PWs:20 us. */ if (intel_de_wait_for_set(dev_priv, regs->driver, HSW_PWR_WELL_CTL_STATE(pw_idx), 1)) { drm_dbg_kms(&dev_priv->drm, "%s power well enable timeout\n", intel_power_well_name(power_well)); drm_WARN_ON(&dev_priv->drm, !timeout_expected); } } static u32 hsw_power_well_requesters(struct drm_i915_private *dev_priv, const struct i915_power_well_regs *regs, int pw_idx) { u32 req_mask = HSW_PWR_WELL_CTL_REQ(pw_idx); u32 ret; ret = intel_de_read(dev_priv, regs->bios) & req_mask ? 1 : 0; ret |= intel_de_read(dev_priv, regs->driver) & req_mask ? 2 : 0; if (regs->kvmr.reg) ret |= intel_de_read(dev_priv, regs->kvmr) & req_mask ? 4 : 0; ret |= intel_de_read(dev_priv, regs->debug) & req_mask ? 8 : 0; return ret; } static void hsw_wait_for_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; bool disabled; u32 reqs; /* * Bspec doesn't require waiting for PWs to get disabled, but still do * this for paranoia. The known cases where a PW will be forced on: * - a KVMR request on any power well via the KVMR request register * - a DMC request on PW1 and MISC_IO power wells via the BIOS and * DEBUG request registers * Skip the wait in case any of the request bits are set and print a * diagnostic message. */ wait_for((disabled = !(intel_de_read(dev_priv, regs->driver) & HSW_PWR_WELL_CTL_STATE(pw_idx))) || (reqs = hsw_power_well_requesters(dev_priv, regs, pw_idx)), 1); if (disabled) return; drm_dbg_kms(&dev_priv->drm, "%s forced on (bios:%d driver:%d kvmr:%d debug:%d)\n", intel_power_well_name(power_well), !!(reqs & 1), !!(reqs & 2), !!(reqs & 4), !!(reqs & 8)); } static void gen9_wait_for_power_well_fuses(struct drm_i915_private *dev_priv, enum skl_power_gate pg) { /* Timeout 5us for PG#0, for other PGs 1us */ drm_WARN_ON(&dev_priv->drm, intel_de_wait_for_set(dev_priv, SKL_FUSE_STATUS, SKL_FUSE_PG_DIST_STATUS(pg), 1)); } static void hsw_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; u32 val; if (power_well->desc->has_fuses) { enum skl_power_gate pg; pg = DISPLAY_VER(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) : SKL_PW_CTL_IDX_TO_PG(pw_idx); /* Wa_16013190616:adlp */ if (IS_ALDERLAKE_P(dev_priv) && pg == SKL_PG1) intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0, DISABLE_FLR_SRC); /* * For PW1 we have to wait both for the PW0/PG0 fuse state * before enabling the power well and PW1/PG1's own fuse * state after the enabling. For all other power wells with * fuses we only have to wait for that PW/PG's fuse state * after the enabling. */ if (pg == SKL_PG1) gen9_wait_for_power_well_fuses(dev_priv, SKL_PG0); } val = intel_de_read(dev_priv, regs->driver); intel_de_write(dev_priv, regs->driver, val | HSW_PWR_WELL_CTL_REQ(pw_idx)); hsw_wait_for_power_well_enable(dev_priv, power_well, false); if (power_well->desc->has_fuses) { enum skl_power_gate pg; pg = DISPLAY_VER(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) : SKL_PW_CTL_IDX_TO_PG(pw_idx); gen9_wait_for_power_well_fuses(dev_priv, pg); } hsw_power_well_post_enable(dev_priv, power_well->desc->irq_pipe_mask, power_well->desc->has_vga); } static void hsw_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; u32 val; hsw_power_well_pre_disable(dev_priv, power_well->desc->irq_pipe_mask); val = intel_de_read(dev_priv, regs->driver); intel_de_write(dev_priv, regs->driver, val & ~HSW_PWR_WELL_CTL_REQ(pw_idx)); hsw_wait_for_power_well_disable(dev_priv, power_well); } static void icl_combo_phy_aux_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well); u32 val; drm_WARN_ON(&dev_priv->drm, !IS_ICELAKE(dev_priv)); val = intel_de_read(dev_priv, regs->driver); intel_de_write(dev_priv, regs->driver, val | HSW_PWR_WELL_CTL_REQ(pw_idx)); if (DISPLAY_VER(dev_priv) < 12) { val = intel_de_read(dev_priv, ICL_PORT_CL_DW12(phy)); intel_de_write(dev_priv, ICL_PORT_CL_DW12(phy), val | ICL_LANE_ENABLE_AUX); } hsw_wait_for_power_well_enable(dev_priv, power_well, false); /* Display WA #1178: icl */ if (pw_idx >= ICL_PW_CTL_IDX_AUX_A && pw_idx <= ICL_PW_CTL_IDX_AUX_B && !intel_bios_is_port_edp(dev_priv, (enum port)phy)) { val = intel_de_read(dev_priv, ICL_AUX_ANAOVRD1(pw_idx)); val |= ICL_AUX_ANAOVRD1_ENABLE | ICL_AUX_ANAOVRD1_LDO_BYPASS; intel_de_write(dev_priv, ICL_AUX_ANAOVRD1(pw_idx), val); } } static void icl_combo_phy_aux_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well); u32 val; drm_WARN_ON(&dev_priv->drm, !IS_ICELAKE(dev_priv)); val = intel_de_read(dev_priv, ICL_PORT_CL_DW12(phy)); intel_de_write(dev_priv, ICL_PORT_CL_DW12(phy), val & ~ICL_LANE_ENABLE_AUX); val = intel_de_read(dev_priv, regs->driver); intel_de_write(dev_priv, regs->driver, val & ~HSW_PWR_WELL_CTL_REQ(pw_idx)); hsw_wait_for_power_well_disable(dev_priv, power_well); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) static void icl_tc_port_assert_ref_held(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, struct intel_digital_port *dig_port) { if (drm_WARN_ON(&dev_priv->drm, !dig_port)) return; if (DISPLAY_VER(dev_priv) == 11 && intel_tc_cold_requires_aux_pw(dig_port)) return; drm_WARN_ON(&dev_priv->drm, !intel_tc_port_ref_held(dig_port)); } #else static void icl_tc_port_assert_ref_held(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, struct intel_digital_port *dig_port) { } #endif #define TGL_AUX_PW_TO_TC_PORT(pw_idx) ((pw_idx) - TGL_PW_CTL_IDX_AUX_TC1) static void icl_tc_cold_exit(struct drm_i915_private *i915) { int ret, tries = 0; while (1) { ret = snb_pcode_write_timeout(&i915->uncore, ICL_PCODE_EXIT_TCCOLD, 0, 250, 1); if (ret != -EAGAIN || ++tries == 3) break; msleep(1); } /* Spec states that TC cold exit can take up to 1ms to complete */ if (!ret) msleep(1); /* TODO: turn failure into a error as soon i915 CI updates ICL IFWI */ drm_dbg_kms(&i915->drm, "TC cold block %s\n", ret ? "failed" : "succeeded"); } static void icl_tc_phy_aux_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum aux_ch aux_ch = icl_aux_pw_to_ch(power_well); struct intel_digital_port *dig_port = aux_ch_to_digital_port(dev_priv, aux_ch); const struct i915_power_well_regs *regs = power_well->desc->ops->regs; bool is_tbt = power_well->desc->is_tc_tbt; bool timeout_expected; u32 val; icl_tc_port_assert_ref_held(dev_priv, power_well, dig_port); val = intel_de_read(dev_priv, DP_AUX_CH_CTL(aux_ch)); val &= ~DP_AUX_CH_CTL_TBT_IO; if (is_tbt) val |= DP_AUX_CH_CTL_TBT_IO; intel_de_write(dev_priv, DP_AUX_CH_CTL(aux_ch), val); val = intel_de_read(dev_priv, regs->driver); intel_de_write(dev_priv, regs->driver, val | HSW_PWR_WELL_CTL_REQ(i915_power_well_instance(power_well)->hsw.idx)); /* * An AUX timeout is expected if the TBT DP tunnel is down, * or need to enable AUX on a legacy TypeC port as part of the TC-cold * exit sequence. */ timeout_expected = is_tbt || intel_tc_cold_requires_aux_pw(dig_port); if (DISPLAY_VER(dev_priv) == 11 && intel_tc_cold_requires_aux_pw(dig_port)) icl_tc_cold_exit(dev_priv); hsw_wait_for_power_well_enable(dev_priv, power_well, timeout_expected); if (DISPLAY_VER(dev_priv) >= 12 && !is_tbt) { enum tc_port tc_port; tc_port = TGL_AUX_PW_TO_TC_PORT(i915_power_well_instance(power_well)->hsw.idx); if (wait_for(intel_dkl_phy_read(dev_priv, DKL_CMN_UC_DW_27(tc_port), 2) & DKL_CMN_UC_DW27_UC_HEALTH, 1)) drm_warn(&dev_priv->drm, "Timeout waiting TC uC health\n"); } } static void icl_aux_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well); if (intel_phy_is_tc(dev_priv, phy)) return icl_tc_phy_aux_power_well_enable(dev_priv, power_well); else if (IS_ICELAKE(dev_priv)) return icl_combo_phy_aux_power_well_enable(dev_priv, power_well); else return hsw_power_well_enable(dev_priv, power_well); } static void icl_aux_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well); if (intel_phy_is_tc(dev_priv, phy)) return hsw_power_well_disable(dev_priv, power_well); else if (IS_ICELAKE(dev_priv)) return icl_combo_phy_aux_power_well_disable(dev_priv, power_well); else return hsw_power_well_disable(dev_priv, power_well); } /* * We should only use the power well if we explicitly asked the hardware to * enable it, so check if it's enabled and also check if we've requested it to * be enabled. */ static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; enum i915_power_well_id id = i915_power_well_instance(power_well)->id; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx) | HSW_PWR_WELL_CTL_STATE(pw_idx); u32 val; val = intel_de_read(dev_priv, regs->driver); /* * On GEN9 big core due to a DMC bug the driver's request bits for PW1 * and the MISC_IO PW will be not restored, so check instead for the * BIOS's own request bits, which are forced-on for these power wells * when exiting DC5/6. */ if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv) && (id == SKL_DISP_PW_1 || id == SKL_DISP_PW_MISC_IO)) val |= intel_de_read(dev_priv, regs->bios); return (val & mask) == mask; } static void assert_can_enable_dc9(struct drm_i915_private *dev_priv) { drm_WARN_ONCE(&dev_priv->drm, (intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_DC9), "DC9 already programmed to be enabled.\n"); drm_WARN_ONCE(&dev_priv->drm, intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, "DC5 still not disabled to enable DC9.\n"); drm_WARN_ONCE(&dev_priv->drm, intel_de_read(dev_priv, HSW_PWR_WELL_CTL2) & HSW_PWR_WELL_CTL_REQ(SKL_PW_CTL_IDX_PW_2), "Power well 2 on.\n"); drm_WARN_ONCE(&dev_priv->drm, intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); /* * TODO: check for the following to verify the conditions to enter DC9 * state are satisfied: * 1] Check relevant display engine registers to verify if mode set * disable sequence was followed. * 2] Check if display uninitialize sequence is initialized. */ } static void assert_can_disable_dc9(struct drm_i915_private *dev_priv) { drm_WARN_ONCE(&dev_priv->drm, intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n"); drm_WARN_ONCE(&dev_priv->drm, intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_UPTO_DC5, "DC5 still not disabled.\n"); /* * TODO: check for the following to verify DC9 state was indeed * entered before programming to disable it: * 1] Check relevant display engine registers to verify if mode * set disable sequence was followed. * 2] Check if display uninitialize sequence is initialized. */ } static void gen9_write_dc_state(struct drm_i915_private *dev_priv, u32 state) { int rewrites = 0; int rereads = 0; u32 v; intel_de_write(dev_priv, DC_STATE_EN, state); /* It has been observed that disabling the dc6 state sometimes * doesn't stick and dmc keeps returning old value. Make sure * the write really sticks enough times and also force rewrite until * we are confident that state is exactly what we want. */ do { v = intel_de_read(dev_priv, DC_STATE_EN); if (v != state) { intel_de_write(dev_priv, DC_STATE_EN, state); rewrites++; rereads = 0; } else if (rereads++ > 5) { break; } } while (rewrites < 100); if (v != state) drm_err(&dev_priv->drm, "Writing dc state to 0x%x failed, now 0x%x\n", state, v); /* Most of the times we need one retry, avoid spam */ if (rewrites > 1) drm_dbg_kms(&dev_priv->drm, "Rewrote dc state to 0x%x %d times\n", state, rewrites); } static u32 gen9_dc_mask(struct drm_i915_private *dev_priv) { u32 mask; mask = DC_STATE_EN_UPTO_DC5; if (DISPLAY_VER(dev_priv) >= 12) mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6 | DC_STATE_EN_DC9; else if (DISPLAY_VER(dev_priv) == 11) mask |= DC_STATE_EN_UPTO_DC6 | DC_STATE_EN_DC9; else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) mask |= DC_STATE_EN_DC9; else mask |= DC_STATE_EN_UPTO_DC6; return mask; } void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv) { u32 val; if (!HAS_DISPLAY(dev_priv)) return; val = intel_de_read(dev_priv, DC_STATE_EN) & gen9_dc_mask(dev_priv); drm_dbg_kms(&dev_priv->drm, "Resetting DC state tracking from %02x to %02x\n", dev_priv->display.dmc.dc_state, val); dev_priv->display.dmc.dc_state = val; } /** * gen9_set_dc_state - set target display C power state * @dev_priv: i915 device instance * @state: target DC power state * - DC_STATE_DISABLE * - DC_STATE_EN_UPTO_DC5 * - DC_STATE_EN_UPTO_DC6 * - DC_STATE_EN_DC9 * * Signal to DMC firmware/HW the target DC power state passed in @state. * DMC/HW can turn off individual display clocks and power rails when entering * a deeper DC power state (higher in number) and turns these back when exiting * that state to a shallower power state (lower in number). The HW will decide * when to actually enter a given state on an on-demand basis, for instance * depending on the active state of display pipes. The state of display * registers backed by affected power rails are saved/restored as needed. * * Based on the above enabling a deeper DC power state is asynchronous wrt. * enabling it. Disabling a deeper power state is synchronous: for instance * setting %DC_STATE_DISABLE won't complete until all HW resources are turned * back on and register state is restored. This is guaranteed by the MMIO write * to DC_STATE_EN blocking until the state is restored. */ void gen9_set_dc_state(struct drm_i915_private *dev_priv, u32 state) { u32 val; u32 mask; if (!HAS_DISPLAY(dev_priv)) return; if (drm_WARN_ON_ONCE(&dev_priv->drm, state & ~dev_priv->display.dmc.allowed_dc_mask)) state &= dev_priv->display.dmc.allowed_dc_mask; val = intel_de_read(dev_priv, DC_STATE_EN); mask = gen9_dc_mask(dev_priv); drm_dbg_kms(&dev_priv->drm, "Setting DC state from %02x to %02x\n", val & mask, state); /* Check if DMC is ignoring our DC state requests */ if ((val & mask) != dev_priv->display.dmc.dc_state) drm_err(&dev_priv->drm, "DC state mismatch (0x%x -> 0x%x)\n", dev_priv->display.dmc.dc_state, val & mask); val &= ~mask; val |= state; gen9_write_dc_state(dev_priv, val); dev_priv->display.dmc.dc_state = val & mask; } static void tgl_enable_dc3co(struct drm_i915_private *dev_priv) { drm_dbg_kms(&dev_priv->drm, "Enabling DC3CO\n"); gen9_set_dc_state(dev_priv, DC_STATE_EN_DC3CO); } static void tgl_disable_dc3co(struct drm_i915_private *dev_priv) { u32 val; drm_dbg_kms(&dev_priv->drm, "Disabling DC3CO\n"); val = intel_de_read(dev_priv, DC_STATE_EN); val &= ~DC_STATE_DC3CO_STATUS; intel_de_write(dev_priv, DC_STATE_EN, val); gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); /* * Delay of 200us DC3CO Exit time B.Spec 49196 */ usleep_range(200, 210); } static void assert_can_enable_dc5(struct drm_i915_private *dev_priv) { enum i915_power_well_id high_pg; /* Power wells at this level and above must be disabled for DC5 entry */ if (DISPLAY_VER(dev_priv) == 12) high_pg = ICL_DISP_PW_3; else high_pg = SKL_DISP_PW_2; drm_WARN_ONCE(&dev_priv->drm, intel_display_power_well_is_enabled(dev_priv, high_pg), "Power wells above platform's DC5 limit still enabled.\n"); drm_WARN_ONCE(&dev_priv->drm, (intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_UPTO_DC5), "DC5 already programmed to be enabled.\n"); assert_rpm_wakelock_held(&dev_priv->runtime_pm); assert_dmc_loaded(dev_priv); } void gen9_enable_dc5(struct drm_i915_private *dev_priv) { assert_can_enable_dc5(dev_priv); drm_dbg_kms(&dev_priv->drm, "Enabling DC5\n"); /* Wa Display #1183: skl,kbl,cfl */ if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) intel_de_write(dev_priv, GEN8_CHICKEN_DCPR_1, intel_de_read(dev_priv, GEN8_CHICKEN_DCPR_1) | SKL_SELECT_ALTERNATE_DC_EXIT); gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5); } static void assert_can_enable_dc6(struct drm_i915_private *dev_priv) { drm_WARN_ONCE(&dev_priv->drm, intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE, "Backlight is not disabled.\n"); drm_WARN_ONCE(&dev_priv->drm, (intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_UPTO_DC6), "DC6 already programmed to be enabled.\n"); assert_dmc_loaded(dev_priv); } void skl_enable_dc6(struct drm_i915_private *dev_priv) { assert_can_enable_dc6(dev_priv); drm_dbg_kms(&dev_priv->drm, "Enabling DC6\n"); /* Wa Display #1183: skl,kbl,cfl */ if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) intel_de_write(dev_priv, GEN8_CHICKEN_DCPR_1, intel_de_read(dev_priv, GEN8_CHICKEN_DCPR_1) | SKL_SELECT_ALTERNATE_DC_EXIT); gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); } void bxt_enable_dc9(struct drm_i915_private *dev_priv) { assert_can_enable_dc9(dev_priv); drm_dbg_kms(&dev_priv->drm, "Enabling DC9\n"); /* * Power sequencer reset is not needed on * platforms with South Display Engine on PCH, * because PPS registers are always on. */ if (!HAS_PCH_SPLIT(dev_priv)) intel_pps_reset_all(dev_priv); gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9); } void bxt_disable_dc9(struct drm_i915_private *dev_priv) { assert_can_disable_dc9(dev_priv); drm_dbg_kms(&dev_priv->drm, "Disabling DC9\n"); gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); intel_pps_unlock_regs_wa(dev_priv); } static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { const struct i915_power_well_regs *regs = power_well->desc->ops->regs; int pw_idx = i915_power_well_instance(power_well)->hsw.idx; u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx); u32 bios_req = intel_de_read(dev_priv, regs->bios); /* Take over the request bit if set by BIOS. */ if (bios_req & mask) { u32 drv_req = intel_de_read(dev_priv, regs->driver); if (!(drv_req & mask)) intel_de_write(dev_priv, regs->driver, drv_req | mask); intel_de_write(dev_priv, regs->bios, bios_req & ~mask); } } static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { bxt_ddi_phy_init(dev_priv, i915_power_well_instance(power_well)->bxt.phy); } static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { bxt_ddi_phy_uninit(dev_priv, i915_power_well_instance(power_well)->bxt.phy); } static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return bxt_ddi_phy_is_enabled(dev_priv, i915_power_well_instance(power_well)->bxt.phy); } static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv) { struct i915_power_well *power_well; power_well = lookup_power_well(dev_priv, BXT_DISP_PW_DPIO_CMN_A); if (intel_power_well_refcount(power_well) > 0) bxt_ddi_phy_verify_state(dev_priv, i915_power_well_instance(power_well)->bxt.phy); power_well = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); if (intel_power_well_refcount(power_well) > 0) bxt_ddi_phy_verify_state(dev_priv, i915_power_well_instance(power_well)->bxt.phy); if (IS_GEMINILAKE(dev_priv)) { power_well = lookup_power_well(dev_priv, GLK_DISP_PW_DPIO_CMN_C); if (intel_power_well_refcount(power_well) > 0) bxt_ddi_phy_verify_state(dev_priv, i915_power_well_instance(power_well)->bxt.phy); } } static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return ((intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_DC3CO) == 0 && (intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0); } static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv) { u8 hw_enabled_dbuf_slices = intel_enabled_dbuf_slices_mask(dev_priv); u8 enabled_dbuf_slices = dev_priv->display.dbuf.enabled_slices; drm_WARN(&dev_priv->drm, hw_enabled_dbuf_slices != enabled_dbuf_slices, "Unexpected DBuf power power state (0x%08x, expected 0x%08x)\n", hw_enabled_dbuf_slices, enabled_dbuf_slices); } void gen9_disable_dc_states(struct drm_i915_private *dev_priv) { struct intel_cdclk_config cdclk_config = {}; if (dev_priv->display.dmc.target_dc_state == DC_STATE_EN_DC3CO) { tgl_disable_dc3co(dev_priv); return; } gen9_set_dc_state(dev_priv, DC_STATE_DISABLE); if (!HAS_DISPLAY(dev_priv)) return; intel_cdclk_get_cdclk(dev_priv, &cdclk_config); /* Can't read out voltage_level so can't use intel_cdclk_changed() */ drm_WARN_ON(&dev_priv->drm, intel_cdclk_needs_modeset(&dev_priv->display.cdclk.hw, &cdclk_config)); gen9_assert_dbuf_enabled(dev_priv); if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) bxt_verify_ddi_phy_power_wells(dev_priv); if (DISPLAY_VER(dev_priv) >= 11) /* * DMC retains HW context only for port A, the other combo * PHY's HW context for port B is lost after DC transitions, * so we need to restore it manually. */ intel_combo_phy_init(dev_priv); } static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { gen9_disable_dc_states(dev_priv); } static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { if (!intel_dmc_has_payload(dev_priv)) return; switch (dev_priv->display.dmc.target_dc_state) { case DC_STATE_EN_DC3CO: tgl_enable_dc3co(dev_priv); break; case DC_STATE_EN_UPTO_DC6: skl_enable_dc6(dev_priv); break; case DC_STATE_EN_UPTO_DC5: gen9_enable_dc5(dev_priv); break; } } static void i9xx_power_well_sync_hw_noop(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { } static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { } static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return true; } static void i830_pipes_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { if ((intel_de_read(dev_priv, PIPECONF(PIPE_A)) & PIPECONF_ENABLE) == 0) i830_enable_pipe(dev_priv, PIPE_A); if ((intel_de_read(dev_priv, PIPECONF(PIPE_B)) & PIPECONF_ENABLE) == 0) i830_enable_pipe(dev_priv, PIPE_B); } static void i830_pipes_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { i830_disable_pipe(dev_priv, PIPE_B); i830_disable_pipe(dev_priv, PIPE_A); } static bool i830_pipes_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { return intel_de_read(dev_priv, PIPECONF(PIPE_A)) & PIPECONF_ENABLE && intel_de_read(dev_priv, PIPECONF(PIPE_B)) & PIPECONF_ENABLE; } static void i830_pipes_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { if (intel_power_well_refcount(power_well) > 0) i830_pipes_power_well_enable(dev_priv, power_well); else i830_pipes_power_well_disable(dev_priv, power_well); } static void vlv_set_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { int pw_idx = i915_power_well_instance(power_well)->vlv.idx; u32 mask; u32 state; u32 ctrl; mask = PUNIT_PWRGT_MASK(pw_idx); state = enable ? PUNIT_PWRGT_PWR_ON(pw_idx) : PUNIT_PWRGT_PWR_GATE(pw_idx); vlv_punit_get(dev_priv); #define COND \ ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state) if (COND) goto out; ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL); ctrl &= ~mask; ctrl |= state; vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl); if (wait_for(COND, 100)) drm_err(&dev_priv->drm, "timeout setting power well state %08x (%08x)\n", state, vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL)); #undef COND out: vlv_punit_put(dev_priv); } static void vlv_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, true); } static void vlv_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, false); } static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { int pw_idx = i915_power_well_instance(power_well)->vlv.idx; bool enabled = false; u32 mask; u32 state; u32 ctrl; mask = PUNIT_PWRGT_MASK(pw_idx); ctrl = PUNIT_PWRGT_PWR_ON(pw_idx); vlv_punit_get(dev_priv); state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask; /* * We only ever set the power-on and power-gate states, anything * else is unexpected. */ drm_WARN_ON(&dev_priv->drm, state != PUNIT_PWRGT_PWR_ON(pw_idx) && state != PUNIT_PWRGT_PWR_GATE(pw_idx)); if (state == ctrl) enabled = true; /* * A transient state at this point would mean some unexpected party * is poking at the power controls too. */ ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask; drm_WARN_ON(&dev_priv->drm, ctrl != state); vlv_punit_put(dev_priv); return enabled; } static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv) { u32 val; /* * On driver load, a pipe may be active and driving a DSI display. * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck * (and never recovering) in this case. intel_dsi_post_disable() will * clear it when we turn off the display. */ val = intel_de_read(dev_priv, DSPCLK_GATE_D(dev_priv)); val &= DPOUNIT_CLOCK_GATE_DISABLE; val |= VRHUNIT_CLOCK_GATE_DISABLE; intel_de_write(dev_priv, DSPCLK_GATE_D(dev_priv), val); /* * Disable trickle feed and enable pnd deadline calculation */ intel_de_write(dev_priv, MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE); intel_de_write(dev_priv, CBR1_VLV, 0); drm_WARN_ON(&dev_priv->drm, RUNTIME_INFO(dev_priv)->rawclk_freq == 0); intel_de_write(dev_priv, RAWCLK_FREQ_VLV, DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 1000)); } static void vlv_display_power_well_init(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; enum pipe pipe; /* * Enable the CRI clock source so we can get at the * display and the reference clock for VGA * hotplug / manual detection. Supposedly DSI also * needs the ref clock up and running. * * CHV DPLL B/C have some issues if VGA mode is enabled. */ for_each_pipe(dev_priv, pipe) { u32 val = intel_de_read(dev_priv, DPLL(pipe)); val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; intel_de_write(dev_priv, DPLL(pipe), val); } vlv_init_display_clock_gating(dev_priv); spin_lock_irq(&dev_priv->irq_lock); valleyview_enable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); /* * During driver initialization/resume we can avoid restoring the * part of the HW/SW state that will be inited anyway explicitly. */ if (dev_priv->display.power.domains.initializing) return; intel_hpd_init(dev_priv); intel_hpd_poll_disable(dev_priv); /* Re-enable the ADPA, if we have one */ for_each_intel_encoder(&dev_priv->drm, encoder) { if (encoder->type == INTEL_OUTPUT_ANALOG) intel_crt_reset(&encoder->base); } intel_vga_redisable_power_on(dev_priv); intel_pps_unlock_regs_wa(dev_priv); } static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); valleyview_disable_display_irqs(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); /* make sure we're done processing display irqs */ intel_synchronize_irq(dev_priv); intel_pps_reset_all(dev_priv); /* Prevent us from re-enabling polling on accident in late suspend */ if (!dev_priv->drm.dev->power.is_suspended) intel_hpd_poll_enable(dev_priv); } static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_set_power_well(dev_priv, power_well, true); vlv_display_power_well_init(dev_priv); } static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_display_power_well_deinit(dev_priv); vlv_set_power_well(dev_priv, power_well, false); } static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { /* since ref/cri clock was enabled */ udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ vlv_set_power_well(dev_priv, power_well, true); /* * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx - * 6. De-assert cmn_reset/side_reset. Same as VLV X0. * a. GUnit 0x2110 bit[0] set to 1 (def 0) * b. The other bits such as sfr settings / modesel may all * be set to 0. * * This should only be done on init and resume from S3 with * both PLLs disabled, or we risk losing DPIO and PLL * synchronization. */ intel_de_write(dev_priv, DPIO_CTL, intel_de_read(dev_priv, DPIO_CTL) | DPIO_CMNRST); } static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum pipe pipe; for_each_pipe(dev_priv, pipe) assert_pll_disabled(dev_priv, pipe); /* Assert common reset */ intel_de_write(dev_priv, DPIO_CTL, intel_de_read(dev_priv, DPIO_CTL) & ~DPIO_CMNRST); vlv_set_power_well(dev_priv, power_well, false); } #define BITS_SET(val, bits) (((val) & (bits)) == (bits)) static void assert_chv_phy_status(struct drm_i915_private *dev_priv) { struct i915_power_well *cmn_bc = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC); struct i915_power_well *cmn_d = lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D); u32 phy_control = dev_priv->display.power.chv_phy_control; u32 phy_status = 0; u32 phy_status_mask = 0xffffffff; /* * The BIOS can leave the PHY is some weird state * where it doesn't fully power down some parts. * Disable the asserts until the PHY has been fully * reset (ie. the power well has been disabled at * least once). */ if (!dev_priv->display.power.chv_phy_assert[DPIO_PHY0]) phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) | PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1)); if (!dev_priv->display.power.chv_phy_assert[DPIO_PHY1]) phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) | PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1)); if (intel_power_well_is_enabled(dev_priv, cmn_bc)) { phy_status |= PHY_POWERGOOD(DPIO_PHY0); /* this assumes override is only used to enable lanes */ if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0) phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0); if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0) phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1); /* CL1 is on whenever anything is on in either channel */ if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) | PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1))) phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0); /* * The DPLLB check accounts for the pipe B + port A usage * with CL2 powered up but all the lanes in the second channel * powered down. */ if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) && (intel_de_read(dev_priv, DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0) phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1); } if (intel_power_well_is_enabled(dev_priv, cmn_d)) { phy_status |= PHY_POWERGOOD(DPIO_PHY1); /* this assumes override is only used to enable lanes */ if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0) phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0))) phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0); if (BITS_SET(phy_control, PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0))) phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1); } phy_status &= phy_status_mask; /* * The PHY may be busy with some initial calibration and whatnot, * so the power state can take a while to actually change. */ if (intel_de_wait_for_register(dev_priv, DISPLAY_PHY_STATUS, phy_status_mask, phy_status, 10)) drm_err(&dev_priv->drm, "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n", intel_de_read(dev_priv, DISPLAY_PHY_STATUS) & phy_status_mask, phy_status, dev_priv->display.power.chv_phy_control); } #undef BITS_SET static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum i915_power_well_id id = i915_power_well_instance(power_well)->id; enum dpio_phy phy; enum pipe pipe; u32 tmp; drm_WARN_ON_ONCE(&dev_priv->drm, id != VLV_DISP_PW_DPIO_CMN_BC && id != CHV_DISP_PW_DPIO_CMN_D); if (id == VLV_DISP_PW_DPIO_CMN_BC) { pipe = PIPE_A; phy = DPIO_PHY0; } else { pipe = PIPE_C; phy = DPIO_PHY1; } /* since ref/cri clock was enabled */ udelay(1); /* >10ns for cmnreset, >0ns for sidereset */ vlv_set_power_well(dev_priv, power_well, true); /* Poll for phypwrgood signal */ if (intel_de_wait_for_set(dev_priv, DISPLAY_PHY_STATUS, PHY_POWERGOOD(phy), 1)) drm_err(&dev_priv->drm, "Display PHY %d is not power up\n", phy); vlv_dpio_get(dev_priv); /* Enable dynamic power down */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28); tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN | DPIO_SUS_CLK_CONFIG_GATE_CLKREQ; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp); if (id == VLV_DISP_PW_DPIO_CMN_BC) { tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1); tmp |= DPIO_DYNPWRDOWNEN_CH1; vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp); } else { /* * Force the non-existing CL2 off. BXT does this * too, so maybe it saves some power even though * CL2 doesn't exist? */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); tmp |= DPIO_CL2_LDOFUSE_PWRENB; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp); } vlv_dpio_put(dev_priv); dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy); intel_de_write(dev_priv, DISPLAY_PHY_CONTROL, dev_priv->display.power.chv_phy_control); drm_dbg_kms(&dev_priv->drm, "Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n", phy, dev_priv->display.power.chv_phy_control); assert_chv_phy_status(dev_priv); } static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum i915_power_well_id id = i915_power_well_instance(power_well)->id; enum dpio_phy phy; drm_WARN_ON_ONCE(&dev_priv->drm, id != VLV_DISP_PW_DPIO_CMN_BC && id != CHV_DISP_PW_DPIO_CMN_D); if (id == VLV_DISP_PW_DPIO_CMN_BC) { phy = DPIO_PHY0; assert_pll_disabled(dev_priv, PIPE_A); assert_pll_disabled(dev_priv, PIPE_B); } else { phy = DPIO_PHY1; assert_pll_disabled(dev_priv, PIPE_C); } dev_priv->display.power.chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy); intel_de_write(dev_priv, DISPLAY_PHY_CONTROL, dev_priv->display.power.chv_phy_control); vlv_set_power_well(dev_priv, power_well, false); drm_dbg_kms(&dev_priv->drm, "Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n", phy, dev_priv->display.power.chv_phy_control); /* PHY is fully reset now, so we can enable the PHY state asserts */ dev_priv->display.power.chv_phy_assert[phy] = true; assert_chv_phy_status(dev_priv); } static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy, enum dpio_channel ch, bool override, unsigned int mask) { enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C; u32 reg, val, expected, actual; /* * The BIOS can leave the PHY is some weird state * where it doesn't fully power down some parts. * Disable the asserts until the PHY has been fully * reset (ie. the power well has been disabled at * least once). */ if (!dev_priv->display.power.chv_phy_assert[phy]) return; if (ch == DPIO_CH0) reg = _CHV_CMN_DW0_CH0; else reg = _CHV_CMN_DW6_CH1; vlv_dpio_get(dev_priv); val = vlv_dpio_read(dev_priv, pipe, reg); vlv_dpio_put(dev_priv); /* * This assumes !override is only used when the port is disabled. * All lanes should power down even without the override when * the port is disabled. */ if (!override || mask == 0xf) { expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN; /* * If CH1 common lane is not active anymore * (eg. for pipe B DPLL) the entire channel will * shut down, which causes the common lane registers * to read as 0. That means we can't actually check * the lane power down status bits, but as the entire * register reads as 0 it's a good indication that the * channel is indeed entirely powered down. */ if (ch == DPIO_CH1 && val == 0) expected = 0; } else if (mask != 0x0) { expected = DPIO_ANYDL_POWERDOWN; } else { expected = 0; } if (ch == DPIO_CH0) actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0; else actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1; actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN; drm_WARN(&dev_priv->drm, actual != expected, "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n", !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN), !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN), reg, val); } bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy, enum dpio_channel ch, bool override) { struct i915_power_domains *power_domains = &dev_priv->display.power.domains; bool was_override; mutex_lock(&power_domains->lock); was_override = dev_priv->display.power.chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); if (override == was_override) goto out; if (override) dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); else dev_priv->display.power.chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); intel_de_write(dev_priv, DISPLAY_PHY_CONTROL, dev_priv->display.power.chv_phy_control); drm_dbg_kms(&dev_priv->drm, "Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n", phy, ch, dev_priv->display.power.chv_phy_control); assert_chv_phy_status(dev_priv); out: mutex_unlock(&power_domains->lock); return was_override; } void chv_phy_powergate_lanes(struct intel_encoder *encoder, bool override, unsigned int mask) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct i915_power_domains *power_domains = &dev_priv->display.power.domains; enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder)); enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder)); mutex_lock(&power_domains->lock); dev_priv->display.power.chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch); dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch); if (override) dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); else dev_priv->display.power.chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch); intel_de_write(dev_priv, DISPLAY_PHY_CONTROL, dev_priv->display.power.chv_phy_control); drm_dbg_kms(&dev_priv->drm, "Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n", phy, ch, mask, dev_priv->display.power.chv_phy_control); assert_chv_phy_status(dev_priv); assert_chv_phy_powergate(dev_priv, phy, ch, override, mask); mutex_unlock(&power_domains->lock); } static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum pipe pipe = PIPE_A; bool enabled; u32 state, ctrl; vlv_punit_get(dev_priv); state = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe); /* * We only ever set the power-on and power-gate states, anything * else is unexpected. */ drm_WARN_ON(&dev_priv->drm, state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe)); enabled = state == DP_SSS_PWR_ON(pipe); /* * A transient state at this point would mean some unexpected party * is poking at the power controls too. */ ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSC_MASK(pipe); drm_WARN_ON(&dev_priv->drm, ctrl << 16 != state); vlv_punit_put(dev_priv); return enabled; } static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv, struct i915_power_well *power_well, bool enable) { enum pipe pipe = PIPE_A; u32 state; u32 ctrl; state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe); vlv_punit_get(dev_priv); #define COND \ ((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe)) == state) if (COND) goto out; ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); ctrl &= ~DP_SSC_MASK(pipe); ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe); vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, ctrl); if (wait_for(COND, 100)) drm_err(&dev_priv->drm, "timeout setting power well state %08x (%08x)\n", state, vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM)); #undef COND out: vlv_punit_put(dev_priv); } static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { intel_de_write(dev_priv, DISPLAY_PHY_CONTROL, dev_priv->display.power.chv_phy_control); } static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { chv_set_pipe_power_well(dev_priv, power_well, true); vlv_display_power_well_init(dev_priv); } static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { vlv_display_power_well_deinit(dev_priv); chv_set_pipe_power_well(dev_priv, power_well, false); } static void tgl_tc_cold_request(struct drm_i915_private *i915, bool block) { u8 tries = 0; int ret; while (1) { u32 low_val; u32 high_val = 0; if (block) low_val = TGL_PCODE_EXIT_TCCOLD_DATA_L_BLOCK_REQ; else low_val = TGL_PCODE_EXIT_TCCOLD_DATA_L_UNBLOCK_REQ; /* * Spec states that we should timeout the request after 200us * but the function below will timeout after 500us */ ret = snb_pcode_read(&i915->uncore, TGL_PCODE_TCCOLD, &low_val, &high_val); if (ret == 0) { if (block && (low_val & TGL_PCODE_EXIT_TCCOLD_DATA_L_EXIT_FAILED)) ret = -EIO; else break; } if (++tries == 3) break; msleep(1); } if (ret) drm_err(&i915->drm, "TC cold %sblock failed\n", block ? "" : "un"); else drm_dbg_kms(&i915->drm, "TC cold %sblock succeeded\n", block ? "" : "un"); } static void tgl_tc_cold_off_power_well_enable(struct drm_i915_private *i915, struct i915_power_well *power_well) { tgl_tc_cold_request(i915, true); } static void tgl_tc_cold_off_power_well_disable(struct drm_i915_private *i915, struct i915_power_well *power_well) { tgl_tc_cold_request(i915, false); } static void tgl_tc_cold_off_power_well_sync_hw(struct drm_i915_private *i915, struct i915_power_well *power_well) { if (intel_power_well_refcount(power_well) > 0) tgl_tc_cold_off_power_well_enable(i915, power_well); else tgl_tc_cold_off_power_well_disable(i915, power_well); } static bool tgl_tc_cold_off_power_well_is_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { /* * Not the correctly implementation but there is no way to just read it * from PCODE, so returning count to avoid state mismatch errors */ return intel_power_well_refcount(power_well); } static void xelpdp_aux_power_well_enable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum aux_ch aux_ch = i915_power_well_instance(power_well)->xelpdp.aux_ch; intel_de_rmw(dev_priv, XELPDP_DP_AUX_CH_CTL(aux_ch), XELPDP_DP_AUX_CH_CTL_POWER_REQUEST, XELPDP_DP_AUX_CH_CTL_POWER_REQUEST); /* * The power status flag cannot be used to determine whether aux * power wells have finished powering up. Instead we're * expected to just wait a fixed 600us after raising the request * bit. */ usleep_range(600, 1200); } static void xelpdp_aux_power_well_disable(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum aux_ch aux_ch = i915_power_well_instance(power_well)->xelpdp.aux_ch; intel_de_rmw(dev_priv, XELPDP_DP_AUX_CH_CTL(aux_ch), XELPDP_DP_AUX_CH_CTL_POWER_REQUEST, 0); usleep_range(10, 30); } static bool xelpdp_aux_power_well_enabled(struct drm_i915_private *dev_priv, struct i915_power_well *power_well) { enum aux_ch aux_ch = i915_power_well_instance(power_well)->xelpdp.aux_ch; return intel_de_read(dev_priv, XELPDP_DP_AUX_CH_CTL(aux_ch)) & XELPDP_DP_AUX_CH_CTL_POWER_STATUS; } const struct i915_power_well_ops i9xx_always_on_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = i9xx_always_on_power_well_noop, .disable = i9xx_always_on_power_well_noop, .is_enabled = i9xx_always_on_power_well_enabled, }; const struct i915_power_well_ops chv_pipe_power_well_ops = { .sync_hw = chv_pipe_power_well_sync_hw, .enable = chv_pipe_power_well_enable, .disable = chv_pipe_power_well_disable, .is_enabled = chv_pipe_power_well_enabled, }; const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = chv_dpio_cmn_power_well_enable, .disable = chv_dpio_cmn_power_well_disable, .is_enabled = vlv_power_well_enabled, }; const struct i915_power_well_ops i830_pipes_power_well_ops = { .sync_hw = i830_pipes_power_well_sync_hw, .enable = i830_pipes_power_well_enable, .disable = i830_pipes_power_well_disable, .is_enabled = i830_pipes_power_well_enabled, }; static const struct i915_power_well_regs hsw_power_well_regs = { .bios = HSW_PWR_WELL_CTL1, .driver = HSW_PWR_WELL_CTL2, .kvmr = HSW_PWR_WELL_CTL3, .debug = HSW_PWR_WELL_CTL4, }; const struct i915_power_well_ops hsw_power_well_ops = { .regs = &hsw_power_well_regs, .sync_hw = hsw_power_well_sync_hw, .enable = hsw_power_well_enable, .disable = hsw_power_well_disable, .is_enabled = hsw_power_well_enabled, }; const struct i915_power_well_ops gen9_dc_off_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = gen9_dc_off_power_well_enable, .disable = gen9_dc_off_power_well_disable, .is_enabled = gen9_dc_off_power_well_enabled, }; const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = bxt_dpio_cmn_power_well_enable, .disable = bxt_dpio_cmn_power_well_disable, .is_enabled = bxt_dpio_cmn_power_well_enabled, }; const struct i915_power_well_ops vlv_display_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = vlv_display_power_well_enable, .disable = vlv_display_power_well_disable, .is_enabled = vlv_power_well_enabled, }; const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = vlv_dpio_cmn_power_well_enable, .disable = vlv_dpio_cmn_power_well_disable, .is_enabled = vlv_power_well_enabled, }; const struct i915_power_well_ops vlv_dpio_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = vlv_power_well_enable, .disable = vlv_power_well_disable, .is_enabled = vlv_power_well_enabled, }; static const struct i915_power_well_regs icl_aux_power_well_regs = { .bios = ICL_PWR_WELL_CTL_AUX1, .driver = ICL_PWR_WELL_CTL_AUX2, .debug = ICL_PWR_WELL_CTL_AUX4, }; const struct i915_power_well_ops icl_aux_power_well_ops = { .regs = &icl_aux_power_well_regs, .sync_hw = hsw_power_well_sync_hw, .enable = icl_aux_power_well_enable, .disable = icl_aux_power_well_disable, .is_enabled = hsw_power_well_enabled, }; static const struct i915_power_well_regs icl_ddi_power_well_regs = { .bios = ICL_PWR_WELL_CTL_DDI1, .driver = ICL_PWR_WELL_CTL_DDI2, .debug = ICL_PWR_WELL_CTL_DDI4, }; const struct i915_power_well_ops icl_ddi_power_well_ops = { .regs = &icl_ddi_power_well_regs, .sync_hw = hsw_power_well_sync_hw, .enable = hsw_power_well_enable, .disable = hsw_power_well_disable, .is_enabled = hsw_power_well_enabled, }; const struct i915_power_well_ops tgl_tc_cold_off_ops = { .sync_hw = tgl_tc_cold_off_power_well_sync_hw, .enable = tgl_tc_cold_off_power_well_enable, .disable = tgl_tc_cold_off_power_well_disable, .is_enabled = tgl_tc_cold_off_power_well_is_enabled, }; const struct i915_power_well_ops xelpdp_aux_power_well_ops = { .sync_hw = i9xx_power_well_sync_hw_noop, .enable = xelpdp_aux_power_well_enable, .disable = xelpdp_aux_power_well_disable, .is_enabled = xelpdp_aux_power_well_enabled, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1