Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 1504 | 96.29% | 14 | 70.00% |
Matthew Brost | 22 | 1.41% | 1 | 5.00% |
Dan Carpenter | 21 | 1.34% | 1 | 5.00% |
Venkata Sandeep Dhanalakota | 8 | 0.51% | 1 | 5.00% |
Michał Winiarski | 3 | 0.19% | 1 | 5.00% |
Tvrtko A. Ursulin | 3 | 0.19% | 1 | 5.00% |
Maarten Lankhorst | 1 | 0.06% | 1 | 5.00% |
Total | 1562 | 20 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2019 Intel Corporation */ #include "i915_selftest.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "gem/selftests/mock_context.h" #include "selftests/igt_flush_test.h" #include "selftests/mock_drm.h" static int request_sync(struct i915_request *rq) { struct intel_timeline *tl = i915_request_timeline(rq); long timeout; int err = 0; intel_timeline_get(tl); i915_request_get(rq); /* Opencode i915_request_add() so we can keep the timeline locked. */ __i915_request_commit(rq); rq->sched.attr.priority = I915_PRIORITY_BARRIER; __i915_request_queue_bh(rq); timeout = i915_request_wait(rq, 0, HZ / 10); if (timeout < 0) err = timeout; else i915_request_retire_upto(rq); lockdep_unpin_lock(&tl->mutex, rq->cookie); mutex_unlock(&tl->mutex); i915_request_put(rq); intel_timeline_put(tl); return err; } static int context_sync(struct intel_context *ce) { struct intel_timeline *tl = ce->timeline; int err = 0; mutex_lock(&tl->mutex); do { struct i915_request *rq; long timeout; if (list_empty(&tl->requests)) break; rq = list_last_entry(&tl->requests, typeof(*rq), link); i915_request_get(rq); timeout = i915_request_wait(rq, 0, HZ / 10); if (timeout < 0) err = timeout; else i915_request_retire_upto(rq); i915_request_put(rq); } while (!err); mutex_unlock(&tl->mutex); /* Wait for all barriers to complete (remote CPU) before we check */ i915_active_unlock_wait(&ce->active); return err; } static int __live_context_size(struct intel_engine_cs *engine) { struct intel_context *ce; struct i915_request *rq; void *vaddr; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); err = intel_context_pin(ce); if (err) goto err; vaddr = i915_gem_object_pin_map_unlocked(ce->state->obj, i915_coherent_map_type(engine->i915, ce->state->obj, false)); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); intel_context_unpin(ce); goto err; } /* * Note that execlists also applies a redzone which it checks on * context unpin when debugging. We are using the same location * and same poison value so that our checks overlap. Despite the * redundancy, we want to keep this little selftest so that we * get coverage of any and all submission backends, and we can * always extend this test to ensure we trick the HW into a * compromising position wrt to the various sections that need * to be written into the context state. * * TLDR; this overlaps with the execlists redzone. */ vaddr += engine->context_size - I915_GTT_PAGE_SIZE; memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE); rq = intel_context_create_request(ce); intel_context_unpin(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } err = request_sync(rq); if (err) goto err_unpin; /* Force the context switch */ rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } err = request_sync(rq); if (err) goto err_unpin; if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE)) { pr_err("%s context overwrote trailing red-zone!", engine->name); err = -EINVAL; } err_unpin: i915_gem_object_unpin_map(ce->state->obj); err: intel_context_put(ce); return err; } static int live_context_size(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * Check that our context sizes are correct by seeing if the * HW tries to write past the end of one. */ for_each_engine(engine, gt, id) { struct file *saved; if (!engine->context_size) continue; intel_engine_pm_get(engine); /* * Hide the old default state -- we lie about the context size * and get confused when the default state is smaller than * expected. For our do nothing request, inheriting the * active state is sufficient, we are only checking that we * don't use more than we planned. */ saved = fetch_and_zero(&engine->default_state); /* Overlaps with the execlists redzone */ engine->context_size += I915_GTT_PAGE_SIZE; err = __live_context_size(engine); engine->context_size -= I915_GTT_PAGE_SIZE; engine->default_state = saved; intel_engine_pm_put(engine); if (err) break; } return err; } static int __live_active_context(struct intel_engine_cs *engine) { unsigned long saved_heartbeat; struct intel_context *ce; int pass; int err; /* * We keep active contexts alive until after a subsequent context * switch as the final write from the context-save will be after * we retire the final request. We track when we unpin the context, * under the presumption that the final pin is from the last request, * and instead of immediately unpinning the context, we add a task * to unpin the context from the next idle-barrier. * * This test makes sure that the context is kept alive until a * subsequent idle-barrier (emitted when the engine wakeref hits 0 * with no more outstanding requests). * * In GuC submission mode we don't use idle barriers and we instead * get a message from the GuC to signal that it is safe to unpin the * context from memory. */ if (intel_engine_uses_guc(engine)) return 0; if (intel_engine_pm_is_awake(engine)) { pr_err("%s is awake before starting %s!\n", engine->name, __func__); return -EINVAL; } ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); saved_heartbeat = engine->props.heartbeat_interval_ms; engine->props.heartbeat_interval_ms = 0; for (pass = 0; pass <= 2; pass++) { struct i915_request *rq; intel_engine_pm_get(engine); rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_engine; } err = request_sync(rq); if (err) goto out_engine; /* Context will be kept active until after an idle-barrier. */ if (i915_active_is_idle(&ce->active)) { pr_err("context is not active; expected idle-barrier (%s pass %d)\n", engine->name, pass); err = -EINVAL; goto out_engine; } if (!intel_engine_pm_is_awake(engine)) { pr_err("%s is asleep before idle-barrier\n", engine->name); err = -EINVAL; goto out_engine; } out_engine: intel_engine_pm_put(engine); if (err) goto err; } /* Now make sure our idle-barriers are flushed */ err = intel_engine_flush_barriers(engine); if (err) goto err; /* Wait for the barrier and in the process wait for engine to park */ err = context_sync(engine->kernel_context); if (err) goto err; if (!i915_active_is_idle(&ce->active)) { pr_err("context is still active!"); err = -EINVAL; } intel_engine_pm_flush(engine); if (intel_engine_pm_is_awake(engine)) { struct drm_printer p = drm_debug_printer(__func__); intel_engine_dump(engine, &p, "%s is still awake:%d after idle-barriers\n", engine->name, atomic_read(&engine->wakeref.count)); GEM_TRACE_DUMP(); err = -EINVAL; goto err; } err: engine->props.heartbeat_interval_ms = saved_heartbeat; intel_context_put(ce); return err; } static int live_active_context(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; for_each_engine(engine, gt, id) { err = __live_active_context(engine); if (err) break; err = igt_flush_test(gt->i915); if (err) break; } return err; } static int __remote_sync(struct intel_context *ce, struct intel_context *remote) { struct i915_request *rq; int err; err = intel_context_pin(remote); if (err) return err; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto unpin; } err = intel_context_prepare_remote_request(remote, rq); if (err) { i915_request_add(rq); goto unpin; } err = request_sync(rq); unpin: intel_context_unpin(remote); return err; } static int __live_remote_context(struct intel_engine_cs *engine) { struct intel_context *local, *remote; unsigned long saved_heartbeat; int pass; int err; /* * Check that our idle barriers do not interfere with normal * activity tracking. In particular, check that operating * on the context image remotely (intel_context_prepare_remote_request), * which inserts foreign fences into intel_context.active, does not * clobber the idle-barrier. * * In GuC submission mode we don't use idle barriers. */ if (intel_engine_uses_guc(engine)) return 0; if (intel_engine_pm_is_awake(engine)) { pr_err("%s is awake before starting %s!\n", engine->name, __func__); return -EINVAL; } remote = intel_context_create(engine); if (IS_ERR(remote)) return PTR_ERR(remote); local = intel_context_create(engine); if (IS_ERR(local)) { err = PTR_ERR(local); goto err_remote; } saved_heartbeat = engine->props.heartbeat_interval_ms; engine->props.heartbeat_interval_ms = 0; intel_engine_pm_get(engine); for (pass = 0; pass <= 2; pass++) { err = __remote_sync(local, remote); if (err) break; err = __remote_sync(engine->kernel_context, remote); if (err) break; if (i915_active_is_idle(&remote->active)) { pr_err("remote context is not active; expected idle-barrier (%s pass %d)\n", engine->name, pass); err = -EINVAL; break; } } intel_engine_pm_put(engine); engine->props.heartbeat_interval_ms = saved_heartbeat; intel_context_put(local); err_remote: intel_context_put(remote); return err; } static int live_remote_context(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; for_each_engine(engine, gt, id) { err = __live_remote_context(engine); if (err) break; err = igt_flush_test(gt->i915); if (err) break; } return err; } int intel_context_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_context_size), SUBTEST(live_active_context), SUBTEST(live_remote_context), }; struct intel_gt *gt = to_gt(i915); if (intel_gt_is_wedged(gt)) return 0; return intel_gt_live_subtests(tests, gt); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1