Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 884 | 44.94% | 38 | 48.10% |
Maarten Lankhorst | 829 | 42.15% | 8 | 10.13% |
Matthew Auld | 71 | 3.61% | 8 | 10.13% |
Thomas Hellstrom | 62 | 3.15% | 3 | 3.80% |
Tvrtko A. Ursulin | 33 | 1.68% | 4 | 5.06% |
Matthew Wilcox | 22 | 1.12% | 2 | 2.53% |
John Hubbard | 20 | 1.02% | 1 | 1.27% |
Imre Deak | 10 | 0.51% | 1 | 1.27% |
Robert Beckett | 9 | 0.46% | 1 | 1.27% |
Jani Nikula | 7 | 0.36% | 3 | 3.80% |
Lorenzo Stoakes | 5 | 0.25% | 2 | 2.53% |
Michal Hocko | 4 | 0.20% | 2 | 2.53% |
Maor Gottlieb | 3 | 0.15% | 1 | 1.27% |
Michał Winiarski | 3 | 0.15% | 1 | 1.27% |
Christian König | 2 | 0.10% | 2 | 2.53% |
Ingo Molnar | 2 | 0.10% | 1 | 1.27% |
Janusz Krzysztofik | 1 | 0.05% | 1 | 1.27% |
Total | 1967 | 79 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2012-2014 Intel Corporation * * Based on amdgpu_mn, which bears the following notice: * * Copyright 2014 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* * Authors: * Christian König <christian.koenig@amd.com> */ #include <linux/mmu_context.h> #include <linux/mempolicy.h> #include <linux/swap.h> #include <linux/sched/mm.h> #include "i915_drv.h" #include "i915_gem_ioctls.h" #include "i915_gem_object.h" #include "i915_gem_userptr.h" #include "i915_scatterlist.h" #ifdef CONFIG_MMU_NOTIFIER /** * i915_gem_userptr_invalidate - callback to notify about mm change * * @mni: the range (mm) is about to update * @range: details on the invalidation * @cur_seq: Value to pass to mmu_interval_set_seq() * * Block for operations on BOs to finish and mark pages as accessed and * potentially dirty. */ static bool i915_gem_userptr_invalidate(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct drm_i915_gem_object *obj = container_of(mni, struct drm_i915_gem_object, userptr.notifier); struct drm_i915_private *i915 = to_i915(obj->base.dev); long r; if (!mmu_notifier_range_blockable(range)) return false; write_lock(&i915->mm.notifier_lock); mmu_interval_set_seq(mni, cur_seq); write_unlock(&i915->mm.notifier_lock); /* * We don't wait when the process is exiting. This is valid * because the object will be cleaned up anyway. * * This is also temporarily required as a hack, because we * cannot currently force non-consistent batch buffers to preempt * and reschedule by waiting on it, hanging processes on exit. */ if (current->flags & PF_EXITING) return true; /* we will unbind on next submission, still have userptr pins */ r = dma_resv_wait_timeout(obj->base.resv, DMA_RESV_USAGE_BOOKKEEP, false, MAX_SCHEDULE_TIMEOUT); if (r <= 0) drm_err(&i915->drm, "(%ld) failed to wait for idle\n", r); return true; } static const struct mmu_interval_notifier_ops i915_gem_userptr_notifier_ops = { .invalidate = i915_gem_userptr_invalidate, }; static int i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj) { return mmu_interval_notifier_insert(&obj->userptr.notifier, current->mm, obj->userptr.ptr, obj->base.size, &i915_gem_userptr_notifier_ops); } static void i915_gem_object_userptr_drop_ref(struct drm_i915_gem_object *obj) { struct page **pvec = NULL; assert_object_held_shared(obj); if (!--obj->userptr.page_ref) { pvec = obj->userptr.pvec; obj->userptr.pvec = NULL; } GEM_BUG_ON(obj->userptr.page_ref < 0); if (pvec) { const unsigned long num_pages = obj->base.size >> PAGE_SHIFT; unpin_user_pages(pvec, num_pages); kvfree(pvec); } } static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj) { const unsigned long num_pages = obj->base.size >> PAGE_SHIFT; unsigned int max_segment = i915_sg_segment_size(obj->base.dev->dev); struct sg_table *st; unsigned int sg_page_sizes; struct page **pvec; int ret; st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; if (!obj->userptr.page_ref) { ret = -EAGAIN; goto err_free; } obj->userptr.page_ref++; pvec = obj->userptr.pvec; alloc_table: ret = sg_alloc_table_from_pages_segment(st, pvec, num_pages, 0, num_pages << PAGE_SHIFT, max_segment, GFP_KERNEL); if (ret) goto err; ret = i915_gem_gtt_prepare_pages(obj, st); if (ret) { sg_free_table(st); if (max_segment > PAGE_SIZE) { max_segment = PAGE_SIZE; goto alloc_table; } goto err; } WARN_ON_ONCE(!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)); if (i915_gem_object_can_bypass_llc(obj)) obj->cache_dirty = true; sg_page_sizes = i915_sg_dma_sizes(st->sgl); __i915_gem_object_set_pages(obj, st, sg_page_sizes); return 0; err: i915_gem_object_userptr_drop_ref(obj); err_free: kfree(st); return ret; } static void i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { struct sgt_iter sgt_iter; struct page *page; if (!pages) return; __i915_gem_object_release_shmem(obj, pages, true); i915_gem_gtt_finish_pages(obj, pages); /* * We always mark objects as dirty when they are used by the GPU, * just in case. However, if we set the vma as being read-only we know * that the object will never have been written to. */ if (i915_gem_object_is_readonly(obj)) obj->mm.dirty = false; for_each_sgt_page(page, sgt_iter, pages) { if (obj->mm.dirty && trylock_page(page)) { /* * As this may not be anonymous memory (e.g. shmem) * but exist on a real mapping, we have to lock * the page in order to dirty it -- holding * the page reference is not sufficient to * prevent the inode from being truncated. * Play safe and take the lock. * * However...! * * The mmu-notifier can be invalidated for a * migrate_folio, that is alreadying holding the lock * on the folio. Such a try_to_unmap() will result * in us calling put_pages() and so recursively try * to lock the page. We avoid that deadlock with * a trylock_page() and in exchange we risk missing * some page dirtying. */ set_page_dirty(page); unlock_page(page); } mark_page_accessed(page); } obj->mm.dirty = false; sg_free_table(pages); kfree(pages); i915_gem_object_userptr_drop_ref(obj); } static int i915_gem_object_userptr_unbind(struct drm_i915_gem_object *obj) { struct sg_table *pages; int err; err = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE); if (err) return err; if (GEM_WARN_ON(i915_gem_object_has_pinned_pages(obj))) return -EBUSY; assert_object_held(obj); pages = __i915_gem_object_unset_pages(obj); if (!IS_ERR_OR_NULL(pages)) i915_gem_userptr_put_pages(obj, pages); return err; } int i915_gem_object_userptr_submit_init(struct drm_i915_gem_object *obj) { const unsigned long num_pages = obj->base.size >> PAGE_SHIFT; struct page **pvec; unsigned int gup_flags = 0; unsigned long notifier_seq; int pinned, ret; if (obj->userptr.notifier.mm != current->mm) return -EFAULT; notifier_seq = mmu_interval_read_begin(&obj->userptr.notifier); ret = i915_gem_object_lock_interruptible(obj, NULL); if (ret) return ret; if (notifier_seq == obj->userptr.notifier_seq && obj->userptr.pvec) { i915_gem_object_unlock(obj); return 0; } ret = i915_gem_object_userptr_unbind(obj); i915_gem_object_unlock(obj); if (ret) return ret; pvec = kvmalloc_array(num_pages, sizeof(struct page *), GFP_KERNEL); if (!pvec) return -ENOMEM; if (!i915_gem_object_is_readonly(obj)) gup_flags |= FOLL_WRITE; pinned = ret = 0; while (pinned < num_pages) { ret = pin_user_pages_fast(obj->userptr.ptr + pinned * PAGE_SIZE, num_pages - pinned, gup_flags, &pvec[pinned]); if (ret < 0) goto out; pinned += ret; } ret = 0; ret = i915_gem_object_lock_interruptible(obj, NULL); if (ret) goto out; if (mmu_interval_read_retry(&obj->userptr.notifier, !obj->userptr.page_ref ? notifier_seq : obj->userptr.notifier_seq)) { ret = -EAGAIN; goto out_unlock; } if (!obj->userptr.page_ref++) { obj->userptr.pvec = pvec; obj->userptr.notifier_seq = notifier_seq; pvec = NULL; ret = ____i915_gem_object_get_pages(obj); } obj->userptr.page_ref--; out_unlock: i915_gem_object_unlock(obj); out: if (pvec) { unpin_user_pages(pvec, pinned); kvfree(pvec); } return ret; } int i915_gem_object_userptr_submit_done(struct drm_i915_gem_object *obj) { if (mmu_interval_read_retry(&obj->userptr.notifier, obj->userptr.notifier_seq)) { /* We collided with the mmu notifier, need to retry */ return -EAGAIN; } return 0; } int i915_gem_object_userptr_validate(struct drm_i915_gem_object *obj) { int err; err = i915_gem_object_userptr_submit_init(obj); if (err) return err; err = i915_gem_object_lock_interruptible(obj, NULL); if (!err) { /* * Since we only check validity, not use the pages, * it doesn't matter if we collide with the mmu notifier, * and -EAGAIN handling is not required. */ err = i915_gem_object_pin_pages(obj); if (!err) i915_gem_object_unpin_pages(obj); i915_gem_object_unlock(obj); } return err; } static void i915_gem_userptr_release(struct drm_i915_gem_object *obj) { GEM_WARN_ON(obj->userptr.page_ref); mmu_interval_notifier_remove(&obj->userptr.notifier); obj->userptr.notifier.mm = NULL; } static int i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj) { drm_dbg(obj->base.dev, "Exporting userptr no longer allowed\n"); return -EINVAL; } static int i915_gem_userptr_pwrite(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pwrite *args) { drm_dbg(obj->base.dev, "pwrite to userptr no longer allowed\n"); return -EINVAL; } static int i915_gem_userptr_pread(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pread *args) { drm_dbg(obj->base.dev, "pread from userptr no longer allowed\n"); return -EINVAL; } static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = { .name = "i915_gem_object_userptr", .flags = I915_GEM_OBJECT_IS_SHRINKABLE | I915_GEM_OBJECT_NO_MMAP | I915_GEM_OBJECT_IS_PROXY, .get_pages = i915_gem_userptr_get_pages, .put_pages = i915_gem_userptr_put_pages, .dmabuf_export = i915_gem_userptr_dmabuf_export, .pwrite = i915_gem_userptr_pwrite, .pread = i915_gem_userptr_pread, .release = i915_gem_userptr_release, }; #endif static int probe_range(struct mm_struct *mm, unsigned long addr, unsigned long len) { VMA_ITERATOR(vmi, mm, addr); struct vm_area_struct *vma; unsigned long end = addr + len; mmap_read_lock(mm); for_each_vma_range(vmi, vma, end) { /* Check for holes, note that we also update the addr below */ if (vma->vm_start > addr) break; if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) break; addr = vma->vm_end; } mmap_read_unlock(mm); if (vma || addr < end) return -EFAULT; return 0; } /* * Creates a new mm object that wraps some normal memory from the process * context - user memory. * * We impose several restrictions upon the memory being mapped * into the GPU. * 1. It must be page aligned (both start/end addresses, i.e ptr and size). * 2. It must be normal system memory, not a pointer into another map of IO * space (e.g. it must not be a GTT mmapping of another object). * 3. We only allow a bo as large as we could in theory map into the GTT, * that is we limit the size to the total size of the GTT. * 4. The bo is marked as being snoopable. The backing pages are left * accessible directly by the CPU, but reads and writes by the GPU may * incur the cost of a snoop (unless you have an LLC architecture). * * Synchronisation between multiple users and the GPU is left to userspace * through the normal set-domain-ioctl. The kernel will enforce that the * GPU relinquishes the VMA before it is returned back to the system * i.e. upon free(), munmap() or process termination. However, the userspace * malloc() library may not immediately relinquish the VMA after free() and * instead reuse it whilst the GPU is still reading and writing to the VMA. * Caveat emptor. * * Also note, that the object created here is not currently a "first class" * object, in that several ioctls are banned. These are the CPU access * ioctls: mmap(), pwrite and pread. In practice, you are expected to use * direct access via your pointer rather than use those ioctls. Another * restriction is that we do not allow userptr surfaces to be pinned to the * hardware and so we reject any attempt to create a framebuffer out of a * userptr. * * If you think this is a good interface to use to pass GPU memory between * drivers, please use dma-buf instead. In fact, wherever possible use * dma-buf instead. */ int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { static struct lock_class_key __maybe_unused lock_class; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_userptr *args = data; struct drm_i915_gem_object __maybe_unused *obj; int __maybe_unused ret; u32 __maybe_unused handle; if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) { /* We cannot support coherent userptr objects on hw without * LLC and broken snooping. */ return -ENODEV; } if (args->flags & ~(I915_USERPTR_READ_ONLY | I915_USERPTR_UNSYNCHRONIZED | I915_USERPTR_PROBE)) return -EINVAL; if (i915_gem_object_size_2big(args->user_size)) return -E2BIG; if (!args->user_size) return -EINVAL; if (offset_in_page(args->user_ptr | args->user_size)) return -EINVAL; if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size)) return -EFAULT; if (args->flags & I915_USERPTR_UNSYNCHRONIZED) return -ENODEV; if (args->flags & I915_USERPTR_READ_ONLY) { /* * On almost all of the older hw, we cannot tell the GPU that * a page is readonly. */ if (!to_gt(dev_priv)->vm->has_read_only) return -ENODEV; } if (args->flags & I915_USERPTR_PROBE) { /* * Check that the range pointed to represents real struct * pages and not iomappings (at this moment in time!) */ ret = probe_range(current->mm, args->user_ptr, args->user_size); if (ret) return ret; } #ifdef CONFIG_MMU_NOTIFIER obj = i915_gem_object_alloc(); if (obj == NULL) return -ENOMEM; drm_gem_private_object_init(dev, &obj->base, args->user_size); i915_gem_object_init(obj, &i915_gem_userptr_ops, &lock_class, I915_BO_ALLOC_USER); obj->mem_flags = I915_BO_FLAG_STRUCT_PAGE; obj->read_domains = I915_GEM_DOMAIN_CPU; obj->write_domain = I915_GEM_DOMAIN_CPU; i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); obj->userptr.ptr = args->user_ptr; obj->userptr.notifier_seq = ULONG_MAX; if (args->flags & I915_USERPTR_READ_ONLY) i915_gem_object_set_readonly(obj); /* And keep a pointer to the current->mm for resolving the user pages * at binding. This means that we need to hook into the mmu_notifier * in order to detect if the mmu is destroyed. */ ret = i915_gem_userptr_init__mmu_notifier(obj); if (ret == 0) ret = drm_gem_handle_create(file, &obj->base, &handle); /* drop reference from allocate - handle holds it now */ i915_gem_object_put(obj); if (ret) return ret; args->handle = handle; return 0; #else return -ENODEV; #endif } int i915_gem_init_userptr(struct drm_i915_private *dev_priv) { #ifdef CONFIG_MMU_NOTIFIER rwlock_init(&dev_priv->mm.notifier_lock); #endif return 0; } void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv) { }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1