Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 2003 | 91.17% | 24 | 72.73% |
Maarten Lankhorst | 107 | 4.87% | 5 | 15.15% |
Tvrtko A. Ursulin | 63 | 2.87% | 1 | 3.03% |
Matthew Auld | 21 | 0.96% | 1 | 3.03% |
Lucas De Marchi | 2 | 0.09% | 1 | 3.03% |
Matthew Brost | 1 | 0.05% | 1 | 3.03% |
Total | 2197 | 33 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2017 Intel Corporation */ #include <linux/prime_numbers.h> #include "gt/intel_engine_pm.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "gt/intel_ring.h" #include "i915_selftest.h" #include "selftests/i915_random.h" struct context { struct drm_i915_gem_object *obj; struct intel_engine_cs *engine; }; static int cpu_set(struct context *ctx, unsigned long offset, u32 v) { unsigned int needs_clflush; struct page *page; void *map; u32 *cpu; int err; i915_gem_object_lock(ctx->obj, NULL); err = i915_gem_object_prepare_write(ctx->obj, &needs_clflush); if (err) goto out; page = i915_gem_object_get_page(ctx->obj, offset >> PAGE_SHIFT); map = kmap_atomic(page); cpu = map + offset_in_page(offset); if (needs_clflush & CLFLUSH_BEFORE) drm_clflush_virt_range(cpu, sizeof(*cpu)); *cpu = v; if (needs_clflush & CLFLUSH_AFTER) drm_clflush_virt_range(cpu, sizeof(*cpu)); kunmap_atomic(map); i915_gem_object_finish_access(ctx->obj); out: i915_gem_object_unlock(ctx->obj); return err; } static int cpu_get(struct context *ctx, unsigned long offset, u32 *v) { unsigned int needs_clflush; struct page *page; void *map; u32 *cpu; int err; i915_gem_object_lock(ctx->obj, NULL); err = i915_gem_object_prepare_read(ctx->obj, &needs_clflush); if (err) goto out; page = i915_gem_object_get_page(ctx->obj, offset >> PAGE_SHIFT); map = kmap_atomic(page); cpu = map + offset_in_page(offset); if (needs_clflush & CLFLUSH_BEFORE) drm_clflush_virt_range(cpu, sizeof(*cpu)); *v = *cpu; kunmap_atomic(map); i915_gem_object_finish_access(ctx->obj); out: i915_gem_object_unlock(ctx->obj); return err; } static int gtt_set(struct context *ctx, unsigned long offset, u32 v) { struct i915_vma *vma; u32 __iomem *map; int err = 0; i915_gem_object_lock(ctx->obj, NULL); err = i915_gem_object_set_to_gtt_domain(ctx->obj, true); i915_gem_object_unlock(ctx->obj); if (err) return err; vma = i915_gem_object_ggtt_pin(ctx->obj, NULL, 0, 0, PIN_MAPPABLE); if (IS_ERR(vma)) return PTR_ERR(vma); intel_gt_pm_get(vma->vm->gt); map = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(map)) { err = PTR_ERR(map); goto out_rpm; } iowrite32(v, &map[offset / sizeof(*map)]); i915_vma_unpin_iomap(vma); out_rpm: intel_gt_pm_put(vma->vm->gt); return err; } static int gtt_get(struct context *ctx, unsigned long offset, u32 *v) { struct i915_vma *vma; u32 __iomem *map; int err = 0; i915_gem_object_lock(ctx->obj, NULL); err = i915_gem_object_set_to_gtt_domain(ctx->obj, false); i915_gem_object_unlock(ctx->obj); if (err) return err; vma = i915_gem_object_ggtt_pin(ctx->obj, NULL, 0, 0, PIN_MAPPABLE); if (IS_ERR(vma)) return PTR_ERR(vma); intel_gt_pm_get(vma->vm->gt); map = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(map)) { err = PTR_ERR(map); goto out_rpm; } *v = ioread32(&map[offset / sizeof(*map)]); i915_vma_unpin_iomap(vma); out_rpm: intel_gt_pm_put(vma->vm->gt); return err; } static int wc_set(struct context *ctx, unsigned long offset, u32 v) { u32 *map; int err; i915_gem_object_lock(ctx->obj, NULL); err = i915_gem_object_set_to_wc_domain(ctx->obj, true); i915_gem_object_unlock(ctx->obj); if (err) return err; map = i915_gem_object_pin_map_unlocked(ctx->obj, I915_MAP_WC); if (IS_ERR(map)) return PTR_ERR(map); map[offset / sizeof(*map)] = v; __i915_gem_object_flush_map(ctx->obj, offset, sizeof(*map)); i915_gem_object_unpin_map(ctx->obj); return 0; } static int wc_get(struct context *ctx, unsigned long offset, u32 *v) { u32 *map; int err; i915_gem_object_lock(ctx->obj, NULL); err = i915_gem_object_set_to_wc_domain(ctx->obj, false); i915_gem_object_unlock(ctx->obj); if (err) return err; map = i915_gem_object_pin_map_unlocked(ctx->obj, I915_MAP_WC); if (IS_ERR(map)) return PTR_ERR(map); *v = map[offset / sizeof(*map)]; i915_gem_object_unpin_map(ctx->obj); return 0; } static int gpu_set(struct context *ctx, unsigned long offset, u32 v) { struct i915_request *rq; struct i915_vma *vma; u32 *cs; int err; vma = i915_gem_object_ggtt_pin(ctx->obj, NULL, 0, 0, 0); if (IS_ERR(vma)) return PTR_ERR(vma); i915_gem_object_lock(ctx->obj, NULL); err = i915_gem_object_set_to_gtt_domain(ctx->obj, true); if (err) goto out_unlock; rq = intel_engine_create_kernel_request(ctx->engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_unpin; } cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) { err = PTR_ERR(cs); goto out_rq; } if (GRAPHICS_VER(ctx->engine->i915) >= 8) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | 1 << 22; *cs++ = lower_32_bits(i915_ggtt_offset(vma) + offset); *cs++ = upper_32_bits(i915_ggtt_offset(vma) + offset); *cs++ = v; } else if (GRAPHICS_VER(ctx->engine->i915) >= 4) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = 0; *cs++ = i915_ggtt_offset(vma) + offset; *cs++ = v; } else { *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *cs++ = i915_ggtt_offset(vma) + offset; *cs++ = v; *cs++ = MI_NOOP; } intel_ring_advance(rq, cs); err = i915_request_await_object(rq, vma->obj, true); if (err == 0) err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); out_rq: i915_request_add(rq); out_unpin: i915_vma_unpin(vma); out_unlock: i915_gem_object_unlock(ctx->obj); return err; } static bool always_valid(struct context *ctx) { return true; } static bool needs_fence_registers(struct context *ctx) { struct intel_gt *gt = ctx->engine->gt; if (intel_gt_is_wedged(gt)) return false; return gt->ggtt->num_fences; } static bool needs_mi_store_dword(struct context *ctx) { if (intel_gt_is_wedged(ctx->engine->gt)) return false; return intel_engine_can_store_dword(ctx->engine); } static const struct igt_coherency_mode { const char *name; int (*set)(struct context *ctx, unsigned long offset, u32 v); int (*get)(struct context *ctx, unsigned long offset, u32 *v); bool (*valid)(struct context *ctx); } igt_coherency_mode[] = { { "cpu", cpu_set, cpu_get, always_valid }, { "gtt", gtt_set, gtt_get, needs_fence_registers }, { "wc", wc_set, wc_get, always_valid }, { "gpu", gpu_set, NULL, needs_mi_store_dword }, { }, }; static struct intel_engine_cs * random_engine(struct drm_i915_private *i915, struct rnd_state *prng) { struct intel_engine_cs *engine; unsigned int count; count = 0; for_each_uabi_engine(engine, i915) count++; count = i915_prandom_u32_max_state(count, prng); for_each_uabi_engine(engine, i915) if (count-- == 0) return engine; return NULL; } static int igt_gem_coherency(void *arg) { const unsigned int ncachelines = PAGE_SIZE/64; struct drm_i915_private *i915 = arg; const struct igt_coherency_mode *read, *write, *over; unsigned long count, n; u32 *offsets, *values; I915_RND_STATE(prng); struct context ctx; int err = 0; /* * We repeatedly write, overwrite and read from a sequence of * cachelines in order to try and detect incoherency (unflushed writes * from either the CPU or GPU). Each setter/getter uses our cache * domain API which should prevent incoherency. */ offsets = kmalloc_array(ncachelines, 2*sizeof(u32), GFP_KERNEL); if (!offsets) return -ENOMEM; for (count = 0; count < ncachelines; count++) offsets[count] = count * 64 + 4 * (count % 16); values = offsets + ncachelines; ctx.engine = random_engine(i915, &prng); if (!ctx.engine) { err = -ENODEV; goto out_free; } pr_info("%s: using %s\n", __func__, ctx.engine->name); intel_engine_pm_get(ctx.engine); for (over = igt_coherency_mode; over->name; over++) { if (!over->set) continue; if (!over->valid(&ctx)) continue; for (write = igt_coherency_mode; write->name; write++) { if (!write->set) continue; if (!write->valid(&ctx)) continue; for (read = igt_coherency_mode; read->name; read++) { if (!read->get) continue; if (!read->valid(&ctx)) continue; for_each_prime_number_from(count, 1, ncachelines) { ctx.obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(ctx.obj)) { err = PTR_ERR(ctx.obj); goto out_pm; } i915_random_reorder(offsets, ncachelines, &prng); for (n = 0; n < count; n++) values[n] = prandom_u32_state(&prng); for (n = 0; n < count; n++) { err = over->set(&ctx, offsets[n], ~values[n]); if (err) { pr_err("Failed to set stale value[%ld/%ld] in object using %s, err=%d\n", n, count, over->name, err); goto put_object; } } for (n = 0; n < count; n++) { err = write->set(&ctx, offsets[n], values[n]); if (err) { pr_err("Failed to set value[%ld/%ld] in object using %s, err=%d\n", n, count, write->name, err); goto put_object; } } for (n = 0; n < count; n++) { u32 found; err = read->get(&ctx, offsets[n], &found); if (err) { pr_err("Failed to get value[%ld/%ld] in object using %s, err=%d\n", n, count, read->name, err); goto put_object; } if (found != values[n]) { pr_err("Value[%ld/%ld] mismatch, (overwrite with %s) wrote [%s] %x read [%s] %x (inverse %x), at offset %x\n", n, count, over->name, write->name, values[n], read->name, found, ~values[n], offsets[n]); err = -EINVAL; goto put_object; } } i915_gem_object_put(ctx.obj); } } } } out_pm: intel_engine_pm_put(ctx.engine); out_free: kfree(offsets); return err; put_object: i915_gem_object_put(ctx.obj); goto out_pm; } int i915_gem_coherency_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_gem_coherency), }; return i915_live_subtests(tests, i915); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1