Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 17565 | 97.01% | 7 | 50.00% |
Jani Nikula | 323 | 1.78% | 5 | 35.71% |
Radhakrishna Sripada | 218 | 1.20% | 2 | 14.29% |
Total | 18106 | 14 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include <drm/drm_blend.h> #include "intel_atomic.h" #include "intel_atomic_plane.h" #include "intel_bw.h" #include "intel_de.h" #include "intel_display.h" #include "intel_display_power.h" #include "intel_display_types.h" #include "intel_fb.h" #include "skl_watermark.h" #include "i915_drv.h" #include "i915_fixed.h" #include "i915_reg.h" #include "intel_pcode.h" #include "intel_pm.h" static void skl_sagv_disable(struct drm_i915_private *i915); /* Stores plane specific WM parameters */ struct skl_wm_params { bool x_tiled, y_tiled; bool rc_surface; bool is_planar; u32 width; u8 cpp; u32 plane_pixel_rate; u32 y_min_scanlines; u32 plane_bytes_per_line; uint_fixed_16_16_t plane_blocks_per_line; uint_fixed_16_16_t y_tile_minimum; u32 linetime_us; u32 dbuf_block_size; }; u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915) { u8 enabled_slices = 0; enum dbuf_slice slice; for_each_dbuf_slice(i915, slice) { if (intel_uncore_read(&i915->uncore, DBUF_CTL_S(slice)) & DBUF_POWER_STATE) enabled_slices |= BIT(slice); } return enabled_slices; } /* * FIXME: We still don't have the proper code detect if we need to apply the WA, * so assume we'll always need it in order to avoid underruns. */ static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915) { return DISPLAY_VER(i915) == 9; } static bool intel_has_sagv(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 9 && !IS_LP(i915) && i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED; } static u32 intel_sagv_block_time(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 14) { u32 val; val = intel_uncore_read(&i915->uncore, MTL_LATENCY_SAGV); return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val); } else if (DISPLAY_VER(i915) >= 12) { u32 val = 0; int ret; ret = snb_pcode_read(&i915->uncore, GEN12_PCODE_READ_SAGV_BLOCK_TIME_US, &val, NULL); if (ret) { drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n"); return 0; } return val; } else if (DISPLAY_VER(i915) == 11) { return 10; } else if (DISPLAY_VER(i915) == 9 && !IS_LP(i915)) { return 30; } else { return 0; } } static void intel_sagv_init(struct drm_i915_private *i915) { if (!intel_has_sagv(i915)) i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; /* * Probe to see if we have working SAGV control. * For icl+ this was already determined by intel_bw_init_hw(). */ if (DISPLAY_VER(i915) < 11) skl_sagv_disable(i915); drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN); i915->display.sagv.block_time_us = intel_sagv_block_time(i915); drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n", str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us); /* avoid overflow when adding with wm0 latency/etc. */ if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX, "Excessive SAGV block time %u, ignoring\n", i915->display.sagv.block_time_us)) i915->display.sagv.block_time_us = 0; if (!intel_has_sagv(i915)) i915->display.sagv.block_time_us = 0; } /* * SAGV dynamically adjusts the system agent voltage and clock frequencies * depending on power and performance requirements. The display engine access * to system memory is blocked during the adjustment time. Because of the * blocking time, having this enabled can cause full system hangs and/or pipe * underruns if we don't meet all of the following requirements: * * - <= 1 pipe enabled * - All planes can enable watermarks for latencies >= SAGV engine block time * - We're not using an interlaced display configuration */ static void skl_sagv_enable(struct drm_i915_private *i915) { int ret; if (!intel_has_sagv(i915)) return; if (i915->display.sagv.status == I915_SAGV_ENABLED) return; drm_dbg_kms(&i915->drm, "Enabling SAGV\n"); ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL, GEN9_SAGV_ENABLE); /* We don't need to wait for SAGV when enabling */ /* * Some skl systems, pre-release machines in particular, * don't actually have SAGV. */ if (IS_SKYLAKE(i915) && ret == -ENXIO) { drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n"); i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; return; } else if (ret < 0) { drm_err(&i915->drm, "Failed to enable SAGV\n"); return; } i915->display.sagv.status = I915_SAGV_ENABLED; } static void skl_sagv_disable(struct drm_i915_private *i915) { int ret; if (!intel_has_sagv(i915)) return; if (i915->display.sagv.status == I915_SAGV_DISABLED) return; drm_dbg_kms(&i915->drm, "Disabling SAGV\n"); /* bspec says to keep retrying for at least 1 ms */ ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL, GEN9_SAGV_DISABLE, GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, 1); /* * Some skl systems, pre-release machines in particular, * don't actually have SAGV. */ if (IS_SKYLAKE(i915) && ret == -ENXIO) { drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n"); i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; return; } else if (ret < 0) { drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret); return; } i915->display.sagv.status = I915_SAGV_DISABLED; } static void skl_sagv_pre_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_bw_state *new_bw_state = intel_atomic_get_new_bw_state(state); if (!new_bw_state) return; if (!intel_can_enable_sagv(i915, new_bw_state)) skl_sagv_disable(i915); } static void skl_sagv_post_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_bw_state *new_bw_state = intel_atomic_get_new_bw_state(state); if (!new_bw_state) return; if (intel_can_enable_sagv(i915, new_bw_state)) skl_sagv_enable(i915); } static void icl_sagv_pre_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_bw_state *old_bw_state = intel_atomic_get_old_bw_state(state); const struct intel_bw_state *new_bw_state = intel_atomic_get_new_bw_state(state); u16 old_mask, new_mask; if (!new_bw_state) return; old_mask = old_bw_state->qgv_points_mask; new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; if (old_mask == new_mask) return; WARN_ON(!new_bw_state->base.changed); drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n", old_mask, new_mask); /* * Restrict required qgv points before updating the configuration. * According to BSpec we can't mask and unmask qgv points at the same * time. Also masking should be done before updating the configuration * and unmasking afterwards. */ icl_pcode_restrict_qgv_points(i915, new_mask); } static void icl_sagv_post_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_bw_state *old_bw_state = intel_atomic_get_old_bw_state(state); const struct intel_bw_state *new_bw_state = intel_atomic_get_new_bw_state(state); u16 old_mask, new_mask; if (!new_bw_state) return; old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; new_mask = new_bw_state->qgv_points_mask; if (old_mask == new_mask) return; WARN_ON(!new_bw_state->base.changed); drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n", old_mask, new_mask); /* * Allow required qgv points after updating the configuration. * According to BSpec we can't mask and unmask qgv points at the same * time. Also masking should be done before updating the configuration * and unmasking afterwards. */ icl_pcode_restrict_qgv_points(i915, new_mask); } void intel_sagv_pre_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); /* * Just return if we can't control SAGV or don't have it. * This is different from situation when we have SAGV but just can't * afford it due to DBuf limitation - in case if SAGV is completely * disabled in a BIOS, we are not even allowed to send a PCode request, * as it will throw an error. So have to check it here. */ if (!intel_has_sagv(i915)) return; if (DISPLAY_VER(i915) >= 11) icl_sagv_pre_plane_update(state); else skl_sagv_pre_plane_update(state); } void intel_sagv_post_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); /* * Just return if we can't control SAGV or don't have it. * This is different from situation when we have SAGV but just can't * afford it due to DBuf limitation - in case if SAGV is completely * disabled in a BIOS, we are not even allowed to send a PCode request, * as it will throw an error. So have to check it here. */ if (!intel_has_sagv(i915)) return; if (DISPLAY_VER(i915) >= 11) icl_sagv_post_plane_update(state); else skl_sagv_post_plane_update(state); } static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum plane_id plane_id; int max_level = INT_MAX; if (!intel_has_sagv(i915)) return false; if (!crtc_state->hw.active) return true; if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE) return false; for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; int level; /* Skip this plane if it's not enabled */ if (!wm->wm[0].enable) continue; /* Find the highest enabled wm level for this plane */ for (level = ilk_wm_max_level(i915); !wm->wm[level].enable; --level) { } /* Highest common enabled wm level for all planes */ max_level = min(level, max_level); } /* No enabled planes? */ if (max_level == INT_MAX) return true; for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; /* * All enabled planes must have enabled a common wm level that * can tolerate memory latencies higher than sagv_block_time_us */ if (wm->wm[0].enable && !wm->wm[max_level].can_sagv) return false; } return true; } static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum plane_id plane_id; if (!crtc_state->hw.active) return true; for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (wm->wm[0].enable && !wm->sagv.wm0.enable) return false; } return true; } static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); if (DISPLAY_VER(i915) >= 12) return tgl_crtc_can_enable_sagv(crtc_state); else return skl_crtc_can_enable_sagv(crtc_state); } bool intel_can_enable_sagv(struct drm_i915_private *i915, const struct intel_bw_state *bw_state) { if (DISPLAY_VER(i915) < 11 && bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) return false; return bw_state->pipe_sagv_reject == 0; } static int intel_compute_sagv_mask(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); int ret; struct intel_crtc *crtc; struct intel_crtc_state *new_crtc_state; struct intel_bw_state *new_bw_state = NULL; const struct intel_bw_state *old_bw_state = NULL; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { new_bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(new_bw_state)) return PTR_ERR(new_bw_state); old_bw_state = intel_atomic_get_old_bw_state(state); if (intel_crtc_can_enable_sagv(new_crtc_state)) new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); else new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); } if (!new_bw_state) return 0; new_bw_state->active_pipes = intel_calc_active_pipes(state, old_bw_state->active_pipes); if (new_bw_state->active_pipes != old_bw_state->active_pipes) { ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; } if (intel_can_enable_sagv(i915, new_bw_state) != intel_can_enable_sagv(i915, old_bw_state)) { ret = intel_atomic_serialize_global_state(&new_bw_state->base); if (ret) return ret; } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; } for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal; /* * We store use_sagv_wm in the crtc state rather than relying on * that bw state since we have no convenient way to get at the * latter from the plane commit hooks (especially in the legacy * cursor case) */ pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) && DISPLAY_VER(i915) >= 12 && intel_can_enable_sagv(i915, new_bw_state); } return 0; } static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry, u16 start, u16 end) { entry->start = start; entry->end = end; return end; } static int intel_dbuf_slice_size(struct drm_i915_private *i915) { return INTEL_INFO(i915)->display.dbuf.size / hweight8(INTEL_INFO(i915)->display.dbuf.slice_mask); } static void skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask, struct skl_ddb_entry *ddb) { int slice_size = intel_dbuf_slice_size(i915); if (!slice_mask) { ddb->start = 0; ddb->end = 0; return; } ddb->start = (ffs(slice_mask) - 1) * slice_size; ddb->end = fls(slice_mask) * slice_size; WARN_ON(ddb->start >= ddb->end); WARN_ON(ddb->end > INTEL_INFO(i915)->display.dbuf.size); } static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask) { struct skl_ddb_entry ddb; if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2))) slice_mask = BIT(DBUF_S1); else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4))) slice_mask = BIT(DBUF_S3); skl_ddb_entry_for_slices(i915, slice_mask, &ddb); return ddb.start; } u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915, const struct skl_ddb_entry *entry) { int slice_size = intel_dbuf_slice_size(i915); enum dbuf_slice start_slice, end_slice; u8 slice_mask = 0; if (!skl_ddb_entry_size(entry)) return 0; start_slice = entry->start / slice_size; end_slice = (entry->end - 1) / slice_size; /* * Per plane DDB entry can in a really worst case be on multiple slices * but single entry is anyway contigious. */ while (start_slice <= end_slice) { slice_mask |= BIT(start_slice); start_slice++; } return slice_mask; } static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state) { const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int hdisplay, vdisplay; if (!crtc_state->hw.active) return 0; /* * Watermark/ddb requirement highly depends upon width of the * framebuffer, So instead of allocating DDB equally among pipes * distribute DDB based on resolution/width of the display. */ drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay); return hdisplay; } static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state, enum pipe for_pipe, unsigned int *weight_start, unsigned int *weight_end, unsigned int *weight_total) { struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev); enum pipe pipe; *weight_start = 0; *weight_end = 0; *weight_total = 0; for_each_pipe(i915, pipe) { int weight = dbuf_state->weight[pipe]; /* * Do not account pipes using other slice sets * luckily as of current BSpec slice sets do not partially * intersect(pipes share either same one slice or same slice set * i.e no partial intersection), so it is enough to check for * equality for now. */ if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe]) continue; *weight_total += weight; if (pipe < for_pipe) { *weight_start += weight; *weight_end += weight; } else if (pipe == for_pipe) { *weight_end += weight; } } } static int skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); unsigned int weight_total, weight_start, weight_end; const struct intel_dbuf_state *old_dbuf_state = intel_atomic_get_old_dbuf_state(state); struct intel_dbuf_state *new_dbuf_state = intel_atomic_get_new_dbuf_state(state); struct intel_crtc_state *crtc_state; struct skl_ddb_entry ddb_slices; enum pipe pipe = crtc->pipe; unsigned int mbus_offset = 0; u32 ddb_range_size; u32 dbuf_slice_mask; u32 start, end; int ret; if (new_dbuf_state->weight[pipe] == 0) { skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0); goto out; } dbuf_slice_mask = new_dbuf_state->slices[pipe]; skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices); mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask); ddb_range_size = skl_ddb_entry_size(&ddb_slices); intel_crtc_dbuf_weights(new_dbuf_state, pipe, &weight_start, &weight_end, &weight_total); start = ddb_range_size * weight_start / weight_total; end = ddb_range_size * weight_end / weight_total; skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], ddb_slices.start - mbus_offset + start, ddb_slices.start - mbus_offset + end); out: if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] && skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe], &new_dbuf_state->ddb[pipe])) return 0; ret = intel_atomic_lock_global_state(&new_dbuf_state->base); if (ret) return ret; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); /* * Used for checking overlaps, so we need absolute * offsets instead of MBUS relative offsets. */ crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start; crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end; drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n", crtc->base.base.id, crtc->base.name, old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe], old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end, new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end, old_dbuf_state->active_pipes, new_dbuf_state->active_pipes); return 0; } static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, int width, const struct drm_format_info *format, u64 modifier, unsigned int rotation, u32 plane_pixel_rate, struct skl_wm_params *wp, int color_plane); static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, struct intel_plane *plane, int level, unsigned int latency, const struct skl_wm_params *wp, const struct skl_wm_level *result_prev, struct skl_wm_level *result /* out */); static unsigned int skl_cursor_allocation(const struct intel_crtc_state *crtc_state, int num_active) { struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor); struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int level, max_level = ilk_wm_max_level(i915); struct skl_wm_level wm = {}; int ret, min_ddb_alloc = 0; struct skl_wm_params wp; ret = skl_compute_wm_params(crtc_state, 256, drm_format_info(DRM_FORMAT_ARGB8888), DRM_FORMAT_MOD_LINEAR, DRM_MODE_ROTATE_0, crtc_state->pixel_rate, &wp, 0); drm_WARN_ON(&i915->drm, ret); for (level = 0; level <= max_level; level++) { unsigned int latency = i915->display.wm.skl_latency[level]; skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm); if (wm.min_ddb_alloc == U16_MAX) break; min_ddb_alloc = wm.min_ddb_alloc; } return max(num_active == 1 ? 32 : 8, min_ddb_alloc); } static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg) { skl_ddb_entry_init(entry, REG_FIELD_GET(PLANE_BUF_START_MASK, reg), REG_FIELD_GET(PLANE_BUF_END_MASK, reg)); if (entry->end) entry->end++; } static void skl_ddb_get_hw_plane_state(struct drm_i915_private *i915, const enum pipe pipe, const enum plane_id plane_id, struct skl_ddb_entry *ddb, struct skl_ddb_entry *ddb_y) { u32 val; /* Cursor doesn't support NV12/planar, so no extra calculation needed */ if (plane_id == PLANE_CURSOR) { val = intel_uncore_read(&i915->uncore, CUR_BUF_CFG(pipe)); skl_ddb_entry_init_from_hw(ddb, val); return; } val = intel_uncore_read(&i915->uncore, PLANE_BUF_CFG(pipe, plane_id)); skl_ddb_entry_init_from_hw(ddb, val); if (DISPLAY_VER(i915) >= 11) return; val = intel_uncore_read(&i915->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id)); skl_ddb_entry_init_from_hw(ddb_y, val); } static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc, struct skl_ddb_entry *ddb, struct skl_ddb_entry *ddb_y) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum intel_display_power_domain power_domain; enum pipe pipe = crtc->pipe; intel_wakeref_t wakeref; enum plane_id plane_id; power_domain = POWER_DOMAIN_PIPE(pipe); wakeref = intel_display_power_get_if_enabled(i915, power_domain); if (!wakeref) return; for_each_plane_id_on_crtc(crtc, plane_id) skl_ddb_get_hw_plane_state(i915, pipe, plane_id, &ddb[plane_id], &ddb_y[plane_id]); intel_display_power_put(i915, power_domain, wakeref); } struct dbuf_slice_conf_entry { u8 active_pipes; u8 dbuf_mask[I915_MAX_PIPES]; bool join_mbus; }; /* * Table taken from Bspec 12716 * Pipes do have some preferred DBuf slice affinity, * plus there are some hardcoded requirements on how * those should be distributed for multipipe scenarios. * For more DBuf slices algorithm can get even more messy * and less readable, so decided to use a table almost * as is from BSpec itself - that way it is at least easier * to compare, change and check. */ static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] = /* Autogenerated with igt/tools/intel_dbuf_map tool: */ { { .active_pipes = BIT(PIPE_A), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_B), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_C), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, {} }; /* * Table taken from Bspec 49255 * Pipes do have some preferred DBuf slice affinity, * plus there are some hardcoded requirements on how * those should be distributed for multipipe scenarios. * For more DBuf slices algorithm can get even more messy * and less readable, so decided to use a table almost * as is from BSpec itself - that way it is at least easier * to compare, change and check. */ static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] = /* Autogenerated with igt/tools/intel_dbuf_map tool: */ { { .active_pipes = BIT(PIPE_A), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S2), [PIPE_B] = BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_C), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_D), .dbuf_mask = { [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S2), }, }, {} }; static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = { { .active_pipes = BIT(PIPE_A), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_C), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_D), .dbuf_mask = { [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S3), [PIPE_D] = BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3), [PIPE_D] = BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3), [PIPE_D] = BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3), [PIPE_D] = BIT(DBUF_S4), }, }, {} }; static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = { /* * Keep the join_mbus cases first so check_mbus_joined() * will prefer them over the !join_mbus cases. */ { .active_pipes = BIT(PIPE_A), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), }, .join_mbus = true, }, { .active_pipes = BIT(PIPE_B), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), }, .join_mbus = true, }, { .active_pipes = BIT(PIPE_A), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), }, .join_mbus = false, }, { .active_pipes = BIT(PIPE_B), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), }, .join_mbus = false, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_C), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), }, }, { .active_pipes = BIT(PIPE_D), .dbuf_mask = { [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, {} }; static bool check_mbus_joined(u8 active_pipes, const struct dbuf_slice_conf_entry *dbuf_slices) { int i; for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { if (dbuf_slices[i].active_pipes == active_pipes) return dbuf_slices[i].join_mbus; } return false; } static bool adlp_check_mbus_joined(u8 active_pipes) { return check_mbus_joined(active_pipes, adlp_allowed_dbufs); } static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus, const struct dbuf_slice_conf_entry *dbuf_slices) { int i; for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { if (dbuf_slices[i].active_pipes == active_pipes && dbuf_slices[i].join_mbus == join_mbus) return dbuf_slices[i].dbuf_mask[pipe]; } return 0; } /* * This function finds an entry with same enabled pipe configuration and * returns correspondent DBuf slice mask as stated in BSpec for particular * platform. */ static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) { /* * FIXME: For ICL this is still a bit unclear as prev BSpec revision * required calculating "pipe ratio" in order to determine * if one or two slices can be used for single pipe configurations * as additional constraint to the existing table. * However based on recent info, it should be not "pipe ratio" * but rather ratio between pixel_rate and cdclk with additional * constants, so for now we are using only table until this is * clarified. Also this is the reason why crtc_state param is * still here - we will need it once those additional constraints * pop up. */ return compute_dbuf_slices(pipe, active_pipes, join_mbus, icl_allowed_dbufs); } static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) { return compute_dbuf_slices(pipe, active_pipes, join_mbus, tgl_allowed_dbufs); } static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) { return compute_dbuf_slices(pipe, active_pipes, join_mbus, adlp_allowed_dbufs); } static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) { return compute_dbuf_slices(pipe, active_pipes, join_mbus, dg2_allowed_dbufs); } static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (IS_DG2(i915)) return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus); else if (DISPLAY_VER(i915) >= 13) return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus); else if (DISPLAY_VER(i915) == 12) return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus); else if (DISPLAY_VER(i915) == 11) return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus); /* * For anything else just return one slice yet. * Should be extended for other platforms. */ return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0; } static bool use_minimal_wm0_only(const struct intel_crtc_state *crtc_state, struct intel_plane *plane) { struct drm_i915_private *i915 = to_i915(plane->base.dev); return DISPLAY_VER(i915) >= 13 && crtc_state->uapi.async_flip && plane->async_flip; } static u64 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum plane_id plane_id; u64 data_rate = 0; for_each_plane_id_on_crtc(crtc, plane_id) { if (plane_id == PLANE_CURSOR) continue; data_rate += crtc_state->rel_data_rate[plane_id]; if (DISPLAY_VER(i915) < 11) data_rate += crtc_state->rel_data_rate_y[plane_id]; } return data_rate; } static const struct skl_wm_level * skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm, enum plane_id plane_id, int level) { const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; if (level == 0 && pipe_wm->use_sagv_wm) return &wm->sagv.wm0; return &wm->wm[level]; } static const struct skl_wm_level * skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm, enum plane_id plane_id) { const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; if (pipe_wm->use_sagv_wm) return &wm->sagv.trans_wm; return &wm->trans_wm; } /* * We only disable the watermarks for each plane if * they exceed the ddb allocation of said plane. This * is done so that we don't end up touching cursor * watermarks needlessly when some other plane reduces * our max possible watermark level. * * Bspec has this to say about the PLANE_WM enable bit: * "All the watermarks at this level for all enabled * planes must be enabled before the level will be used." * So this is actually safe to do. */ static void skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb) { if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) memset(wm, 0, sizeof(*wm)); } static void skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm, const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb) { if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) || uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) { memset(wm, 0, sizeof(*wm)); memset(uv_wm, 0, sizeof(*uv_wm)); } } static bool icl_need_wm1_wa(struct drm_i915_private *i915, enum plane_id plane_id) { /* * Wa_1408961008:icl, ehl * Wa_14012656716:tgl, adl * Underruns with WM1+ disabled */ return DISPLAY_VER(i915) == 11 || (IS_DISPLAY_VER(i915, 12, 13) && plane_id == PLANE_CURSOR); } struct skl_plane_ddb_iter { u64 data_rate; u16 start, size; }; static void skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter, struct skl_ddb_entry *ddb, const struct skl_wm_level *wm, u64 data_rate) { u16 size, extra = 0; if (data_rate) { extra = min_t(u16, iter->size, DIV64_U64_ROUND_UP(iter->size * data_rate, iter->data_rate)); iter->size -= extra; iter->data_rate -= data_rate; } /* * Keep ddb entry of all disabled planes explicitly zeroed * to avoid skl_ddb_add_affected_planes() adding them to * the state when other planes change their allocations. */ size = wm->min_ddb_alloc + extra; if (size) iter->start = skl_ddb_entry_init(ddb, iter->start, iter->start + size); } static int skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_dbuf_state *dbuf_state = intel_atomic_get_new_dbuf_state(state); const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe]; int num_active = hweight8(dbuf_state->active_pipes); struct skl_plane_ddb_iter iter; enum plane_id plane_id; u16 cursor_size; u32 blocks; int level; /* Clear the partitioning for disabled planes. */ memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb)); memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y)); if (!crtc_state->hw.active) return 0; iter.start = alloc->start; iter.size = skl_ddb_entry_size(alloc); if (iter.size == 0) return 0; /* Allocate fixed number of blocks for cursor. */ cursor_size = skl_cursor_allocation(crtc_state, num_active); iter.size -= cursor_size; skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR], alloc->end - cursor_size, alloc->end); iter.data_rate = skl_total_relative_data_rate(crtc_state); /* * Find the highest watermark level for which we can satisfy the block * requirement of active planes. */ for (level = ilk_wm_max_level(i915); level >= 0; level--) { blocks = 0; for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (plane_id == PLANE_CURSOR) { const struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb[plane_id]; if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) { drm_WARN_ON(&i915->drm, wm->wm[level].min_ddb_alloc != U16_MAX); blocks = U32_MAX; break; } continue; } blocks += wm->wm[level].min_ddb_alloc; blocks += wm->uv_wm[level].min_ddb_alloc; } if (blocks <= iter.size) { iter.size -= blocks; break; } } if (level < 0) { drm_dbg_kms(&i915->drm, "Requested display configuration exceeds system DDB limitations"); drm_dbg_kms(&i915->drm, "minimum required %d/%d\n", blocks, iter.size); return -EINVAL; } /* avoid the WARN later when we don't allocate any extra DDB */ if (iter.data_rate == 0) iter.size = 0; /* * Grant each plane the blocks it requires at the highest achievable * watermark level, plus an extra share of the leftover blocks * proportional to its relative data rate. */ for_each_plane_id_on_crtc(crtc, plane_id) { struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb[plane_id]; struct skl_ddb_entry *ddb_y = &crtc_state->wm.skl.plane_ddb_y[plane_id]; const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (plane_id == PLANE_CURSOR) continue; if (DISPLAY_VER(i915) < 11 && crtc_state->nv12_planes & BIT(plane_id)) { skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level], crtc_state->rel_data_rate_y[plane_id]); skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level], crtc_state->rel_data_rate[plane_id]); } else { skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level], crtc_state->rel_data_rate[plane_id]); } } drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0); /* * When we calculated watermark values we didn't know how high * of a level we'd actually be able to hit, so we just marked * all levels as "enabled." Go back now and disable the ones * that aren't actually possible. */ for (level++; level <= ilk_wm_max_level(i915); level++) { for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb[plane_id]; const struct skl_ddb_entry *ddb_y = &crtc_state->wm.skl.plane_ddb_y[plane_id]; struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (DISPLAY_VER(i915) < 11 && crtc_state->nv12_planes & BIT(plane_id)) skl_check_nv12_wm_level(&wm->wm[level], &wm->uv_wm[level], ddb_y, ddb); else skl_check_wm_level(&wm->wm[level], ddb); if (icl_need_wm1_wa(i915, plane_id) && level == 1 && wm->wm[0].enable) { wm->wm[level].blocks = wm->wm[0].blocks; wm->wm[level].lines = wm->wm[0].lines; wm->wm[level].ignore_lines = wm->wm[0].ignore_lines; } } } /* * Go back and disable the transition and SAGV watermarks * if it turns out we don't have enough DDB blocks for them. */ for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb[plane_id]; const struct skl_ddb_entry *ddb_y = &crtc_state->wm.skl.plane_ddb_y[plane_id]; struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (DISPLAY_VER(i915) < 11 && crtc_state->nv12_planes & BIT(plane_id)) { skl_check_wm_level(&wm->trans_wm, ddb_y); } else { WARN_ON(skl_ddb_entry_size(ddb_y)); skl_check_wm_level(&wm->trans_wm, ddb); } skl_check_wm_level(&wm->sagv.wm0, ddb); skl_check_wm_level(&wm->sagv.trans_wm, ddb); } return 0; } /* * The max latency should be 257 (max the punit can code is 255 and we add 2us * for the read latency) and cpp should always be <= 8, so that * should allow pixel_rate up to ~2 GHz which seems sufficient since max * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. */ static uint_fixed_16_16_t skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate, u8 cpp, u32 latency, u32 dbuf_block_size) { u32 wm_intermediate_val; uint_fixed_16_16_t ret; if (latency == 0) return FP_16_16_MAX; wm_intermediate_val = latency * pixel_rate * cpp; ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size); if (DISPLAY_VER(i915) >= 10) ret = add_fixed16_u32(ret, 1); return ret; } static uint_fixed_16_16_t skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency, uint_fixed_16_16_t plane_blocks_per_line) { u32 wm_intermediate_val; uint_fixed_16_16_t ret; if (latency == 0) return FP_16_16_MAX; wm_intermediate_val = latency * pixel_rate; wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000); ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); return ret; } static uint_fixed_16_16_t intel_get_linetime_us(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); u32 pixel_rate; u32 crtc_htotal; uint_fixed_16_16_t linetime_us; if (!crtc_state->hw.active) return u32_to_fixed16(0); pixel_rate = crtc_state->pixel_rate; if (drm_WARN_ON(&i915->drm, pixel_rate == 0)) return u32_to_fixed16(0); crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal; linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); return linetime_us; } static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, int width, const struct drm_format_info *format, u64 modifier, unsigned int rotation, u32 plane_pixel_rate, struct skl_wm_params *wp, int color_plane) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); u32 interm_pbpl; /* only planar format has two planes */ if (color_plane == 1 && !intel_format_info_is_yuv_semiplanar(format, modifier)) { drm_dbg_kms(&i915->drm, "Non planar format have single plane\n"); return -EINVAL; } wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED || modifier == I915_FORMAT_MOD_4_TILED || modifier == I915_FORMAT_MOD_Yf_TILED || modifier == I915_FORMAT_MOD_Y_TILED_CCS || modifier == I915_FORMAT_MOD_Yf_TILED_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC || modifier == I915_FORMAT_MOD_4_TILED_DG2_RC_CCS || modifier == I915_FORMAT_MOD_4_TILED_DG2_MC_CCS || modifier == I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC; wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED; wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS || modifier == I915_FORMAT_MOD_Yf_TILED_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC || modifier == I915_FORMAT_MOD_4_TILED_DG2_RC_CCS || modifier == I915_FORMAT_MOD_4_TILED_DG2_MC_CCS || modifier == I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC; wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier); wp->width = width; if (color_plane == 1 && wp->is_planar) wp->width /= 2; wp->cpp = format->cpp[color_plane]; wp->plane_pixel_rate = plane_pixel_rate; if (DISPLAY_VER(i915) >= 11 && modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1) wp->dbuf_block_size = 256; else wp->dbuf_block_size = 512; if (drm_rotation_90_or_270(rotation)) { switch (wp->cpp) { case 1: wp->y_min_scanlines = 16; break; case 2: wp->y_min_scanlines = 8; break; case 4: wp->y_min_scanlines = 4; break; default: MISSING_CASE(wp->cpp); return -EINVAL; } } else { wp->y_min_scanlines = 4; } if (skl_needs_memory_bw_wa(i915)) wp->y_min_scanlines *= 2; wp->plane_bytes_per_line = wp->width * wp->cpp; if (wp->y_tiled) { interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line * wp->y_min_scanlines, wp->dbuf_block_size); if (DISPLAY_VER(i915) >= 10) interm_pbpl++; wp->plane_blocks_per_line = div_fixed16(interm_pbpl, wp->y_min_scanlines); } else { interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, wp->dbuf_block_size); if (!wp->x_tiled || DISPLAY_VER(i915) >= 10) interm_pbpl++; wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); } wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines, wp->plane_blocks_per_line); wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state)); return 0; } static int skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, struct skl_wm_params *wp, int color_plane) { const struct drm_framebuffer *fb = plane_state->hw.fb; int width; /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. */ width = drm_rect_width(&plane_state->uapi.src) >> 16; return skl_compute_wm_params(crtc_state, width, fb->format, fb->modifier, plane_state->hw.rotation, intel_plane_pixel_rate(crtc_state, plane_state), wp, color_plane); } static bool skl_wm_has_lines(struct drm_i915_private *i915, int level) { if (DISPLAY_VER(i915) >= 10) return true; /* The number of lines are ignored for the level 0 watermark. */ return level > 0; } static int skl_wm_max_lines(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 13) return 255; else return 31; } static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, struct intel_plane *plane, int level, unsigned int latency, const struct skl_wm_params *wp, const struct skl_wm_level *result_prev, struct skl_wm_level *result /* out */) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); uint_fixed_16_16_t method1, method2; uint_fixed_16_16_t selected_result; u32 blocks, lines, min_ddb_alloc = 0; if (latency == 0 || (use_minimal_wm0_only(crtc_state, plane) && level > 0)) { /* reject it */ result->min_ddb_alloc = U16_MAX; return; } /* * WaIncreaseLatencyIPCEnabled: kbl,cfl * Display WA #1141: kbl,cfl */ if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) && skl_watermark_ipc_enabled(i915)) latency += 4; if (skl_needs_memory_bw_wa(i915) && wp->x_tiled) latency += 15; method1 = skl_wm_method1(i915, wp->plane_pixel_rate, wp->cpp, latency, wp->dbuf_block_size); method2 = skl_wm_method2(wp->plane_pixel_rate, crtc_state->hw.pipe_mode.crtc_htotal, latency, wp->plane_blocks_per_line); if (wp->y_tiled) { selected_result = max_fixed16(method2, wp->y_tile_minimum); } else { if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal / wp->dbuf_block_size < 1) && (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) { selected_result = method2; } else if (latency >= wp->linetime_us) { if (DISPLAY_VER(i915) == 9) selected_result = min_fixed16(method1, method2); else selected_result = method2; } else { selected_result = method1; } } blocks = fixed16_to_u32_round_up(selected_result) + 1; /* * Lets have blocks at minimum equivalent to plane_blocks_per_line * as there will be at minimum one line for lines configuration. This * is a work around for FIFO underruns observed with resolutions like * 4k 60 Hz in single channel DRAM configurations. * * As per the Bspec 49325, if the ddb allocation can hold at least * one plane_blocks_per_line, we should have selected method2 in * the above logic. Assuming that modern versions have enough dbuf * and method2 guarantees blocks equivalent to at least 1 line, * select the blocks as plane_blocks_per_line. * * TODO: Revisit the logic when we have better understanding on DRAM * channels' impact on the level 0 memory latency and the relevant * wm calculations. */ if (skl_wm_has_lines(i915, level)) blocks = max(blocks, fixed16_to_u32_round_up(wp->plane_blocks_per_line)); lines = div_round_up_fixed16(selected_result, wp->plane_blocks_per_line); if (DISPLAY_VER(i915) == 9) { /* Display WA #1125: skl,bxt,kbl */ if (level == 0 && wp->rc_surface) blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); /* Display WA #1126: skl,bxt,kbl */ if (level >= 1 && level <= 7) { if (wp->y_tiled) { blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); lines += wp->y_min_scanlines; } else { blocks++; } /* * Make sure result blocks for higher latency levels are * at least as high as level below the current level. * Assumption in DDB algorithm optimization for special * cases. Also covers Display WA #1125 for RC. */ if (result_prev->blocks > blocks) blocks = result_prev->blocks; } } if (DISPLAY_VER(i915) >= 11) { if (wp->y_tiled) { int extra_lines; if (lines % wp->y_min_scanlines == 0) extra_lines = wp->y_min_scanlines; else extra_lines = wp->y_min_scanlines * 2 - lines % wp->y_min_scanlines; min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines, wp->plane_blocks_per_line); } else { min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10); } } if (!skl_wm_has_lines(i915, level)) lines = 0; if (lines > skl_wm_max_lines(i915)) { /* reject it */ result->min_ddb_alloc = U16_MAX; return; } /* * If lines is valid, assume we can use this watermark level * for now. We'll come back and disable it after we calculate the * DDB allocation if it turns out we don't actually have enough * blocks to satisfy it. */ result->blocks = blocks; result->lines = lines; /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */ result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1; result->enable = true; if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us) result->can_sagv = latency >= i915->display.sagv.block_time_us; } static void skl_compute_wm_levels(const struct intel_crtc_state *crtc_state, struct intel_plane *plane, const struct skl_wm_params *wm_params, struct skl_wm_level *levels) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int level, max_level = ilk_wm_max_level(i915); struct skl_wm_level *result_prev = &levels[0]; for (level = 0; level <= max_level; level++) { struct skl_wm_level *result = &levels[level]; unsigned int latency = i915->display.wm.skl_latency[level]; skl_compute_plane_wm(crtc_state, plane, level, latency, wm_params, result_prev, result); result_prev = result; } } static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state, struct intel_plane *plane, const struct skl_wm_params *wm_params, struct skl_plane_wm *plane_wm) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0; struct skl_wm_level *levels = plane_wm->wm; unsigned int latency = 0; if (i915->display.sagv.block_time_us) latency = i915->display.sagv.block_time_us + i915->display.wm.skl_latency[0]; skl_compute_plane_wm(crtc_state, plane, 0, latency, wm_params, &levels[0], sagv_wm); } static void skl_compute_transition_wm(struct drm_i915_private *i915, struct skl_wm_level *trans_wm, const struct skl_wm_level *wm0, const struct skl_wm_params *wp) { u16 trans_min, trans_amount, trans_y_tile_min; u16 wm0_blocks, trans_offset, blocks; /* Transition WM don't make any sense if ipc is disabled */ if (!skl_watermark_ipc_enabled(i915)) return; /* * WaDisableTWM:skl,kbl,cfl,bxt * Transition WM are not recommended by HW team for GEN9 */ if (DISPLAY_VER(i915) == 9) return; if (DISPLAY_VER(i915) >= 11) trans_min = 4; else trans_min = 14; /* Display WA #1140: glk,cnl */ if (DISPLAY_VER(i915) == 10) trans_amount = 0; else trans_amount = 10; /* This is configurable amount */ trans_offset = trans_min + trans_amount; /* * The spec asks for Selected Result Blocks for wm0 (the real value), * not Result Blocks (the integer value). Pay attention to the capital * letters. The value wm_l0->blocks is actually Result Blocks, but * since Result Blocks is the ceiling of Selected Result Blocks plus 1, * and since we later will have to get the ceiling of the sum in the * transition watermarks calculation, we can just pretend Selected * Result Blocks is Result Blocks minus 1 and it should work for the * current platforms. */ wm0_blocks = wm0->blocks - 1; if (wp->y_tiled) { trans_y_tile_min = (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum); blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset; } else { blocks = wm0_blocks + trans_offset; } blocks++; /* * Just assume we can enable the transition watermark. After * computing the DDB we'll come back and disable it if that * assumption turns out to be false. */ trans_wm->blocks = blocks; trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1); trans_wm->enable = true; } static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, struct intel_plane *plane, int color_plane) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; struct skl_wm_params wm_params; int ret; ret = skl_compute_plane_wm_params(crtc_state, plane_state, &wm_params, color_plane); if (ret) return ret; skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm); skl_compute_transition_wm(i915, &wm->trans_wm, &wm->wm[0], &wm_params); if (DISPLAY_VER(i915) >= 12) { tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm); skl_compute_transition_wm(i915, &wm->sagv.trans_wm, &wm->sagv.wm0, &wm_params); } return 0; } static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, struct intel_plane *plane) { struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; struct skl_wm_params wm_params; int ret; wm->is_planar = true; /* uv plane watermarks must also be validated for NV12/Planar */ ret = skl_compute_plane_wm_params(crtc_state, plane_state, &wm_params, 1); if (ret) return ret; skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm); return 0; } static int skl_build_plane_wm(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); enum plane_id plane_id = plane->id; struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; const struct drm_framebuffer *fb = plane_state->hw.fb; int ret; memset(wm, 0, sizeof(*wm)); if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; ret = skl_build_plane_wm_single(crtc_state, plane_state, plane, 0); if (ret) return ret; if (fb->format->is_yuv && fb->format->num_planes > 1) { ret = skl_build_plane_wm_uv(crtc_state, plane_state, plane); if (ret) return ret; } return 0; } static int icl_build_plane_wm(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *i915 = to_i915(plane->base.dev); enum plane_id plane_id = plane->id; struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; int ret; /* Watermarks calculated in master */ if (plane_state->planar_slave) return 0; memset(wm, 0, sizeof(*wm)); if (plane_state->planar_linked_plane) { const struct drm_framebuffer *fb = plane_state->hw.fb; drm_WARN_ON(&i915->drm, !intel_wm_plane_visible(crtc_state, plane_state)); drm_WARN_ON(&i915->drm, !fb->format->is_yuv || fb->format->num_planes == 1); ret = skl_build_plane_wm_single(crtc_state, plane_state, plane_state->planar_linked_plane, 0); if (ret) return ret; ret = skl_build_plane_wm_single(crtc_state, plane_state, plane, 1); if (ret) return ret; } else if (intel_wm_plane_visible(crtc_state, plane_state)) { ret = skl_build_plane_wm_single(crtc_state, plane_state, plane, 0); if (ret) return ret; } return 0; } static int skl_build_pipe_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_plane_state *plane_state; struct intel_plane *plane; int ret, i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { /* * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc * instead but we don't populate that correctly for NV12 Y * planes so for now hack this. */ if (plane->pipe != crtc->pipe) continue; if (DISPLAY_VER(i915) >= 11) ret = icl_build_plane_wm(crtc_state, plane_state); else ret = skl_build_plane_wm(crtc_state, plane_state); if (ret) return ret; } crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw; return 0; } static void skl_ddb_entry_write(struct drm_i915_private *i915, i915_reg_t reg, const struct skl_ddb_entry *entry) { if (entry->end) intel_de_write_fw(i915, reg, PLANE_BUF_END(entry->end - 1) | PLANE_BUF_START(entry->start)); else intel_de_write_fw(i915, reg, 0); } static void skl_write_wm_level(struct drm_i915_private *i915, i915_reg_t reg, const struct skl_wm_level *level) { u32 val = 0; if (level->enable) val |= PLANE_WM_EN; if (level->ignore_lines) val |= PLANE_WM_IGNORE_LINES; val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks); val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines); intel_de_write_fw(i915, reg, val); } void skl_write_plane_wm(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(plane->base.dev); int level, max_level = ilk_wm_max_level(i915); enum plane_id plane_id = plane->id; enum pipe pipe = plane->pipe; const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; const struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb[plane_id]; const struct skl_ddb_entry *ddb_y = &crtc_state->wm.skl.plane_ddb_y[plane_id]; for (level = 0; level <= max_level; level++) skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level), skl_plane_wm_level(pipe_wm, plane_id, level)); skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id), skl_plane_trans_wm(pipe_wm, plane_id)); if (HAS_HW_SAGV_WM(i915)) { const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id), &wm->sagv.wm0); skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id), &wm->sagv.trans_wm); } skl_ddb_entry_write(i915, PLANE_BUF_CFG(pipe, plane_id), ddb); if (DISPLAY_VER(i915) < 11) skl_ddb_entry_write(i915, PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y); } void skl_write_cursor_wm(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(plane->base.dev); int level, max_level = ilk_wm_max_level(i915); enum plane_id plane_id = plane->id; enum pipe pipe = plane->pipe; const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; const struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb[plane_id]; for (level = 0; level <= max_level; level++) skl_write_wm_level(i915, CUR_WM(pipe, level), skl_plane_wm_level(pipe_wm, plane_id, level)); skl_write_wm_level(i915, CUR_WM_TRANS(pipe), skl_plane_trans_wm(pipe_wm, plane_id)); if (HAS_HW_SAGV_WM(i915)) { const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; skl_write_wm_level(i915, CUR_WM_SAGV(pipe), &wm->sagv.wm0); skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe), &wm->sagv.trans_wm); } skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb); } static bool skl_wm_level_equals(const struct skl_wm_level *l1, const struct skl_wm_level *l2) { return l1->enable == l2->enable && l1->ignore_lines == l2->ignore_lines && l1->lines == l2->lines && l1->blocks == l2->blocks; } static bool skl_plane_wm_equals(struct drm_i915_private *i915, const struct skl_plane_wm *wm1, const struct skl_plane_wm *wm2) { int level, max_level = ilk_wm_max_level(i915); for (level = 0; level <= max_level; level++) { /* * We don't check uv_wm as the hardware doesn't actually * use it. It only gets used for calculating the required * ddb allocation. */ if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level])) return false; } return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) && skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) && skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm); } static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, const struct skl_ddb_entry *b) { return a->start < b->end && b->start < a->end; } static void skl_ddb_entry_union(struct skl_ddb_entry *a, const struct skl_ddb_entry *b) { if (a->end && b->end) { a->start = min(a->start, b->start); a->end = max(a->end, b->end); } else if (b->end) { a->start = b->start; a->end = b->end; } } bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb, const struct skl_ddb_entry *entries, int num_entries, int ignore_idx) { int i; for (i = 0; i < num_entries; i++) { if (i != ignore_idx && skl_ddb_entries_overlap(ddb, &entries[i])) return true; } return false; } static int skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_plane *plane; for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { struct intel_plane_state *plane_state; enum plane_id plane_id = plane->id; if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id], &new_crtc_state->wm.skl.plane_ddb[plane_id]) && skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id], &new_crtc_state->wm.skl.plane_ddb_y[plane_id])) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); new_crtc_state->update_planes |= BIT(plane_id); } return 0; } static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state) { struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev); u8 enabled_slices; enum pipe pipe; /* * FIXME: For now we always enable slice S1 as per * the Bspec display initialization sequence. */ enabled_slices = BIT(DBUF_S1); for_each_pipe(i915, pipe) enabled_slices |= dbuf_state->slices[pipe]; return enabled_slices; } static int skl_compute_ddb(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_dbuf_state *old_dbuf_state; struct intel_dbuf_state *new_dbuf_state = NULL; const struct intel_crtc_state *old_crtc_state; struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int ret, i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { new_dbuf_state = intel_atomic_get_dbuf_state(state); if (IS_ERR(new_dbuf_state)) return PTR_ERR(new_dbuf_state); old_dbuf_state = intel_atomic_get_old_dbuf_state(state); break; } if (!new_dbuf_state) return 0; new_dbuf_state->active_pipes = intel_calc_active_pipes(state, old_dbuf_state->active_pipes); if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) { ret = intel_atomic_lock_global_state(&new_dbuf_state->base); if (ret) return ret; } if (HAS_MBUS_JOINING(i915)) new_dbuf_state->joined_mbus = adlp_check_mbus_joined(new_dbuf_state->active_pipes); for_each_intel_crtc(&i915->drm, crtc) { enum pipe pipe = crtc->pipe; new_dbuf_state->slices[pipe] = skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes, new_dbuf_state->joined_mbus); if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe]) continue; ret = intel_atomic_lock_global_state(&new_dbuf_state->base); if (ret) return ret; } new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state); if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices || old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { ret = intel_atomic_serialize_global_state(&new_dbuf_state->base); if (ret) return ret; if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { /* TODO: Implement vblank synchronized MBUS joining changes */ ret = intel_modeset_all_pipes(state); if (ret) return ret; } drm_dbg_kms(&i915->drm, "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n", old_dbuf_state->enabled_slices, new_dbuf_state->enabled_slices, INTEL_INFO(i915)->display.dbuf.slice_mask, str_yes_no(old_dbuf_state->joined_mbus), str_yes_no(new_dbuf_state->joined_mbus)); } for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { enum pipe pipe = crtc->pipe; new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state); if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe]) continue; ret = intel_atomic_lock_global_state(&new_dbuf_state->base); if (ret) return ret; } for_each_intel_crtc(&i915->drm, crtc) { ret = skl_crtc_allocate_ddb(state, crtc); if (ret) return ret; } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { ret = skl_crtc_allocate_plane_ddb(state, crtc); if (ret) return ret; ret = skl_ddb_add_affected_planes(old_crtc_state, new_crtc_state); if (ret) return ret; } return 0; } static char enast(bool enable) { return enable ? '*' : ' '; } static void skl_print_wm_changes(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state; const struct intel_crtc_state *new_crtc_state; struct intel_plane *plane; struct intel_crtc *crtc; int i; if (!drm_debug_enabled(DRM_UT_KMS)) return; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm; old_pipe_wm = &old_crtc_state->wm.skl.optimal; new_pipe_wm = &new_crtc_state->wm.skl.optimal; for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { enum plane_id plane_id = plane->id; const struct skl_ddb_entry *old, *new; old = &old_crtc_state->wm.skl.plane_ddb[plane_id]; new = &new_crtc_state->wm.skl.plane_ddb[plane_id]; if (skl_ddb_entry_equal(old, new)) continue; drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n", plane->base.base.id, plane->base.name, old->start, old->end, new->start, new->end, skl_ddb_entry_size(old), skl_ddb_entry_size(new)); } for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { enum plane_id plane_id = plane->id; const struct skl_plane_wm *old_wm, *new_wm; old_wm = &old_pipe_wm->planes[plane_id]; new_wm = &new_pipe_wm->planes[plane_id]; if (skl_plane_wm_equals(i915, old_wm, new_wm)) continue; drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm" " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n", plane->base.base.id, plane->base.name, enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable), enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable), enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable), enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable), enast(old_wm->trans_wm.enable), enast(old_wm->sagv.wm0.enable), enast(old_wm->sagv.trans_wm.enable), enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable), enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable), enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable), enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable), enast(new_wm->trans_wm.enable), enast(new_wm->sagv.wm0.enable), enast(new_wm->sagv.trans_wm.enable)); drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d" " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n", plane->base.base.id, plane->base.name, enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines, enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines, enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines, enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines, enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines, enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines, enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines, enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines, enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines, enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines, enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines, enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines, enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines, enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines, enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines, enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines, enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines, enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines, enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines, enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines, enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines, enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines); drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", plane->base.base.id, plane->base.name, old_wm->wm[0].blocks, old_wm->wm[1].blocks, old_wm->wm[2].blocks, old_wm->wm[3].blocks, old_wm->wm[4].blocks, old_wm->wm[5].blocks, old_wm->wm[6].blocks, old_wm->wm[7].blocks, old_wm->trans_wm.blocks, old_wm->sagv.wm0.blocks, old_wm->sagv.trans_wm.blocks, new_wm->wm[0].blocks, new_wm->wm[1].blocks, new_wm->wm[2].blocks, new_wm->wm[3].blocks, new_wm->wm[4].blocks, new_wm->wm[5].blocks, new_wm->wm[6].blocks, new_wm->wm[7].blocks, new_wm->trans_wm.blocks, new_wm->sagv.wm0.blocks, new_wm->sagv.trans_wm.blocks); drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", plane->base.base.id, plane->base.name, old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc, old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc, old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc, old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc, old_wm->trans_wm.min_ddb_alloc, old_wm->sagv.wm0.min_ddb_alloc, old_wm->sagv.trans_wm.min_ddb_alloc, new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc, new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc, new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc, new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc, new_wm->trans_wm.min_ddb_alloc, new_wm->sagv.wm0.min_ddb_alloc, new_wm->sagv.trans_wm.min_ddb_alloc); } } } static bool skl_plane_selected_wm_equals(struct intel_plane *plane, const struct skl_pipe_wm *old_pipe_wm, const struct skl_pipe_wm *new_pipe_wm) { struct drm_i915_private *i915 = to_i915(plane->base.dev); int level, max_level = ilk_wm_max_level(i915); for (level = 0; level <= max_level; level++) { /* * We don't check uv_wm as the hardware doesn't actually * use it. It only gets used for calculating the required * ddb allocation. */ if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level), skl_plane_wm_level(new_pipe_wm, plane->id, level))) return false; } if (HAS_HW_SAGV_WM(i915)) { const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id]; const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id]; if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) || !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm)) return false; } return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id), skl_plane_trans_wm(new_pipe_wm, plane->id)); } /* * To make sure the cursor watermark registers are always consistent * with our computed state the following scenario needs special * treatment: * * 1. enable cursor * 2. move cursor entirely offscreen * 3. disable cursor * * Step 2. does call .disable_plane() but does not zero the watermarks * (since we consider an offscreen cursor still active for the purposes * of watermarks). Step 3. would not normally call .disable_plane() * because the actual plane visibility isn't changing, and we don't * deallocate the cursor ddb until the pipe gets disabled. So we must * force step 3. to call .disable_plane() to update the watermark * registers properly. * * Other planes do not suffer from this issues as their watermarks are * calculated based on the actual plane visibility. The only time this * can trigger for the other planes is during the initial readout as the * default value of the watermarks registers is not zero. */ static int skl_wm_add_affected_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_plane *plane; for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { struct intel_plane_state *plane_state; enum plane_id plane_id = plane->id; /* * Force a full wm update for every plane on modeset. * Required because the reset value of the wm registers * is non-zero, whereas we want all disabled planes to * have zero watermarks. So if we turn off the relevant * power well the hardware state will go out of sync * with the software state. */ if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) && skl_plane_selected_wm_equals(plane, &old_crtc_state->wm.skl.optimal, &new_crtc_state->wm.skl.optimal)) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); new_crtc_state->update_planes |= BIT(plane_id); } return 0; } static int skl_compute_wm(struct intel_atomic_state *state) { struct intel_crtc *crtc; struct intel_crtc_state *new_crtc_state; int ret, i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { ret = skl_build_pipe_wm(state, crtc); if (ret) return ret; } ret = skl_compute_ddb(state); if (ret) return ret; ret = intel_compute_sagv_mask(state); if (ret) return ret; /* * skl_compute_ddb() will have adjusted the final watermarks * based on how much ddb is available. Now we can actually * check if the final watermarks changed. */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { ret = skl_wm_add_affected_planes(state, crtc); if (ret) return ret; } skl_print_wm_changes(state); return 0; } static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level) { level->enable = val & PLANE_WM_EN; level->ignore_lines = val & PLANE_WM_IGNORE_LINES; level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val); level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val); } static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc, struct skl_pipe_wm *out) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; int level, max_level; enum plane_id plane_id; u32 val; max_level = ilk_wm_max_level(i915); for_each_plane_id_on_crtc(crtc, plane_id) { struct skl_plane_wm *wm = &out->planes[plane_id]; for (level = 0; level <= max_level; level++) { if (plane_id != PLANE_CURSOR) val = intel_uncore_read(&i915->uncore, PLANE_WM(pipe, plane_id, level)); else val = intel_uncore_read(&i915->uncore, CUR_WM(pipe, level)); skl_wm_level_from_reg_val(val, &wm->wm[level]); } if (plane_id != PLANE_CURSOR) val = intel_uncore_read(&i915->uncore, PLANE_WM_TRANS(pipe, plane_id)); else val = intel_uncore_read(&i915->uncore, CUR_WM_TRANS(pipe)); skl_wm_level_from_reg_val(val, &wm->trans_wm); if (HAS_HW_SAGV_WM(i915)) { if (plane_id != PLANE_CURSOR) val = intel_uncore_read(&i915->uncore, PLANE_WM_SAGV(pipe, plane_id)); else val = intel_uncore_read(&i915->uncore, CUR_WM_SAGV(pipe)); skl_wm_level_from_reg_val(val, &wm->sagv.wm0); if (plane_id != PLANE_CURSOR) val = intel_uncore_read(&i915->uncore, PLANE_WM_SAGV_TRANS(pipe, plane_id)); else val = intel_uncore_read(&i915->uncore, CUR_WM_SAGV_TRANS(pipe)); skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm); } else if (DISPLAY_VER(i915) >= 12) { wm->sagv.wm0 = wm->wm[0]; wm->sagv.trans_wm = wm->trans_wm; } } } void skl_wm_get_hw_state(struct drm_i915_private *i915) { struct intel_dbuf_state *dbuf_state = to_intel_dbuf_state(i915->display.dbuf.obj.state); struct intel_crtc *crtc; if (HAS_MBUS_JOINING(i915)) dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN; for_each_intel_crtc(&i915->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); enum pipe pipe = crtc->pipe; unsigned int mbus_offset; enum plane_id plane_id; u8 slices; memset(&crtc_state->wm.skl.optimal, 0, sizeof(crtc_state->wm.skl.optimal)); if (crtc_state->hw.active) skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal); crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal; memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe])); for_each_plane_id_on_crtc(crtc, plane_id) { struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb[plane_id]; struct skl_ddb_entry *ddb_y = &crtc_state->wm.skl.plane_ddb_y[plane_id]; if (!crtc_state->hw.active) continue; skl_ddb_get_hw_plane_state(i915, crtc->pipe, plane_id, ddb, ddb_y); skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb); skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y); } dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state); /* * Used for checking overlaps, so we need absolute * offsets instead of MBUS relative offsets. */ slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, dbuf_state->joined_mbus); mbus_offset = mbus_ddb_offset(i915, slices); crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start; crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end; /* The slices actually used by the planes on the pipe */ dbuf_state->slices[pipe] = skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb); drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n", crtc->base.base.id, crtc->base.name, dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start, dbuf_state->ddb[pipe].end, dbuf_state->active_pipes, str_yes_no(dbuf_state->joined_mbus)); } dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices; } static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915) { const struct intel_dbuf_state *dbuf_state = to_intel_dbuf_state(i915->display.dbuf.obj.state); struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; struct intel_crtc *crtc; for_each_intel_crtc(&i915->drm, crtc) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); entries[crtc->pipe] = crtc_state->wm.skl.ddb; } for_each_intel_crtc(&i915->drm, crtc) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); u8 slices; slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, dbuf_state->joined_mbus); if (dbuf_state->slices[crtc->pipe] & ~slices) return true; if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries, I915_MAX_PIPES, crtc->pipe)) return true; } return false; } void skl_wm_sanitize(struct drm_i915_private *i915) { struct intel_crtc *crtc; /* * On TGL/RKL (at least) the BIOS likes to assign the planes * to the wrong DBUF slices. This will cause an infinite loop * in skl_commit_modeset_enables() as it can't find a way to * transition between the old bogus DBUF layout to the new * proper DBUF layout without DBUF allocation overlaps between * the planes (which cannot be allowed or else the hardware * may hang). If we detect a bogus DBUF layout just turn off * all the planes so that skl_commit_modeset_enables() can * simply ignore them. */ if (!skl_dbuf_is_misconfigured(i915)) return; drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n"); for_each_intel_crtc(&i915->drm, crtc) { struct intel_plane *plane = to_intel_plane(crtc->base.primary); const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); if (plane_state->uapi.visible) intel_plane_disable_noatomic(crtc, plane); drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0); memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb)); } } void intel_wm_state_verify(struct intel_crtc *crtc, struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct skl_hw_state { struct skl_ddb_entry ddb[I915_MAX_PLANES]; struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; struct skl_pipe_wm wm; } *hw; const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; int level, max_level = ilk_wm_max_level(i915); struct intel_plane *plane; u8 hw_enabled_slices; if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active) return; hw = kzalloc(sizeof(*hw), GFP_KERNEL); if (!hw) return; skl_pipe_wm_get_hw_state(crtc, &hw->wm); skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y); hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915); if (DISPLAY_VER(i915) >= 11 && hw_enabled_slices != i915->display.dbuf.enabled_slices) drm_err(&i915->drm, "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", i915->display.dbuf.enabled_slices, hw_enabled_slices); for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; const struct skl_wm_level *hw_wm_level, *sw_wm_level; /* Watermarks */ for (level = 0; level <= max_level; level++) { hw_wm_level = &hw->wm.planes[plane->id].wm[level]; sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) continue; drm_err(&i915->drm, "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", plane->base.base.id, plane->base.name, level, sw_wm_level->enable, sw_wm_level->blocks, sw_wm_level->lines, hw_wm_level->enable, hw_wm_level->blocks, hw_wm_level->lines); } hw_wm_level = &hw->wm.planes[plane->id].trans_wm; sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { drm_err(&i915->drm, "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", plane->base.base.id, plane->base.name, sw_wm_level->enable, sw_wm_level->blocks, sw_wm_level->lines, hw_wm_level->enable, hw_wm_level->blocks, hw_wm_level->lines); } hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; if (HAS_HW_SAGV_WM(i915) && !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { drm_err(&i915->drm, "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", plane->base.base.id, plane->base.name, sw_wm_level->enable, sw_wm_level->blocks, sw_wm_level->lines, hw_wm_level->enable, hw_wm_level->blocks, hw_wm_level->lines); } hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; if (HAS_HW_SAGV_WM(i915) && !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { drm_err(&i915->drm, "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", plane->base.base.id, plane->base.name, sw_wm_level->enable, sw_wm_level->blocks, sw_wm_level->lines, hw_wm_level->enable, hw_wm_level->blocks, hw_wm_level->lines); } /* DDB */ hw_ddb_entry = &hw->ddb[PLANE_CURSOR]; sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR]; if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { drm_err(&i915->drm, "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", plane->base.base.id, plane->base.name, sw_ddb_entry->start, sw_ddb_entry->end, hw_ddb_entry->start, hw_ddb_entry->end); } } kfree(hw); } bool skl_watermark_ipc_enabled(struct drm_i915_private *i915) { return i915->display.wm.ipc_enabled; } void skl_watermark_ipc_update(struct drm_i915_private *i915) { if (!HAS_IPC(i915)) return; intel_uncore_rmw(&i915->uncore, DISP_ARB_CTL2, DISP_IPC_ENABLE, skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0); } static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915) { /* Display WA #0477 WaDisableIPC: skl */ if (IS_SKYLAKE(i915)) return false; /* Display WA #1141: SKL:all KBL:all CFL */ if (IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) return i915->dram_info.symmetric_memory; return true; } void skl_watermark_ipc_init(struct drm_i915_private *i915) { if (!HAS_IPC(i915)) return; i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915); skl_watermark_ipc_update(i915); } static void adjust_wm_latency(struct drm_i915_private *i915, u16 wm[], int max_level, int read_latency) { bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed; int i, level; /* * If a level n (n > 1) has a 0us latency, all levels m (m >= n) * need to be disabled. We make sure to sanitize the values out * of the punit to satisfy this requirement. */ for (level = 1; level <= max_level; level++) { if (wm[level] == 0) { for (i = level + 1; i <= max_level; i++) wm[i] = 0; max_level = level - 1; break; } } /* * WaWmMemoryReadLatency * * punit doesn't take into account the read latency so we need * to add proper adjustement to each valid level we retrieve * from the punit when level 0 response data is 0us. */ if (wm[0] == 0) { for (level = 0; level <= max_level; level++) wm[level] += read_latency; } /* * WA Level-0 adjustment for 16GB DIMMs: SKL+ * If we could not get dimm info enable this WA to prevent from * any underrun. If not able to get Dimm info assume 16GB dimm * to avoid any underrun. */ if (wm_lv_0_adjust_needed) wm[0] += 1; } static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) { struct intel_uncore *uncore = &i915->uncore; int max_level = ilk_wm_max_level(i915); u32 val; val = intel_uncore_read(uncore, MTL_LATENCY_LP0_LP1); wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); val = intel_uncore_read(uncore, MTL_LATENCY_LP2_LP3); wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); val = intel_uncore_read(uncore, MTL_LATENCY_LP4_LP5); wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); adjust_wm_latency(i915, wm, max_level, 6); } static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) { int max_level = ilk_wm_max_level(i915); int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2; int mult = IS_DG2(i915) ? 2 : 1; u32 val; int ret; /* read the first set of memory latencies[0:3] */ val = 0; /* data0 to be programmed to 0 for first set */ ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); if (ret) { drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret); return; } wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult; wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult; wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult; wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult; /* read the second set of memory latencies[4:7] */ val = 1; /* data0 to be programmed to 1 for second set */ ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); if (ret) { drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret); return; } wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult; wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult; wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult; wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult; adjust_wm_latency(i915, wm, max_level, read_latency); } static void skl_setup_wm_latency(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 14) mtl_read_wm_latency(i915, i915->display.wm.skl_latency); else skl_read_wm_latency(i915, i915->display.wm.skl_latency); intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency); } static const struct intel_wm_funcs skl_wm_funcs = { .compute_global_watermarks = skl_compute_wm, }; void skl_wm_init(struct drm_i915_private *i915) { intel_sagv_init(i915); skl_setup_wm_latency(i915); i915->display.funcs.wm = &skl_wm_funcs; } static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj) { struct intel_dbuf_state *dbuf_state; dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL); if (!dbuf_state) return NULL; return &dbuf_state->base; } static void intel_dbuf_destroy_state(struct intel_global_obj *obj, struct intel_global_state *state) { kfree(state); } static const struct intel_global_state_funcs intel_dbuf_funcs = { .atomic_duplicate_state = intel_dbuf_duplicate_state, .atomic_destroy_state = intel_dbuf_destroy_state, }; struct intel_dbuf_state * intel_atomic_get_dbuf_state(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_global_state *dbuf_state; dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj); if (IS_ERR(dbuf_state)) return ERR_CAST(dbuf_state); return to_intel_dbuf_state(dbuf_state); } int intel_dbuf_init(struct drm_i915_private *i915) { struct intel_dbuf_state *dbuf_state; dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL); if (!dbuf_state) return -ENOMEM; intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj, &dbuf_state->base, &intel_dbuf_funcs); return 0; } /* * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before * update the request state of all DBUS slices. */ static void update_mbus_pre_enable(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); u32 mbus_ctl, dbuf_min_tracker_val; enum dbuf_slice slice; const struct intel_dbuf_state *dbuf_state = intel_atomic_get_new_dbuf_state(state); if (!HAS_MBUS_JOINING(i915)) return; /* * TODO: Implement vblank synchronized MBUS joining changes. * Must be properly coordinated with dbuf reprogramming. */ if (dbuf_state->joined_mbus) { mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN | MBUS_JOIN_PIPE_SELECT_NONE; dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3); } else { mbus_ctl = MBUS_HASHING_MODE_2x2 | MBUS_JOIN_PIPE_SELECT_NONE; dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1); } intel_de_rmw(i915, MBUS_CTL, MBUS_HASHING_MODE_MASK | MBUS_JOIN | MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl); for_each_dbuf_slice(i915, slice) intel_de_rmw(i915, DBUF_CTL_S(slice), DBUF_MIN_TRACKER_STATE_SERVICE_MASK, dbuf_min_tracker_val); } void intel_dbuf_pre_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_dbuf_state *new_dbuf_state = intel_atomic_get_new_dbuf_state(state); const struct intel_dbuf_state *old_dbuf_state = intel_atomic_get_old_dbuf_state(state); if (!new_dbuf_state || (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices && new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)) return; WARN_ON(!new_dbuf_state->base.changed); update_mbus_pre_enable(state); gen9_dbuf_slices_update(i915, old_dbuf_state->enabled_slices | new_dbuf_state->enabled_slices); } void intel_dbuf_post_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_dbuf_state *new_dbuf_state = intel_atomic_get_new_dbuf_state(state); const struct intel_dbuf_state *old_dbuf_state = intel_atomic_get_old_dbuf_state(state); if (!new_dbuf_state || (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices && new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)) return; WARN_ON(!new_dbuf_state->base.changed); gen9_dbuf_slices_update(i915, new_dbuf_state->enabled_slices); } static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes) { switch (pipe) { case PIPE_A: return !(active_pipes & BIT(PIPE_D)); case PIPE_D: return !(active_pipes & BIT(PIPE_A)); case PIPE_B: return !(active_pipes & BIT(PIPE_C)); case PIPE_C: return !(active_pipes & BIT(PIPE_B)); default: /* to suppress compiler warning */ MISSING_CASE(pipe); break; } return false; } void intel_mbus_dbox_update(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state; const struct intel_crtc_state *new_crtc_state; const struct intel_crtc *crtc; u32 val = 0; int i; if (DISPLAY_VER(i915) < 11) return; new_dbuf_state = intel_atomic_get_new_dbuf_state(state); old_dbuf_state = intel_atomic_get_old_dbuf_state(state); if (!new_dbuf_state || (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus && new_dbuf_state->active_pipes == old_dbuf_state->active_pipes)) return; if (DISPLAY_VER(i915) >= 14) val |= MBUS_DBOX_I_CREDIT(2); if (DISPLAY_VER(i915) >= 12) { val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16); val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1); val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN; } if (DISPLAY_VER(i915) >= 14) val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) : MBUS_DBOX_A_CREDIT(8); else if (IS_ALDERLAKE_P(i915)) /* Wa_22010947358:adl-p */ val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) : MBUS_DBOX_A_CREDIT(4); else val |= MBUS_DBOX_A_CREDIT(2); if (DISPLAY_VER(i915) >= 14) { val |= MBUS_DBOX_B_CREDIT(0xA); } else if (IS_ALDERLAKE_P(i915)) { val |= MBUS_DBOX_BW_CREDIT(2); val |= MBUS_DBOX_B_CREDIT(8); } else if (DISPLAY_VER(i915) >= 12) { val |= MBUS_DBOX_BW_CREDIT(2); val |= MBUS_DBOX_B_CREDIT(12); } else { val |= MBUS_DBOX_BW_CREDIT(1); val |= MBUS_DBOX_B_CREDIT(8); } for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { u32 pipe_val = val; if (!new_crtc_state->hw.active) continue; if (DISPLAY_VER(i915) >= 14) { if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe, new_dbuf_state->active_pipes)) pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL; else pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL; } intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val); } } static int skl_watermark_ipc_status_show(struct seq_file *m, void *data) { struct drm_i915_private *i915 = m->private; seq_printf(m, "Isochronous Priority Control: %s\n", str_yes_no(skl_watermark_ipc_enabled(i915))); return 0; } static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file) { struct drm_i915_private *i915 = inode->i_private; return single_open(file, skl_watermark_ipc_status_show, i915); } static ssize_t skl_watermark_ipc_status_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_i915_private *i915 = m->private; intel_wakeref_t wakeref; bool enable; int ret; ret = kstrtobool_from_user(ubuf, len, &enable); if (ret < 0) return ret; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { if (!skl_watermark_ipc_enabled(i915) && enable) drm_info(&i915->drm, "Enabling IPC: WM will be proper only after next commit\n"); i915->display.wm.ipc_enabled = enable; skl_watermark_ipc_update(i915); } return len; } static const struct file_operations skl_watermark_ipc_status_fops = { .owner = THIS_MODULE, .open = skl_watermark_ipc_status_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = skl_watermark_ipc_status_write }; void skl_watermark_ipc_debugfs_register(struct drm_i915_private *i915) { struct drm_minor *minor = i915->drm.primary; if (!HAS_IPC(i915)) return; debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915, &skl_watermark_ipc_status_fops); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1