Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Auld | 6712 | 87.18% | 24 | 32.00% |
Chris Wilson | 490 | 6.36% | 33 | 44.00% |
Maarten Lankhorst | 413 | 5.36% | 6 | 8.00% |
Thomas Hellstrom | 51 | 0.66% | 4 | 5.33% |
Jani Nikula | 16 | 0.21% | 4 | 5.33% |
Lucas De Marchi | 7 | 0.09% | 1 | 1.33% |
Michał Winiarski | 6 | 0.08% | 1 | 1.33% |
Tvrtko A. Ursulin | 3 | 0.04% | 1 | 1.33% |
Daniel Vetter | 1 | 0.01% | 1 | 1.33% |
Total | 7699 | 75 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2017 Intel Corporation */ #include <linux/prime_numbers.h> #include <linux/string_helpers.h> #include <linux/swap.h> #include "i915_selftest.h" #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_pm.h" #include "gem/i915_gem_region.h" #include "gt/intel_gt.h" #include "igt_gem_utils.h" #include "mock_context.h" #include "selftests/mock_drm.h" #include "selftests/mock_gem_device.h" #include "selftests/mock_region.h" #include "selftests/i915_random.h" static struct i915_gem_context *hugepage_ctx(struct drm_i915_private *i915, struct file *file) { struct i915_gem_context *ctx = live_context(i915, file); struct i915_address_space *vm; if (IS_ERR(ctx)) return ctx; vm = ctx->vm; if (vm) WRITE_ONCE(vm->scrub_64K, true); return ctx; } static const unsigned int page_sizes[] = { I915_GTT_PAGE_SIZE_2M, I915_GTT_PAGE_SIZE_64K, I915_GTT_PAGE_SIZE_4K, }; static unsigned int get_largest_page_size(struct drm_i915_private *i915, u64 rem) { int i; for (i = 0; i < ARRAY_SIZE(page_sizes); ++i) { unsigned int page_size = page_sizes[i]; if (HAS_PAGE_SIZES(i915, page_size) && rem >= page_size) return page_size; } return 0; } static void huge_pages_free_pages(struct sg_table *st) { struct scatterlist *sg; for (sg = st->sgl; sg; sg = __sg_next(sg)) { if (sg_page(sg)) __free_pages(sg_page(sg), get_order(sg->length)); } sg_free_table(st); kfree(st); } static int get_huge_pages(struct drm_i915_gem_object *obj) { #define GFP (GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY) unsigned int page_mask = obj->mm.page_mask; struct sg_table *st; struct scatterlist *sg; unsigned int sg_page_sizes; u64 rem; st = kmalloc(sizeof(*st), GFP); if (!st) return -ENOMEM; if (sg_alloc_table(st, obj->base.size >> PAGE_SHIFT, GFP)) { kfree(st); return -ENOMEM; } rem = obj->base.size; sg = st->sgl; st->nents = 0; sg_page_sizes = 0; /* * Our goal here is simple, we want to greedily fill the object from * largest to smallest page-size, while ensuring that we use *every* * page-size as per the given page-mask. */ do { unsigned int bit = ilog2(page_mask); unsigned int page_size = BIT(bit); int order = get_order(page_size); do { struct page *page; GEM_BUG_ON(order >= MAX_ORDER); page = alloc_pages(GFP | __GFP_ZERO, order); if (!page) goto err; sg_set_page(sg, page, page_size, 0); sg_page_sizes |= page_size; st->nents++; rem -= page_size; if (!rem) { sg_mark_end(sg); break; } sg = __sg_next(sg); } while ((rem - ((page_size-1) & page_mask)) >= page_size); page_mask &= (page_size-1); } while (page_mask); if (i915_gem_gtt_prepare_pages(obj, st)) goto err; GEM_BUG_ON(sg_page_sizes != obj->mm.page_mask); __i915_gem_object_set_pages(obj, st, sg_page_sizes); return 0; err: sg_set_page(sg, NULL, 0, 0); sg_mark_end(sg); huge_pages_free_pages(st); return -ENOMEM; } static void put_huge_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { i915_gem_gtt_finish_pages(obj, pages); huge_pages_free_pages(pages); obj->mm.dirty = false; __start_cpu_write(obj); } static const struct drm_i915_gem_object_ops huge_page_ops = { .name = "huge-gem", .flags = I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = get_huge_pages, .put_pages = put_huge_pages, }; static struct drm_i915_gem_object * huge_pages_object(struct drm_i915_private *i915, u64 size, unsigned int page_mask) { static struct lock_class_key lock_class; struct drm_i915_gem_object *obj; unsigned int cache_level; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, BIT(__ffs(page_mask)))); if (size >> PAGE_SHIFT > INT_MAX) return ERR_PTR(-E2BIG); if (overflows_type(size, obj->base.size)) return ERR_PTR(-E2BIG); obj = i915_gem_object_alloc(); if (!obj) return ERR_PTR(-ENOMEM); drm_gem_private_object_init(&i915->drm, &obj->base, size); i915_gem_object_init(obj, &huge_page_ops, &lock_class, 0); obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE; i915_gem_object_set_volatile(obj); obj->write_domain = I915_GEM_DOMAIN_CPU; obj->read_domains = I915_GEM_DOMAIN_CPU; cache_level = HAS_LLC(i915) ? I915_CACHE_LLC : I915_CACHE_NONE; i915_gem_object_set_cache_coherency(obj, cache_level); obj->mm.page_mask = page_mask; return obj; } static int fake_get_huge_pages(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); const u64 max_len = rounddown_pow_of_two(UINT_MAX); struct sg_table *st; struct scatterlist *sg; unsigned int sg_page_sizes; u64 rem; st = kmalloc(sizeof(*st), GFP); if (!st) return -ENOMEM; if (sg_alloc_table(st, obj->base.size >> PAGE_SHIFT, GFP)) { kfree(st); return -ENOMEM; } /* Use optimal page sized chunks to fill in the sg table */ rem = obj->base.size; sg = st->sgl; st->nents = 0; sg_page_sizes = 0; do { unsigned int page_size = get_largest_page_size(i915, rem); unsigned int len = min(page_size * div_u64(rem, page_size), max_len); GEM_BUG_ON(!page_size); sg->offset = 0; sg->length = len; sg_dma_len(sg) = len; sg_dma_address(sg) = page_size; sg_page_sizes |= len; st->nents++; rem -= len; if (!rem) { sg_mark_end(sg); break; } sg = sg_next(sg); } while (1); i915_sg_trim(st); __i915_gem_object_set_pages(obj, st, sg_page_sizes); return 0; } static int fake_get_huge_pages_single(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct sg_table *st; struct scatterlist *sg; unsigned int page_size; st = kmalloc(sizeof(*st), GFP); if (!st) return -ENOMEM; if (sg_alloc_table(st, 1, GFP)) { kfree(st); return -ENOMEM; } sg = st->sgl; st->nents = 1; page_size = get_largest_page_size(i915, obj->base.size); GEM_BUG_ON(!page_size); sg->offset = 0; sg->length = obj->base.size; sg_dma_len(sg) = obj->base.size; sg_dma_address(sg) = page_size; __i915_gem_object_set_pages(obj, st, sg->length); return 0; #undef GFP } static void fake_free_huge_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { sg_free_table(pages); kfree(pages); } static void fake_put_huge_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { fake_free_huge_pages(obj, pages); obj->mm.dirty = false; } static const struct drm_i915_gem_object_ops fake_ops = { .name = "fake-gem", .flags = I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = fake_get_huge_pages, .put_pages = fake_put_huge_pages, }; static const struct drm_i915_gem_object_ops fake_ops_single = { .name = "fake-gem", .flags = I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = fake_get_huge_pages_single, .put_pages = fake_put_huge_pages, }; static struct drm_i915_gem_object * fake_huge_pages_object(struct drm_i915_private *i915, u64 size, bool single) { static struct lock_class_key lock_class; struct drm_i915_gem_object *obj; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); if (size >> PAGE_SHIFT > UINT_MAX) return ERR_PTR(-E2BIG); if (overflows_type(size, obj->base.size)) return ERR_PTR(-E2BIG); obj = i915_gem_object_alloc(); if (!obj) return ERR_PTR(-ENOMEM); drm_gem_private_object_init(&i915->drm, &obj->base, size); if (single) i915_gem_object_init(obj, &fake_ops_single, &lock_class, 0); else i915_gem_object_init(obj, &fake_ops, &lock_class, 0); i915_gem_object_set_volatile(obj); obj->write_domain = I915_GEM_DOMAIN_CPU; obj->read_domains = I915_GEM_DOMAIN_CPU; obj->cache_level = I915_CACHE_NONE; return obj; } static int igt_check_page_sizes(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; unsigned int supported = RUNTIME_INFO(i915)->page_sizes; struct drm_i915_gem_object *obj = vma->obj; int err; /* We have to wait for the async bind to complete before our asserts */ err = i915_vma_sync(vma); if (err) return err; if (!HAS_PAGE_SIZES(i915, vma->page_sizes.sg)) { pr_err("unsupported page_sizes.sg=%u, supported=%u\n", vma->page_sizes.sg & ~supported, supported); err = -EINVAL; } if (!HAS_PAGE_SIZES(i915, vma->resource->page_sizes_gtt)) { pr_err("unsupported page_sizes.gtt=%u, supported=%u\n", vma->resource->page_sizes_gtt & ~supported, supported); err = -EINVAL; } if (vma->page_sizes.phys != obj->mm.page_sizes.phys) { pr_err("vma->page_sizes.phys(%u) != obj->mm.page_sizes.phys(%u)\n", vma->page_sizes.phys, obj->mm.page_sizes.phys); err = -EINVAL; } if (vma->page_sizes.sg != obj->mm.page_sizes.sg) { pr_err("vma->page_sizes.sg(%u) != obj->mm.page_sizes.sg(%u)\n", vma->page_sizes.sg, obj->mm.page_sizes.sg); err = -EINVAL; } /* * The dma-api is like a box of chocolates when it comes to the * alignment of dma addresses, however for LMEM we have total control * and so can guarantee alignment, likewise when we allocate our blocks * they should appear in descending order, and if we know that we align * to the largest page size for the GTT address, we should be able to * assert that if we see 2M physical pages then we should also get 2M * GTT pages. If we don't then something might be wrong in our * construction of the backing pages. * * Maintaining alignment is required to utilise huge pages in the ppGGT. */ if (i915_gem_object_is_lmem(obj) && IS_ALIGNED(vma->node.start, SZ_2M) && vma->page_sizes.sg & SZ_2M && vma->resource->page_sizes_gtt < SZ_2M) { pr_err("gtt pages mismatch for LMEM, expected 2M GTT pages, sg(%u), gtt(%u)\n", vma->page_sizes.sg, vma->resource->page_sizes_gtt); err = -EINVAL; } return err; } static int igt_mock_exhaust_device_supported_pages(void *arg) { struct i915_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; unsigned int saved_mask = RUNTIME_INFO(i915)->page_sizes; struct drm_i915_gem_object *obj; struct i915_vma *vma; int i, j, single; int err; /* * Sanity check creating objects with every valid page support * combination for our mock device. */ for (i = 1; i < BIT(ARRAY_SIZE(page_sizes)); i++) { unsigned int combination = SZ_4K; /* Required for ppGTT */ for (j = 0; j < ARRAY_SIZE(page_sizes); j++) { if (i & BIT(j)) combination |= page_sizes[j]; } RUNTIME_INFO(i915)->page_sizes = combination; for (single = 0; single <= 1; ++single) { obj = fake_huge_pages_object(i915, combination, !!single); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_device; } if (obj->base.size != combination) { pr_err("obj->base.size=%zu, expected=%u\n", obj->base.size, combination); err = -EINVAL; goto out_put; } vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out_put; err = igt_check_page_sizes(vma); if (vma->page_sizes.sg != combination) { pr_err("page_sizes.sg=%u, expected=%u\n", vma->page_sizes.sg, combination); err = -EINVAL; } i915_vma_unpin(vma); i915_gem_object_put(obj); if (err) goto out_device; } } goto out_device; out_put: i915_gem_object_put(obj); out_device: RUNTIME_INFO(i915)->page_sizes = saved_mask; return err; } static int igt_mock_memory_region_huge_pages(void *arg) { const unsigned int flags[] = { 0, I915_BO_ALLOC_CONTIGUOUS }; struct i915_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; unsigned long supported = RUNTIME_INFO(i915)->page_sizes; struct intel_memory_region *mem; struct drm_i915_gem_object *obj; struct i915_vma *vma; int bit; int err = 0; mem = mock_region_create(i915, 0, SZ_2G, I915_GTT_PAGE_SIZE_4K, 0, 0); if (IS_ERR(mem)) { pr_err("%s failed to create memory region\n", __func__); return PTR_ERR(mem); } for_each_set_bit(bit, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { unsigned int page_size = BIT(bit); resource_size_t phys; int i; for (i = 0; i < ARRAY_SIZE(flags); ++i) { obj = i915_gem_object_create_region(mem, page_size, page_size, flags[i]); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_region; } vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out_put; err = igt_check_page_sizes(vma); if (err) goto out_unpin; phys = i915_gem_object_get_dma_address(obj, 0); if (!IS_ALIGNED(phys, page_size)) { pr_err("%s addr misaligned(%pa) page_size=%u\n", __func__, &phys, page_size); err = -EINVAL; goto out_unpin; } if (vma->resource->page_sizes_gtt != page_size) { pr_err("%s page_sizes.gtt=%u, expected=%u\n", __func__, vma->resource->page_sizes_gtt, page_size); err = -EINVAL; goto out_unpin; } i915_vma_unpin(vma); __i915_gem_object_put_pages(obj); i915_gem_object_put(obj); } } goto out_region; out_unpin: i915_vma_unpin(vma); out_put: i915_gem_object_put(obj); out_region: intel_memory_region_destroy(mem); return err; } static int igt_mock_ppgtt_misaligned_dma(void *arg) { struct i915_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; unsigned long supported = RUNTIME_INFO(i915)->page_sizes; struct drm_i915_gem_object *obj; int bit; int err; /* * Sanity check dma misalignment for huge pages -- the dma addresses we * insert into the paging structures need to always respect the page * size alignment. */ bit = ilog2(I915_GTT_PAGE_SIZE_64K); for_each_set_bit_from(bit, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { IGT_TIMEOUT(end_time); unsigned int page_size = BIT(bit); unsigned int flags = PIN_USER | PIN_OFFSET_FIXED; unsigned int offset; unsigned int size = round_up(page_size, I915_GTT_PAGE_SIZE_2M) << 1; struct i915_vma *vma; obj = fake_huge_pages_object(i915, size, true); if (IS_ERR(obj)) return PTR_ERR(obj); if (obj->base.size != size) { pr_err("obj->base.size=%zu, expected=%u\n", obj->base.size, size); err = -EINVAL; goto out_put; } err = i915_gem_object_pin_pages_unlocked(obj); if (err) goto out_put; /* Force the page size for this object */ obj->mm.page_sizes.sg = page_size; vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_unpin; } err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_unpin; err = igt_check_page_sizes(vma); if (vma->resource->page_sizes_gtt != page_size) { pr_err("page_sizes.gtt=%u, expected %u\n", vma->resource->page_sizes_gtt, page_size); err = -EINVAL; } i915_vma_unpin(vma); if (err) goto out_unpin; /* * Try all the other valid offsets until the next * boundary -- should always fall back to using 4K * pages. */ for (offset = 4096; offset < page_size; offset += 4096) { err = i915_vma_unbind_unlocked(vma); if (err) goto out_unpin; err = i915_vma_pin(vma, 0, 0, flags | offset); if (err) goto out_unpin; err = igt_check_page_sizes(vma); if (vma->resource->page_sizes_gtt != I915_GTT_PAGE_SIZE_4K) { pr_err("page_sizes.gtt=%u, expected %llu\n", vma->resource->page_sizes_gtt, I915_GTT_PAGE_SIZE_4K); err = -EINVAL; } i915_vma_unpin(vma); if (err) goto out_unpin; if (igt_timeout(end_time, "%s timed out at offset %x with page-size %x\n", __func__, offset, page_size)) break; } i915_gem_object_lock(obj, NULL); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj); i915_gem_object_unlock(obj); i915_gem_object_put(obj); } return 0; out_unpin: i915_gem_object_lock(obj, NULL); i915_gem_object_unpin_pages(obj); i915_gem_object_unlock(obj); out_put: i915_gem_object_put(obj); return err; } static void close_object_list(struct list_head *objects, struct i915_ppgtt *ppgtt) { struct drm_i915_gem_object *obj, *on; list_for_each_entry_safe(obj, on, objects, st_link) { list_del(&obj->st_link); i915_gem_object_lock(obj, NULL); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj); i915_gem_object_unlock(obj); i915_gem_object_put(obj); } } static int igt_mock_ppgtt_huge_fill(void *arg) { struct i915_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; unsigned long max_pages = ppgtt->vm.total >> PAGE_SHIFT; unsigned long page_num; bool single = false; LIST_HEAD(objects); IGT_TIMEOUT(end_time); int err = -ENODEV; for_each_prime_number_from(page_num, 1, max_pages) { struct drm_i915_gem_object *obj; u64 size = page_num << PAGE_SHIFT; struct i915_vma *vma; unsigned int expected_gtt = 0; int i; obj = fake_huge_pages_object(i915, size, single); if (IS_ERR(obj)) { err = PTR_ERR(obj); break; } if (obj->base.size != size) { pr_err("obj->base.size=%zd, expected=%llu\n", obj->base.size, size); i915_gem_object_put(obj); err = -EINVAL; break; } err = i915_gem_object_pin_pages_unlocked(obj); if (err) { i915_gem_object_put(obj); break; } list_add(&obj->st_link, &objects); vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); break; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) break; err = igt_check_page_sizes(vma); if (err) { i915_vma_unpin(vma); break; } /* * Figure out the expected gtt page size knowing that we go from * largest to smallest page size sg chunks, and that we align to * the largest page size. */ for (i = 0; i < ARRAY_SIZE(page_sizes); ++i) { unsigned int page_size = page_sizes[i]; if (HAS_PAGE_SIZES(i915, page_size) && size >= page_size) { expected_gtt |= page_size; size &= page_size-1; } } GEM_BUG_ON(!expected_gtt); GEM_BUG_ON(size); if (expected_gtt & I915_GTT_PAGE_SIZE_4K) expected_gtt &= ~I915_GTT_PAGE_SIZE_64K; i915_vma_unpin(vma); if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) { if (!IS_ALIGNED(vma->node.start, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.start(%llx) not aligned to 2M\n", vma->node.start); err = -EINVAL; break; } if (!IS_ALIGNED(vma->node.size, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.size(%llx) not aligned to 2M\n", vma->node.size); err = -EINVAL; break; } } if (vma->resource->page_sizes_gtt != expected_gtt) { pr_err("gtt=%u, expected=%u, size=%zd, single=%s\n", vma->resource->page_sizes_gtt, expected_gtt, obj->base.size, str_yes_no(!!single)); err = -EINVAL; break; } if (igt_timeout(end_time, "%s timed out at size %zd\n", __func__, obj->base.size)) break; single = !single; } close_object_list(&objects, ppgtt); if (err == -ENOMEM || err == -ENOSPC) err = 0; return err; } static int igt_mock_ppgtt_64K(void *arg) { struct i915_ppgtt *ppgtt = arg; struct drm_i915_private *i915 = ppgtt->vm.i915; struct drm_i915_gem_object *obj; const struct object_info { unsigned int size; unsigned int gtt; unsigned int offset; } objects[] = { /* Cases with forced padding/alignment */ { .size = SZ_64K, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, { .size = SZ_64K + SZ_4K, .gtt = I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_64K - SZ_4K, .gtt = I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_2M, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, { .size = SZ_2M - SZ_4K, .gtt = I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_2M + SZ_4K, .gtt = I915_GTT_PAGE_SIZE_64K | I915_GTT_PAGE_SIZE_4K, .offset = 0, }, { .size = SZ_2M + SZ_64K, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, { .size = SZ_2M - SZ_64K, .gtt = I915_GTT_PAGE_SIZE_64K, .offset = 0, }, /* Try without any forced padding/alignment */ { .size = SZ_64K, .offset = SZ_2M, .gtt = I915_GTT_PAGE_SIZE_4K, }, { .size = SZ_128K, .offset = SZ_2M - SZ_64K, .gtt = I915_GTT_PAGE_SIZE_4K, }, }; struct i915_vma *vma; int i, single; int err; /* * Sanity check some of the trickiness with 64K pages -- either we can * safely mark the whole page-table(2M block) as 64K, or we have to * always fallback to 4K. */ if (!HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K)) return 0; for (i = 0; i < ARRAY_SIZE(objects); ++i) { unsigned int size = objects[i].size; unsigned int expected_gtt = objects[i].gtt; unsigned int offset = objects[i].offset; unsigned int flags = PIN_USER; for (single = 0; single <= 1; single++) { obj = fake_huge_pages_object(i915, size, !!single); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages_unlocked(obj); if (err) goto out_object_put; /* * Disable 2M pages -- We only want to use 64K/4K pages * for this test. */ obj->mm.page_sizes.sg &= ~I915_GTT_PAGE_SIZE_2M; vma = i915_vma_instance(obj, &ppgtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_object_unpin; } if (offset) flags |= PIN_OFFSET_FIXED | offset; err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_object_unpin; err = igt_check_page_sizes(vma); if (err) goto out_vma_unpin; if (!offset && vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) { if (!IS_ALIGNED(vma->node.start, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.start(%llx) not aligned to 2M\n", vma->node.start); err = -EINVAL; goto out_vma_unpin; } if (!IS_ALIGNED(vma->node.size, I915_GTT_PAGE_SIZE_2M)) { pr_err("node.size(%llx) not aligned to 2M\n", vma->node.size); err = -EINVAL; goto out_vma_unpin; } } if (vma->resource->page_sizes_gtt != expected_gtt) { pr_err("gtt=%u, expected=%u, i=%d, single=%s\n", vma->resource->page_sizes_gtt, expected_gtt, i, str_yes_no(!!single)); err = -EINVAL; goto out_vma_unpin; } i915_vma_unpin(vma); i915_gem_object_lock(obj, NULL); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj); i915_gem_object_unlock(obj); i915_gem_object_put(obj); i915_gem_drain_freed_objects(i915); } } return 0; out_vma_unpin: i915_vma_unpin(vma); out_object_unpin: i915_gem_object_lock(obj, NULL); i915_gem_object_unpin_pages(obj); i915_gem_object_unlock(obj); out_object_put: i915_gem_object_put(obj); return err; } static int gpu_write(struct intel_context *ce, struct i915_vma *vma, u32 dw, u32 val) { int err; i915_gem_object_lock(vma->obj, NULL); err = i915_gem_object_set_to_gtt_domain(vma->obj, true); i915_gem_object_unlock(vma->obj); if (err) return err; return igt_gpu_fill_dw(ce, vma, dw * sizeof(u32), vma->size >> PAGE_SHIFT, val); } static int __cpu_check_shmem(struct drm_i915_gem_object *obj, u32 dword, u32 val) { unsigned int needs_flush; unsigned long n; int err; i915_gem_object_lock(obj, NULL); err = i915_gem_object_prepare_read(obj, &needs_flush); if (err) goto err_unlock; for (n = 0; n < obj->base.size >> PAGE_SHIFT; ++n) { u32 *ptr = kmap_atomic(i915_gem_object_get_page(obj, n)); if (needs_flush & CLFLUSH_BEFORE) drm_clflush_virt_range(ptr, PAGE_SIZE); if (ptr[dword] != val) { pr_err("n=%lu ptr[%u]=%u, val=%u\n", n, dword, ptr[dword], val); kunmap_atomic(ptr); err = -EINVAL; break; } kunmap_atomic(ptr); } i915_gem_object_finish_access(obj); err_unlock: i915_gem_object_unlock(obj); return err; } static int __cpu_check_vmap(struct drm_i915_gem_object *obj, u32 dword, u32 val) { unsigned long n = obj->base.size >> PAGE_SHIFT; u32 *ptr; int err; err = i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT); if (err) return err; ptr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(ptr)) return PTR_ERR(ptr); ptr += dword; while (n--) { if (*ptr != val) { pr_err("base[%u]=%08x, val=%08x\n", dword, *ptr, val); err = -EINVAL; break; } ptr += PAGE_SIZE / sizeof(*ptr); } i915_gem_object_unpin_map(obj); return err; } static int cpu_check(struct drm_i915_gem_object *obj, u32 dword, u32 val) { if (i915_gem_object_has_struct_page(obj)) return __cpu_check_shmem(obj, dword, val); else return __cpu_check_vmap(obj, dword, val); } static int __igt_write_huge(struct intel_context *ce, struct drm_i915_gem_object *obj, u64 size, u64 offset, u32 dword, u32 val) { unsigned int flags = PIN_USER | PIN_OFFSET_FIXED; struct i915_vma *vma; int err; vma = i915_vma_instance(obj, ce->vm, NULL); if (IS_ERR(vma)) return PTR_ERR(vma); err = i915_vma_pin(vma, size, 0, flags | offset); if (err) { /* * The ggtt may have some pages reserved so * refrain from erroring out. */ if (err == -ENOSPC && i915_is_ggtt(ce->vm)) err = 0; return err; } err = igt_check_page_sizes(vma); if (err) goto out_vma_unpin; err = gpu_write(ce, vma, dword, val); if (err) { pr_err("gpu-write failed at offset=%llx\n", offset); goto out_vma_unpin; } err = cpu_check(obj, dword, val); if (err) { pr_err("cpu-check failed at offset=%llx\n", offset); goto out_vma_unpin; } out_vma_unpin: i915_vma_unpin(vma); return err; } static int igt_write_huge(struct drm_i915_private *i915, struct drm_i915_gem_object *obj) { struct i915_gem_engines *engines; struct i915_gem_engines_iter it; struct intel_context *ce; I915_RND_STATE(prng); IGT_TIMEOUT(end_time); unsigned int max_page_size; unsigned int count; struct i915_gem_context *ctx; struct file *file; u64 max; u64 num; u64 size; int *order; int i, n; int err = 0; file = mock_file(i915); if (IS_ERR(file)) return PTR_ERR(file); ctx = hugepage_ctx(i915, file); if (IS_ERR(ctx)) { err = PTR_ERR(ctx); goto out; } GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); size = obj->base.size; if (obj->mm.page_sizes.sg & I915_GTT_PAGE_SIZE_64K) size = round_up(size, I915_GTT_PAGE_SIZE_2M); n = 0; count = 0; max = U64_MAX; for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { count++; if (!intel_engine_can_store_dword(ce->engine)) continue; max = min(max, ce->vm->total); n++; } i915_gem_context_unlock_engines(ctx); if (!n) goto out; /* * To keep things interesting when alternating between engines in our * randomized order, lets also make feeding to the same engine a few * times in succession a possibility by enlarging the permutation array. */ order = i915_random_order(count * count, &prng); if (!order) return -ENOMEM; max_page_size = rounddown_pow_of_two(obj->mm.page_sizes.sg); max = div_u64(max - size, max_page_size); /* * Try various offsets in an ascending/descending fashion until we * timeout -- we want to avoid issues hidden by effectively always using * offset = 0. */ i = 0; engines = i915_gem_context_lock_engines(ctx); for_each_prime_number_from(num, 0, max) { u64 offset_low = num * max_page_size; u64 offset_high = (max - num) * max_page_size; u32 dword = offset_in_page(num) / 4; struct intel_context *ce; ce = engines->engines[order[i] % engines->num_engines]; i = (i + 1) % (count * count); if (!ce || !intel_engine_can_store_dword(ce->engine)) continue; /* * In order to utilize 64K pages we need to both pad the vma * size and ensure the vma offset is at the start of the pt * boundary, however to improve coverage we opt for testing both * aligned and unaligned offsets. */ if (obj->mm.page_sizes.sg & I915_GTT_PAGE_SIZE_64K) offset_low = round_down(offset_low, I915_GTT_PAGE_SIZE_2M); err = __igt_write_huge(ce, obj, size, offset_low, dword, num + 1); if (err) break; err = __igt_write_huge(ce, obj, size, offset_high, dword, num + 1); if (err) break; if (igt_timeout(end_time, "%s timed out on %s, offset_low=%llx offset_high=%llx, max_page_size=%x\n", __func__, ce->engine->name, offset_low, offset_high, max_page_size)) break; } i915_gem_context_unlock_engines(ctx); kfree(order); out: fput(file); return err; } typedef struct drm_i915_gem_object * (*igt_create_fn)(struct drm_i915_private *i915, u32 size, u32 flags); static inline bool igt_can_allocate_thp(struct drm_i915_private *i915) { return i915->mm.gemfs && has_transparent_hugepage(); } static struct drm_i915_gem_object * igt_create_shmem(struct drm_i915_private *i915, u32 size, u32 flags) { if (!igt_can_allocate_thp(i915)) { pr_info("%s missing THP support, skipping\n", __func__); return ERR_PTR(-ENODEV); } return i915_gem_object_create_shmem(i915, size); } static struct drm_i915_gem_object * igt_create_internal(struct drm_i915_private *i915, u32 size, u32 flags) { return i915_gem_object_create_internal(i915, size); } static struct drm_i915_gem_object * igt_create_system(struct drm_i915_private *i915, u32 size, u32 flags) { return huge_pages_object(i915, size, size); } static struct drm_i915_gem_object * igt_create_local(struct drm_i915_private *i915, u32 size, u32 flags) { return i915_gem_object_create_lmem(i915, size, flags); } static u32 igt_random_size(struct rnd_state *prng, u32 min_page_size, u32 max_page_size) { u64 mask; u32 size; GEM_BUG_ON(!is_power_of_2(min_page_size)); GEM_BUG_ON(!is_power_of_2(max_page_size)); GEM_BUG_ON(min_page_size < PAGE_SIZE); GEM_BUG_ON(min_page_size > max_page_size); mask = ((max_page_size << 1ULL) - 1) & PAGE_MASK; size = prandom_u32_state(prng) & mask; if (size < min_page_size) size |= min_page_size; return size; } static int igt_ppgtt_smoke_huge(void *arg) { struct drm_i915_private *i915 = arg; struct drm_i915_gem_object *obj; I915_RND_STATE(prng); struct { igt_create_fn fn; u32 min; u32 max; } backends[] = { { igt_create_internal, SZ_64K, SZ_2M, }, { igt_create_shmem, SZ_64K, SZ_32M, }, { igt_create_local, SZ_64K, SZ_1G, }, }; int err; int i; /* * Sanity check that the HW uses huge pages correctly through our * various backends -- ensure that our writes land in the right place. */ for (i = 0; i < ARRAY_SIZE(backends); ++i) { u32 min = backends[i].min; u32 max = backends[i].max; u32 size = max; try_again: size = igt_random_size(&prng, min, rounddown_pow_of_two(size)); obj = backends[i].fn(i915, size, 0); if (IS_ERR(obj)) { err = PTR_ERR(obj); if (err == -E2BIG) { size >>= 1; goto try_again; } else if (err == -ENODEV) { err = 0; continue; } return err; } err = i915_gem_object_pin_pages_unlocked(obj); if (err) { if (err == -ENXIO || err == -E2BIG || err == -ENOMEM) { i915_gem_object_put(obj); size >>= 1; goto try_again; } goto out_put; } if (obj->mm.page_sizes.phys < min) { pr_info("%s unable to allocate huge-page(s) with size=%u, i=%d\n", __func__, size, i); err = -ENOMEM; goto out_unpin; } err = igt_write_huge(i915, obj); if (err) { pr_err("%s write-huge failed with size=%u, i=%d\n", __func__, size, i); } out_unpin: i915_gem_object_lock(obj, NULL); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj); i915_gem_object_unlock(obj); out_put: i915_gem_object_put(obj); if (err == -ENOMEM || err == -ENXIO) err = 0; if (err) break; cond_resched(); } return err; } static int igt_ppgtt_sanity_check(void *arg) { struct drm_i915_private *i915 = arg; unsigned int supported = RUNTIME_INFO(i915)->page_sizes; struct { igt_create_fn fn; unsigned int flags; } backends[] = { { igt_create_system, 0, }, { igt_create_local, 0, }, { igt_create_local, I915_BO_ALLOC_CONTIGUOUS, }, }; struct { u32 size; u32 pages; } combos[] = { { SZ_64K, SZ_64K }, { SZ_2M, SZ_2M }, { SZ_2M, SZ_64K }, { SZ_2M - SZ_64K, SZ_64K }, { SZ_2M - SZ_4K, SZ_64K | SZ_4K }, { SZ_2M + SZ_4K, SZ_64K | SZ_4K }, { SZ_2M + SZ_4K, SZ_2M | SZ_4K }, { SZ_2M + SZ_64K, SZ_2M | SZ_64K }, }; int i, j; int err; if (supported == I915_GTT_PAGE_SIZE_4K) return 0; /* * Sanity check that the HW behaves with a limited set of combinations. * We already have a bunch of randomised testing, which should give us * a decent amount of variation between runs, however we should keep * this to limit the chances of introducing a temporary regression, by * testing the most obvious cases that might make something blow up. */ for (i = 0; i < ARRAY_SIZE(backends); ++i) { for (j = 0; j < ARRAY_SIZE(combos); ++j) { struct drm_i915_gem_object *obj; u32 size = combos[j].size; u32 pages = combos[j].pages; obj = backends[i].fn(i915, size, backends[i].flags); if (IS_ERR(obj)) { err = PTR_ERR(obj); if (err == -ENODEV) { pr_info("Device lacks local memory, skipping\n"); err = 0; break; } return err; } err = i915_gem_object_pin_pages_unlocked(obj); if (err) { i915_gem_object_put(obj); goto out; } GEM_BUG_ON(pages > obj->base.size); pages = pages & supported; if (pages) obj->mm.page_sizes.sg = pages; err = igt_write_huge(i915, obj); i915_gem_object_lock(obj, NULL); i915_gem_object_unpin_pages(obj); __i915_gem_object_put_pages(obj); i915_gem_object_unlock(obj); i915_gem_object_put(obj); if (err) { pr_err("%s write-huge failed with size=%u pages=%u i=%d, j=%d\n", __func__, size, pages, i, j); goto out; } } cond_resched(); } out: if (err == -ENOMEM) err = 0; return err; } static int igt_ppgtt_compact(void *arg) { struct drm_i915_private *i915 = arg; struct drm_i915_gem_object *obj; int err; /* * Simple test to catch issues with compact 64K pages -- since the pt is * compacted to 256B that gives us 32 entries per pt, however since the * backing page for the pt is 4K, any extra entries we might incorrectly * write out should be ignored by the HW. If ever hit such a case this * test should catch it since some of our writes would land in scratch. */ if (!HAS_64K_PAGES(i915)) { pr_info("device lacks compact 64K page support, skipping\n"); return 0; } if (!HAS_LMEM(i915)) { pr_info("device lacks LMEM support, skipping\n"); return 0; } /* We want the range to cover multiple page-table boundaries. */ obj = i915_gem_object_create_lmem(i915, SZ_4M, 0); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages_unlocked(obj); if (err) goto out_put; if (obj->mm.page_sizes.phys < I915_GTT_PAGE_SIZE_64K) { pr_info("LMEM compact unable to allocate huge-page(s)\n"); goto out_unpin; } /* * Disable 2M GTT pages by forcing the page-size to 64K for the GTT * insertion. */ obj->mm.page_sizes.sg = I915_GTT_PAGE_SIZE_64K; err = igt_write_huge(i915, obj); if (err) pr_err("LMEM compact write-huge failed\n"); out_unpin: i915_gem_object_unpin_pages(obj); out_put: i915_gem_object_put(obj); if (err == -ENOMEM) err = 0; return err; } static int igt_tmpfs_fallback(void *arg) { struct drm_i915_private *i915 = arg; struct i915_address_space *vm; struct i915_gem_context *ctx; struct vfsmount *gemfs = i915->mm.gemfs; struct drm_i915_gem_object *obj; struct i915_vma *vma; struct file *file; u32 *vaddr; int err = 0; file = mock_file(i915); if (IS_ERR(file)) return PTR_ERR(file); ctx = hugepage_ctx(i915, file); if (IS_ERR(ctx)) { err = PTR_ERR(ctx); goto out; } vm = i915_gem_context_get_eb_vm(ctx); /* * Make sure that we don't burst into a ball of flames upon falling back * to tmpfs, which we rely on if on the off-chance we encouter a failure * when setting up gemfs. */ i915->mm.gemfs = NULL; obj = i915_gem_object_create_shmem(i915, PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_restore; } vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_put; } *vaddr = 0xdeadbeaf; __i915_gem_object_flush_map(obj, 0, 64); i915_gem_object_unpin_map(obj); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out_put; err = igt_check_page_sizes(vma); i915_vma_unpin(vma); out_put: i915_gem_object_put(obj); out_restore: i915->mm.gemfs = gemfs; i915_vm_put(vm); out: fput(file); return err; } static int igt_shrink_thp(void *arg) { struct drm_i915_private *i915 = arg; struct i915_address_space *vm; struct i915_gem_context *ctx; struct drm_i915_gem_object *obj; struct i915_gem_engines_iter it; struct intel_context *ce; struct i915_vma *vma; struct file *file; unsigned int flags = PIN_USER; unsigned int n; intel_wakeref_t wf; bool should_swap; int err; if (!igt_can_allocate_thp(i915)) { pr_info("missing THP support, skipping\n"); return 0; } file = mock_file(i915); if (IS_ERR(file)) return PTR_ERR(file); ctx = hugepage_ctx(i915, file); if (IS_ERR(ctx)) { err = PTR_ERR(ctx); goto out; } vm = i915_gem_context_get_eb_vm(ctx); /* * Sanity check shrinking huge-paged object -- make sure nothing blows * up. */ obj = i915_gem_object_create_shmem(i915, SZ_2M); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out_vm; } vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_put; } wf = intel_runtime_pm_get(&i915->runtime_pm); /* active shrink */ err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_wf; if (obj->mm.page_sizes.phys < I915_GTT_PAGE_SIZE_2M) { pr_info("failed to allocate THP, finishing test early\n"); goto out_unpin; } err = igt_check_page_sizes(vma); if (err) goto out_unpin; n = 0; for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { if (!intel_engine_can_store_dword(ce->engine)) continue; err = gpu_write(ce, vma, n++, 0xdeadbeaf); if (err) break; } i915_gem_context_unlock_engines(ctx); /* * Nuke everything *before* we unpin the pages so we can be reasonably * sure that when later checking get_nr_swap_pages() that some random * leftover object doesn't steal the remaining swap space. */ i915_gem_shrink(NULL, i915, -1UL, NULL, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_ACTIVE); i915_vma_unpin(vma); if (err) goto out_put; /* * Now that the pages are *unpinned* shrinking should invoke * shmem to truncate our pages, if we have available swap. */ should_swap = get_nr_swap_pages() > 0; i915_gem_shrink(NULL, i915, -1UL, NULL, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_ACTIVE | I915_SHRINK_WRITEBACK); if (should_swap == i915_gem_object_has_pages(obj)) { pr_err("unexpected pages mismatch, should_swap=%s\n", str_yes_no(should_swap)); err = -EINVAL; goto out_put; } if (should_swap == (obj->mm.page_sizes.sg || obj->mm.page_sizes.phys)) { pr_err("unexpected residual page-size bits, should_swap=%s\n", str_yes_no(should_swap)); err = -EINVAL; goto out_put; } err = i915_vma_pin(vma, 0, 0, flags); if (err) goto out_put; while (n--) { err = cpu_check(obj, n, 0xdeadbeaf); if (err) break; } out_unpin: i915_vma_unpin(vma); out_wf: intel_runtime_pm_put(&i915->runtime_pm, wf); out_put: i915_gem_object_put(obj); out_vm: i915_vm_put(vm); out: fput(file); return err; } int i915_gem_huge_page_mock_selftests(void) { static const struct i915_subtest tests[] = { SUBTEST(igt_mock_exhaust_device_supported_pages), SUBTEST(igt_mock_memory_region_huge_pages), SUBTEST(igt_mock_ppgtt_misaligned_dma), SUBTEST(igt_mock_ppgtt_huge_fill), SUBTEST(igt_mock_ppgtt_64K), }; struct drm_i915_private *dev_priv; struct i915_ppgtt *ppgtt; int err; dev_priv = mock_gem_device(); if (!dev_priv) return -ENOMEM; /* Pretend to be a device which supports the 48b PPGTT */ RUNTIME_INFO(dev_priv)->ppgtt_type = INTEL_PPGTT_FULL; RUNTIME_INFO(dev_priv)->ppgtt_size = 48; ppgtt = i915_ppgtt_create(to_gt(dev_priv), 0); if (IS_ERR(ppgtt)) { err = PTR_ERR(ppgtt); goto out_unlock; } if (!i915_vm_is_4lvl(&ppgtt->vm)) { pr_err("failed to create 48b PPGTT\n"); err = -EINVAL; goto out_put; } /* If we were ever hit this then it's time to mock the 64K scratch */ if (!i915_vm_has_scratch_64K(&ppgtt->vm)) { pr_err("PPGTT missing 64K scratch page\n"); err = -EINVAL; goto out_put; } err = i915_subtests(tests, ppgtt); out_put: i915_vm_put(&ppgtt->vm); out_unlock: mock_destroy_device(dev_priv); return err; } int i915_gem_huge_page_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_shrink_thp), SUBTEST(igt_tmpfs_fallback), SUBTEST(igt_ppgtt_smoke_huge), SUBTEST(igt_ppgtt_sanity_check), SUBTEST(igt_ppgtt_compact), }; if (!HAS_PPGTT(i915)) { pr_info("PPGTT not supported, skipping live-selftests\n"); return 0; } if (intel_gt_is_wedged(to_gt(i915))) return 0; return i915_live_subtests(tests, i915); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1