Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 554 | 73.77% | 2 | 25.00% |
Lucas De Marchi | 171 | 22.77% | 3 | 37.50% |
Tvrtko A. Ursulin | 20 | 2.66% | 1 | 12.50% |
Matt Roper | 6 | 0.80% | 2 | 25.00% |
Total | 751 | 8 |
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_regs.h" static u32 read_reference_ts_freq(struct intel_uncore *uncore) { u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE); u32 base_freq, frac_freq; base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; base_freq *= 1000000; frac_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); frac_freq = 1000000 / (frac_freq + 1); return base_freq + frac_freq; } static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore, u32 rpm_config_reg) { u32 f19_2_mhz = 19200000; u32 f24_mhz = 24000000; u32 f25_mhz = 25000000; u32 f38_4_mhz = 38400000; u32 crystal_clock = (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; switch (crystal_clock) { case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: return f24_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: return f19_2_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: return f38_4_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: return f25_mhz; default: MISSING_CASE(crystal_clock); return 0; } } static u32 gen11_read_clock_frequency(struct intel_uncore *uncore) { u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); u32 freq = 0; /* * Note that on gen11+, the clock frequency may be reconfigured. * We do not, and we assume nobody else does. * * First figure out the reference frequency. There are 2 ways * we can compute the frequency, either through the * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE * tells us which one we should use. */ if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(uncore); } else { u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0); freq = gen11_get_crystal_clock_freq(uncore, c0); /* * Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); } return freq; } static u32 gen9_read_clock_frequency(struct intel_uncore *uncore) { u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE); u32 freq = 0; if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(uncore); } else { freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000; /* * Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> CTC_SHIFT_PARAMETER_SHIFT); } return freq; } static u32 gen5_read_clock_frequency(struct intel_uncore *uncore) { /* * PRMs say: * * "The PCU TSC counts 10ns increments; this timestamp * reflects bits 38:3 of the TSC (i.e. 80ns granularity, * rolling over every 1.5 hours). */ return 12500000; } static u32 gen2_read_clock_frequency(struct intel_uncore *uncore) { /* * PRMs say: * * "The value in this register increments once every 16 * hclks." (through the “Clocking Configuration” * (“CLKCFG”) MCHBAR register) */ return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000 / 16; } static u32 read_clock_frequency(struct intel_uncore *uncore) { if (GRAPHICS_VER(uncore->i915) >= 11) return gen11_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) >= 9) return gen9_read_clock_frequency(uncore); else if (GRAPHICS_VER(uncore->i915) >= 5) return gen5_read_clock_frequency(uncore); else return gen2_read_clock_frequency(uncore); } void intel_gt_init_clock_frequency(struct intel_gt *gt) { gt->clock_frequency = read_clock_frequency(gt->uncore); /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */ if (GRAPHICS_VER(gt->i915) == 11) gt->clock_period_ns = NSEC_PER_SEC / 13750000; else if (gt->clock_frequency) gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1); GT_TRACE(gt, "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n", gt->clock_frequency / 1000, gt->clock_period_ns, div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX), USEC_PER_SEC)); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) void intel_gt_check_clock_frequency(const struct intel_gt *gt) { if (gt->clock_frequency != read_clock_frequency(gt->uncore)) { dev_err(gt->i915->drm.dev, "GT clock frequency changed, was %uHz, now %uHz!\n", gt->clock_frequency, read_clock_frequency(gt->uncore)); } } #endif static u64 div_u64_roundup(u64 nom, u32 den) { return div_u64(nom + den - 1, den); } u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count) { return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency); } u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count) { return intel_gt_clock_interval_to_ns(gt, 16 * count); } u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns) { return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC); } u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns) { u64 val; /* * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS * 8300) freezing up around GPU hangs. Looks as if even * scheduling/timer interrupts start misbehaving if the RPS * EI/thresholds are "bad", leading to a very sluggish or even * frozen machine. */ val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16); if (GRAPHICS_VER(gt->i915) == 6) val = div_u64_roundup(val, 25) * 25; return val; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1