Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alan Previn | 6666 | 97.54% | 11 | 68.75% |
John Harrison | 146 | 2.14% | 3 | 18.75% |
Matt Roper | 17 | 0.25% | 1 | 6.25% |
Daniele Ceraolo Spurio | 5 | 0.07% | 1 | 6.25% |
Total | 6834 | 16 |
// SPDX-License-Identifier: MIT /* * Copyright © 2021-2022 Intel Corporation */ #include <linux/types.h> #include <drm/drm_print.h> #include "gt/intel_engine_regs.h" #include "gt/intel_gt.h" #include "gt/intel_gt_mcr.h" #include "gt/intel_gt_regs.h" #include "gt/intel_lrc.h" #include "guc_capture_fwif.h" #include "intel_guc_capture.h" #include "intel_guc_fwif.h" #include "i915_drv.h" #include "i915_gpu_error.h" #include "i915_irq.h" #include "i915_memcpy.h" #include "i915_reg.h" /* * Define all device tables of GuC error capture register lists * NOTE: For engine-registers, GuC only needs the register offsets * from the engine-mmio-base */ #define COMMON_BASE_GLOBAL \ { FORCEWAKE_MT, 0, 0, "FORCEWAKE" } #define COMMON_GEN9BASE_GLOBAL \ { GEN8_FAULT_TLB_DATA0, 0, 0, "GEN8_FAULT_TLB_DATA0" }, \ { GEN8_FAULT_TLB_DATA1, 0, 0, "GEN8_FAULT_TLB_DATA1" }, \ { ERROR_GEN6, 0, 0, "ERROR_GEN6" }, \ { DONE_REG, 0, 0, "DONE_REG" }, \ { HSW_GTT_CACHE_EN, 0, 0, "HSW_GTT_CACHE_EN" } #define COMMON_GEN12BASE_GLOBAL \ { GEN12_FAULT_TLB_DATA0, 0, 0, "GEN12_FAULT_TLB_DATA0" }, \ { GEN12_FAULT_TLB_DATA1, 0, 0, "GEN12_FAULT_TLB_DATA1" }, \ { GEN12_AUX_ERR_DBG, 0, 0, "AUX_ERR_DBG" }, \ { GEN12_GAM_DONE, 0, 0, "GAM_DONE" }, \ { GEN12_RING_FAULT_REG, 0, 0, "FAULT_REG" } #define COMMON_BASE_ENGINE_INSTANCE \ { RING_PSMI_CTL(0), 0, 0, "RC PSMI" }, \ { RING_ESR(0), 0, 0, "ESR" }, \ { RING_DMA_FADD(0), 0, 0, "RING_DMA_FADD_LDW" }, \ { RING_DMA_FADD_UDW(0), 0, 0, "RING_DMA_FADD_UDW" }, \ { RING_IPEIR(0), 0, 0, "IPEIR" }, \ { RING_IPEHR(0), 0, 0, "IPEHR" }, \ { RING_INSTPS(0), 0, 0, "INSTPS" }, \ { RING_BBADDR(0), 0, 0, "RING_BBADDR_LOW32" }, \ { RING_BBADDR_UDW(0), 0, 0, "RING_BBADDR_UP32" }, \ { RING_BBSTATE(0), 0, 0, "BB_STATE" }, \ { CCID(0), 0, 0, "CCID" }, \ { RING_ACTHD(0), 0, 0, "ACTHD_LDW" }, \ { RING_ACTHD_UDW(0), 0, 0, "ACTHD_UDW" }, \ { RING_INSTPM(0), 0, 0, "INSTPM" }, \ { RING_INSTDONE(0), 0, 0, "INSTDONE" }, \ { RING_NOPID(0), 0, 0, "RING_NOPID" }, \ { RING_START(0), 0, 0, "START" }, \ { RING_HEAD(0), 0, 0, "HEAD" }, \ { RING_TAIL(0), 0, 0, "TAIL" }, \ { RING_CTL(0), 0, 0, "CTL" }, \ { RING_MI_MODE(0), 0, 0, "MODE" }, \ { RING_CONTEXT_CONTROL(0), 0, 0, "RING_CONTEXT_CONTROL" }, \ { RING_HWS_PGA(0), 0, 0, "HWS" }, \ { RING_MODE_GEN7(0), 0, 0, "GFX_MODE" }, \ { GEN8_RING_PDP_LDW(0, 0), 0, 0, "PDP0_LDW" }, \ { GEN8_RING_PDP_UDW(0, 0), 0, 0, "PDP0_UDW" }, \ { GEN8_RING_PDP_LDW(0, 1), 0, 0, "PDP1_LDW" }, \ { GEN8_RING_PDP_UDW(0, 1), 0, 0, "PDP1_UDW" }, \ { GEN8_RING_PDP_LDW(0, 2), 0, 0, "PDP2_LDW" }, \ { GEN8_RING_PDP_UDW(0, 2), 0, 0, "PDP2_UDW" }, \ { GEN8_RING_PDP_LDW(0, 3), 0, 0, "PDP3_LDW" }, \ { GEN8_RING_PDP_UDW(0, 3), 0, 0, "PDP3_UDW" } #define COMMON_BASE_HAS_EU \ { EIR, 0, 0, "EIR" } #define COMMON_BASE_RENDER \ { GEN7_SC_INSTDONE, 0, 0, "GEN7_SC_INSTDONE" } #define COMMON_GEN12BASE_RENDER \ { GEN12_SC_INSTDONE_EXTRA, 0, 0, "GEN12_SC_INSTDONE_EXTRA" }, \ { GEN12_SC_INSTDONE_EXTRA2, 0, 0, "GEN12_SC_INSTDONE_EXTRA2" } #define COMMON_GEN12BASE_VEC \ { GEN12_SFC_DONE(0), 0, 0, "SFC_DONE[0]" }, \ { GEN12_SFC_DONE(1), 0, 0, "SFC_DONE[1]" }, \ { GEN12_SFC_DONE(2), 0, 0, "SFC_DONE[2]" }, \ { GEN12_SFC_DONE(3), 0, 0, "SFC_DONE[3]" } /* XE_LPD - Global */ static const struct __guc_mmio_reg_descr xe_lpd_global_regs[] = { COMMON_BASE_GLOBAL, COMMON_GEN9BASE_GLOBAL, COMMON_GEN12BASE_GLOBAL, }; /* XE_LPD - Render / Compute Per-Class */ static const struct __guc_mmio_reg_descr xe_lpd_rc_class_regs[] = { COMMON_BASE_HAS_EU, COMMON_BASE_RENDER, COMMON_GEN12BASE_RENDER, }; /* GEN9/XE_LPD - Render / Compute Per-Engine-Instance */ static const struct __guc_mmio_reg_descr xe_lpd_rc_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* GEN9/XE_LPD - Media Decode/Encode Per-Engine-Instance */ static const struct __guc_mmio_reg_descr xe_lpd_vd_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* XE_LPD - Video Enhancement Per-Class */ static const struct __guc_mmio_reg_descr xe_lpd_vec_class_regs[] = { COMMON_GEN12BASE_VEC, }; /* GEN9/XE_LPD - Video Enhancement Per-Engine-Instance */ static const struct __guc_mmio_reg_descr xe_lpd_vec_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* GEN9/XE_LPD - Blitter Per-Engine-Instance */ static const struct __guc_mmio_reg_descr xe_lpd_blt_inst_regs[] = { COMMON_BASE_ENGINE_INSTANCE, }; /* GEN9 - Global */ static const struct __guc_mmio_reg_descr default_global_regs[] = { COMMON_BASE_GLOBAL, COMMON_GEN9BASE_GLOBAL, }; static const struct __guc_mmio_reg_descr default_rc_class_regs[] = { COMMON_BASE_HAS_EU, COMMON_BASE_RENDER, }; /* * Empty lists: * GEN9/XE_LPD - Blitter Per-Class * GEN9/XE_LPD - Media Decode/Encode Per-Class * GEN9 - VEC Class */ static const struct __guc_mmio_reg_descr empty_regs_list[] = { }; #define TO_GCAP_DEF_OWNER(x) (GUC_CAPTURE_LIST_INDEX_##x) #define TO_GCAP_DEF_TYPE(x) (GUC_CAPTURE_LIST_TYPE_##x) #define MAKE_REGLIST(regslist, regsowner, regstype, class) \ { \ regslist, \ ARRAY_SIZE(regslist), \ TO_GCAP_DEF_OWNER(regsowner), \ TO_GCAP_DEF_TYPE(regstype), \ class, \ NULL, \ } /* List of lists */ static struct __guc_mmio_reg_descr_group default_lists[] = { MAKE_REGLIST(default_global_regs, PF, GLOBAL, 0), MAKE_REGLIST(default_rc_class_regs, PF, ENGINE_CLASS, GUC_RENDER_CLASS), MAKE_REGLIST(xe_lpd_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_RENDER_CLASS), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_VIDEO_CLASS), MAKE_REGLIST(xe_lpd_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEO_CLASS), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_VIDEOENHANCE_CLASS), MAKE_REGLIST(xe_lpd_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEOENHANCE_CLASS), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_BLITTER_CLASS), MAKE_REGLIST(xe_lpd_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_BLITTER_CLASS), {} }; static const struct __guc_mmio_reg_descr_group xe_lpd_lists[] = { MAKE_REGLIST(xe_lpd_global_regs, PF, GLOBAL, 0), MAKE_REGLIST(xe_lpd_rc_class_regs, PF, ENGINE_CLASS, GUC_RENDER_CLASS), MAKE_REGLIST(xe_lpd_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_RENDER_CLASS), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_VIDEO_CLASS), MAKE_REGLIST(xe_lpd_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEO_CLASS), MAKE_REGLIST(xe_lpd_vec_class_regs, PF, ENGINE_CLASS, GUC_VIDEOENHANCE_CLASS), MAKE_REGLIST(xe_lpd_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_VIDEOENHANCE_CLASS), MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_BLITTER_CLASS), MAKE_REGLIST(xe_lpd_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_BLITTER_CLASS), {} }; static const struct __guc_mmio_reg_descr_group * guc_capture_get_one_list(const struct __guc_mmio_reg_descr_group *reglists, u32 owner, u32 type, u32 id) { int i; if (!reglists) return NULL; for (i = 0; reglists[i].list; ++i) { if (reglists[i].owner == owner && reglists[i].type == type && (reglists[i].engine == id || reglists[i].type == GUC_CAPTURE_LIST_TYPE_GLOBAL)) return ®lists[i]; } return NULL; } static struct __guc_mmio_reg_descr_group * guc_capture_get_one_ext_list(struct __guc_mmio_reg_descr_group *reglists, u32 owner, u32 type, u32 id) { int i; if (!reglists) return NULL; for (i = 0; reglists[i].extlist; ++i) { if (reglists[i].owner == owner && reglists[i].type == type && (reglists[i].engine == id || reglists[i].type == GUC_CAPTURE_LIST_TYPE_GLOBAL)) return ®lists[i]; } return NULL; } static void guc_capture_free_extlists(struct __guc_mmio_reg_descr_group *reglists) { int i = 0; if (!reglists) return; while (reglists[i].extlist) kfree(reglists[i++].extlist); } struct __ext_steer_reg { const char *name; i915_reg_t reg; }; static const struct __ext_steer_reg xe_extregs[] = { {"GEN7_SAMPLER_INSTDONE", GEN7_SAMPLER_INSTDONE}, {"GEN7_ROW_INSTDONE", GEN7_ROW_INSTDONE} }; static void __fill_ext_reg(struct __guc_mmio_reg_descr *ext, const struct __ext_steer_reg *extlist, int slice_id, int subslice_id) { ext->reg = extlist->reg; ext->flags = FIELD_PREP(GUC_REGSET_STEERING_GROUP, slice_id); ext->flags |= FIELD_PREP(GUC_REGSET_STEERING_INSTANCE, subslice_id); ext->regname = extlist->name; } static int __alloc_ext_regs(struct __guc_mmio_reg_descr_group *newlist, const struct __guc_mmio_reg_descr_group *rootlist, int num_regs) { struct __guc_mmio_reg_descr *list; list = kcalloc(num_regs, sizeof(struct __guc_mmio_reg_descr), GFP_KERNEL); if (!list) return -ENOMEM; newlist->extlist = list; newlist->num_regs = num_regs; newlist->owner = rootlist->owner; newlist->engine = rootlist->engine; newlist->type = rootlist->type; return 0; } static void guc_capture_alloc_steered_lists_xe_lpd(struct intel_guc *guc, const struct __guc_mmio_reg_descr_group *lists) { struct intel_gt *gt = guc_to_gt(guc); int slice, subslice, iter, i, num_steer_regs, num_tot_regs = 0; const struct __guc_mmio_reg_descr_group *list; struct __guc_mmio_reg_descr_group *extlists; struct __guc_mmio_reg_descr *extarray; struct sseu_dev_info *sseu; /* In XE_LPD we only have steered registers for the render-class */ list = guc_capture_get_one_list(lists, GUC_CAPTURE_LIST_INDEX_PF, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, GUC_RENDER_CLASS); /* skip if extlists was previously allocated */ if (!list || guc->capture->extlists) return; num_steer_regs = ARRAY_SIZE(xe_extregs); sseu = >->info.sseu; for_each_ss_steering(iter, gt, slice, subslice) num_tot_regs += num_steer_regs; if (!num_tot_regs) return; /* allocate an extra for an end marker */ extlists = kcalloc(2, sizeof(struct __guc_mmio_reg_descr_group), GFP_KERNEL); if (!extlists) return; if (__alloc_ext_regs(&extlists[0], list, num_tot_regs)) { kfree(extlists); return; } extarray = extlists[0].extlist; for_each_ss_steering(iter, gt, slice, subslice) { for (i = 0; i < num_steer_regs; ++i) { __fill_ext_reg(extarray, &xe_extregs[i], slice, subslice); ++extarray; } } guc->capture->extlists = extlists; } static const struct __ext_steer_reg xehpg_extregs[] = { {"XEHPG_INSTDONE_GEOM_SVG", XEHPG_INSTDONE_GEOM_SVG} }; static bool __has_xehpg_extregs(u32 ipver) { return (ipver >= IP_VER(12, 55)); } static void guc_capture_alloc_steered_lists_xe_hpg(struct intel_guc *guc, const struct __guc_mmio_reg_descr_group *lists, u32 ipver) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; struct sseu_dev_info *sseu; int slice, subslice, i, iter, num_steer_regs, num_tot_regs = 0; const struct __guc_mmio_reg_descr_group *list; struct __guc_mmio_reg_descr_group *extlists; struct __guc_mmio_reg_descr *extarray; /* In XE_LP / HPG we only have render-class steering registers during error-capture */ list = guc_capture_get_one_list(lists, GUC_CAPTURE_LIST_INDEX_PF, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, GUC_RENDER_CLASS); /* skip if extlists was previously allocated */ if (!list || guc->capture->extlists) return; num_steer_regs = ARRAY_SIZE(xe_extregs); if (__has_xehpg_extregs(ipver)) num_steer_regs += ARRAY_SIZE(xehpg_extregs); sseu = >->info.sseu; for_each_ss_steering(iter, gt, slice, subslice) num_tot_regs += num_steer_regs; if (!num_tot_regs) return; /* allocate an extra for an end marker */ extlists = kcalloc(2, sizeof(struct __guc_mmio_reg_descr_group), GFP_KERNEL); if (!extlists) return; if (__alloc_ext_regs(&extlists[0], list, num_tot_regs)) { kfree(extlists); return; } extarray = extlists[0].extlist; for_each_ss_steering(iter, gt, slice, subslice) { for (i = 0; i < ARRAY_SIZE(xe_extregs); ++i) { __fill_ext_reg(extarray, &xe_extregs[i], slice, subslice); ++extarray; } if (__has_xehpg_extregs(ipver)) { for (i = 0; i < ARRAY_SIZE(xehpg_extregs); ++i) { __fill_ext_reg(extarray, &xehpg_extregs[i], slice, subslice); ++extarray; } } } drm_dbg(&i915->drm, "GuC-capture found %d-ext-regs.\n", num_tot_regs); guc->capture->extlists = extlists; } static const struct __guc_mmio_reg_descr_group * guc_capture_get_device_reglist(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_gt(guc)->i915; if (GRAPHICS_VER(i915) > 11) { /* * For certain engine classes, there are slice and subslice * level registers requiring steering. We allocate and populate * these at init time based on hw config add it as an extension * list at the end of the pre-populated render list. */ if (IS_DG2(i915)) guc_capture_alloc_steered_lists_xe_hpg(guc, xe_lpd_lists, IP_VER(12, 55)); else if (IS_XEHPSDV(i915)) guc_capture_alloc_steered_lists_xe_hpg(guc, xe_lpd_lists, IP_VER(12, 50)); else guc_capture_alloc_steered_lists_xe_lpd(guc, xe_lpd_lists); return xe_lpd_lists; } /* if GuC submission is enabled on a non-POR platform, just use a common baseline */ return default_lists; } static int guc_capture_list_init(struct intel_guc *guc, u32 owner, u32 type, u32 classid, struct guc_mmio_reg *ptr, u16 num_entries) { u32 i = 0, j = 0; struct drm_i915_private *i915 = guc_to_gt(guc)->i915; const struct __guc_mmio_reg_descr_group *reglists = guc->capture->reglists; struct __guc_mmio_reg_descr_group *extlists = guc->capture->extlists; const struct __guc_mmio_reg_descr_group *match; struct __guc_mmio_reg_descr_group *matchext; if (!reglists) return -ENODEV; match = guc_capture_get_one_list(reglists, owner, type, classid); if (!match) return -ENODATA; for (i = 0; i < num_entries && i < match->num_regs; ++i) { ptr[i].offset = match->list[i].reg.reg; ptr[i].value = 0xDEADF00D; ptr[i].flags = match->list[i].flags; ptr[i].mask = match->list[i].mask; } matchext = guc_capture_get_one_ext_list(extlists, owner, type, classid); if (matchext) { for (i = match->num_regs, j = 0; i < num_entries && i < (match->num_regs + matchext->num_regs) && j < matchext->num_regs; ++i, ++j) { ptr[i].offset = matchext->extlist[j].reg.reg; ptr[i].value = 0xDEADF00D; ptr[i].flags = matchext->extlist[j].flags; ptr[i].mask = matchext->extlist[j].mask; } } if (i < num_entries) drm_dbg(&i915->drm, "GuC-capture: Init reglist short %d out %d.\n", (int)i, (int)num_entries); return 0; } static int guc_cap_list_num_regs(struct intel_guc_state_capture *gc, u32 owner, u32 type, u32 classid) { const struct __guc_mmio_reg_descr_group *match; struct __guc_mmio_reg_descr_group *matchext; int num_regs; match = guc_capture_get_one_list(gc->reglists, owner, type, classid); if (!match) return 0; num_regs = match->num_regs; matchext = guc_capture_get_one_ext_list(gc->extlists, owner, type, classid); if (matchext) num_regs += matchext->num_regs; return num_regs; } int intel_guc_capture_getlistsize(struct intel_guc *guc, u32 owner, u32 type, u32 classid, size_t *size) { struct intel_guc_state_capture *gc = guc->capture; struct __guc_capture_ads_cache *cache = &gc->ads_cache[owner][type][classid]; int num_regs; if (!gc->reglists) return -ENODEV; if (cache->is_valid) { *size = cache->size; return cache->status; } num_regs = guc_cap_list_num_regs(gc, owner, type, classid); if (!num_regs) return -ENODATA; *size = PAGE_ALIGN((sizeof(struct guc_debug_capture_list)) + (num_regs * sizeof(struct guc_mmio_reg))); return 0; } static void guc_capture_create_prealloc_nodes(struct intel_guc *guc); int intel_guc_capture_getlist(struct intel_guc *guc, u32 owner, u32 type, u32 classid, void **outptr) { struct intel_guc_state_capture *gc = guc->capture; struct __guc_capture_ads_cache *cache = &gc->ads_cache[owner][type][classid]; struct drm_i915_private *i915 = guc_to_gt(guc)->i915; struct guc_debug_capture_list *listnode; int ret, num_regs; u8 *caplist, *tmp; size_t size = 0; if (!gc->reglists) return -ENODEV; if (cache->is_valid) { *outptr = cache->ptr; return cache->status; } /* * ADS population of input registers is a good * time to pre-allocate cachelist output nodes */ guc_capture_create_prealloc_nodes(guc); ret = intel_guc_capture_getlistsize(guc, owner, type, classid, &size); if (ret) { cache->is_valid = true; cache->ptr = NULL; cache->size = 0; cache->status = ret; return ret; } caplist = kzalloc(size, GFP_KERNEL); if (!caplist) { drm_dbg(&i915->drm, "GuC-capture: failed to alloc cached caplist"); return -ENOMEM; } /* populate capture list header */ tmp = caplist; num_regs = guc_cap_list_num_regs(guc->capture, owner, type, classid); listnode = (struct guc_debug_capture_list *)tmp; listnode->header.info = FIELD_PREP(GUC_CAPTURELISTHDR_NUMDESCR, (u32)num_regs); /* populate list of register descriptor */ tmp += sizeof(struct guc_debug_capture_list); guc_capture_list_init(guc, owner, type, classid, (struct guc_mmio_reg *)tmp, num_regs); /* cache this list */ cache->is_valid = true; cache->ptr = caplist; cache->size = size; cache->status = 0; *outptr = caplist; return 0; } int intel_guc_capture_getnullheader(struct intel_guc *guc, void **outptr, size_t *size) { struct intel_guc_state_capture *gc = guc->capture; struct drm_i915_private *i915 = guc_to_gt(guc)->i915; int tmp = sizeof(u32) * 4; void *null_header; if (gc->ads_null_cache) { *outptr = gc->ads_null_cache; *size = tmp; return 0; } null_header = kzalloc(tmp, GFP_KERNEL); if (!null_header) { drm_dbg(&i915->drm, "GuC-capture: failed to alloc cached nulllist"); return -ENOMEM; } gc->ads_null_cache = null_header; *outptr = null_header; *size = tmp; return 0; } static int guc_capture_output_min_size_est(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; int worst_min_size = 0, num_regs = 0; size_t tmp = 0; if (!guc->capture) return -ENODEV; /* * If every single engine-instance suffered a failure in quick succession but * were all unrelated, then a burst of multiple error-capture events would dump * registers for every one engine instance, one at a time. In this case, GuC * would even dump the global-registers repeatedly. * * For each engine instance, there would be 1 x guc_state_capture_group_t output * followed by 3 x guc_state_capture_t lists. The latter is how the register * dumps are split across different register types (where the '3' are global vs class * vs instance). */ for_each_engine(engine, gt, id) { worst_min_size += sizeof(struct guc_state_capture_group_header_t) + (3 * sizeof(struct guc_state_capture_header_t)); if (!intel_guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_GLOBAL, 0, &tmp)) num_regs += tmp; if (!intel_guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS, engine->class, &tmp)) { num_regs += tmp; } if (!intel_guc_capture_getlistsize(guc, 0, GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE, engine->class, &tmp)) { num_regs += tmp; } } worst_min_size += (num_regs * sizeof(struct guc_mmio_reg)); return worst_min_size; } /* * Add on a 3x multiplier to allow for multiple back-to-back captures occurring * before the i915 can read the data out and process it */ #define GUC_CAPTURE_OVERBUFFER_MULTIPLIER 3 static void check_guc_capture_size(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_gt(guc)->i915; int min_size = guc_capture_output_min_size_est(guc); int spare_size = min_size * GUC_CAPTURE_OVERBUFFER_MULTIPLIER; u32 buffer_size = intel_guc_log_section_size_capture(&guc->log); if (min_size < 0) drm_warn(&i915->drm, "Failed to calculate GuC error state capture buffer minimum size: %d!\n", min_size); else if (min_size > buffer_size) drm_warn(&i915->drm, "GuC error state capture buffer is too small: %d < %d\n", buffer_size, min_size); else if (spare_size > buffer_size) drm_notice(&i915->drm, "GuC error state capture buffer maybe too small: %d < %d (min = %d)\n", buffer_size, spare_size, min_size); } /* * KMD Init time flows: * -------------------- * --> alloc A: GuC input capture regs lists (registered to GuC via ADS). * intel_guc_ads acquires the register lists by calling * intel_guc_capture_list_size and intel_guc_capture_list_get 'n' times, * where n = 1 for global-reg-list + * num_engine_classes for class-reg-list + * num_engine_classes for instance-reg-list * (since all instances of the same engine-class type * have an identical engine-instance register-list). * ADS module also calls separately for PF vs VF. * * --> alloc B: GuC output capture buf (registered via guc_init_params(log_param)) * Size = #define CAPTURE_BUFFER_SIZE (warns if on too-small) * Note2: 'x 3' to hold multiple capture groups * * GUC Runtime notify capture: * -------------------------- * --> G2H STATE_CAPTURE_NOTIFICATION * L--> intel_guc_capture_process * L--> Loop through B (head..tail) and for each engine instance's * err-state-captured register-list we find, we alloc 'C': * --> alloc C: A capture-output-node structure that includes misc capture info along * with 3 register list dumps (global, engine-class and engine-instance) * This node is created from a pre-allocated list of blank nodes in * guc->capture->cachelist and populated with the error-capture * data from GuC and then it's added into guc->capture->outlist linked * list. This list is used for matchup and printout by i915_gpu_coredump * and err_print_gt, (when user invokes the error capture sysfs). * * GUC --> notify context reset: * ----------------------------- * --> G2H CONTEXT RESET * L--> guc_handle_context_reset --> i915_capture_error_state * L--> i915_gpu_coredump(..IS_GUC_CAPTURE) --> gt_record_engines * --> capture_engine(..IS_GUC_CAPTURE) * L--> intel_guc_capture_get_matching_node is where * detach C from internal linked list and add it into * intel_engine_coredump struct (if the context and * engine of the event notification matches a node * in the link list). * * User Sysfs / Debugfs * -------------------- * --> i915_gpu_coredump_copy_to_buffer-> * L--> err_print_to_sgl --> err_print_gt * L--> error_print_guc_captures * L--> intel_guc_capture_print_node prints the * register lists values of the attached node * on the error-engine-dump being reported. * L--> i915_reset_error_state ... -->__i915_gpu_coredump_free * L--> ... cleanup_gt --> * L--> intel_guc_capture_free_node returns the * capture-output-node back to the internal * cachelist for reuse. * */ static int guc_capture_buf_cnt(struct __guc_capture_bufstate *buf) { if (buf->wr >= buf->rd) return (buf->wr - buf->rd); return (buf->size - buf->rd) + buf->wr; } static int guc_capture_buf_cnt_to_end(struct __guc_capture_bufstate *buf) { if (buf->rd > buf->wr) return (buf->size - buf->rd); return (buf->wr - buf->rd); } /* * GuC's error-capture output is a ring buffer populated in a byte-stream fashion: * * The GuC Log buffer region for error-capture is managed like a ring buffer. * The GuC firmware dumps error capture logs into this ring in a byte-stream flow. * Additionally, as per the current and foreseeable future, all packed error- * capture output structures are dword aligned. * * That said, if the GuC firmware is in the midst of writing a structure that is larger * than one dword but the tail end of the err-capture buffer-region has lesser space left, * we would need to extract that structure one dword at a time straddled across the end, * onto the start of the ring. * * Below function, guc_capture_log_remove_dw is a helper for that. All callers of this * function would typically do a straight-up memcpy from the ring contents and will only * call this helper if their structure-extraction is straddling across the end of the * ring. GuC firmware does not add any padding. The reason for the no-padding is to ease * scalability for future expansion of output data types without requiring a redesign * of the flow controls. */ static int guc_capture_log_remove_dw(struct intel_guc *guc, struct __guc_capture_bufstate *buf, u32 *dw) { struct drm_i915_private *i915 = guc_to_gt(guc)->i915; int tries = 2; int avail = 0; u32 *src_data; if (!guc_capture_buf_cnt(buf)) return 0; while (tries--) { avail = guc_capture_buf_cnt_to_end(buf); if (avail >= sizeof(u32)) { src_data = (u32 *)(buf->data + buf->rd); *dw = *src_data; buf->rd += 4; return 4; } if (avail) drm_dbg(&i915->drm, "GuC-Cap-Logs not dword aligned, skipping.\n"); buf->rd = 0; } return 0; } static bool guc_capture_data_extracted(struct __guc_capture_bufstate *b, int size, void *dest) { if (guc_capture_buf_cnt_to_end(b) >= size) { memcpy(dest, (b->data + b->rd), size); b->rd += size; return true; } return false; } static int guc_capture_log_get_group_hdr(struct intel_guc *guc, struct __guc_capture_bufstate *buf, struct guc_state_capture_group_header_t *ghdr) { int read = 0; int fullsize = sizeof(struct guc_state_capture_group_header_t); if (fullsize > guc_capture_buf_cnt(buf)) return -1; if (guc_capture_data_extracted(buf, fullsize, (void *)ghdr)) return 0; read += guc_capture_log_remove_dw(guc, buf, &ghdr->owner); read += guc_capture_log_remove_dw(guc, buf, &ghdr->info); if (read != fullsize) return -1; return 0; } static int guc_capture_log_get_data_hdr(struct intel_guc *guc, struct __guc_capture_bufstate *buf, struct guc_state_capture_header_t *hdr) { int read = 0; int fullsize = sizeof(struct guc_state_capture_header_t); if (fullsize > guc_capture_buf_cnt(buf)) return -1; if (guc_capture_data_extracted(buf, fullsize, (void *)hdr)) return 0; read += guc_capture_log_remove_dw(guc, buf, &hdr->owner); read += guc_capture_log_remove_dw(guc, buf, &hdr->info); read += guc_capture_log_remove_dw(guc, buf, &hdr->lrca); read += guc_capture_log_remove_dw(guc, buf, &hdr->guc_id); read += guc_capture_log_remove_dw(guc, buf, &hdr->num_mmios); if (read != fullsize) return -1; return 0; } static int guc_capture_log_get_register(struct intel_guc *guc, struct __guc_capture_bufstate *buf, struct guc_mmio_reg *reg) { int read = 0; int fullsize = sizeof(struct guc_mmio_reg); if (fullsize > guc_capture_buf_cnt(buf)) return -1; if (guc_capture_data_extracted(buf, fullsize, (void *)reg)) return 0; read += guc_capture_log_remove_dw(guc, buf, ®->offset); read += guc_capture_log_remove_dw(guc, buf, ®->value); read += guc_capture_log_remove_dw(guc, buf, ®->flags); read += guc_capture_log_remove_dw(guc, buf, ®->mask); if (read != fullsize) return -1; return 0; } static void guc_capture_delete_one_node(struct intel_guc *guc, struct __guc_capture_parsed_output *node) { int i; for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) kfree(node->reginfo[i].regs); list_del(&node->link); kfree(node); } static void guc_capture_delete_prealloc_nodes(struct intel_guc *guc) { struct __guc_capture_parsed_output *n, *ntmp; /* * NOTE: At the end of driver operation, we must assume that we * have prealloc nodes in both the cachelist as well as outlist * if unclaimed error capture events occurred prior to shutdown. */ list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) guc_capture_delete_one_node(guc, n); list_for_each_entry_safe(n, ntmp, &guc->capture->cachelist, link) guc_capture_delete_one_node(guc, n); } static void guc_capture_add_node_to_list(struct __guc_capture_parsed_output *node, struct list_head *list) { list_add_tail(&node->link, list); } static void guc_capture_add_node_to_outlist(struct intel_guc_state_capture *gc, struct __guc_capture_parsed_output *node) { guc_capture_add_node_to_list(node, &gc->outlist); } static void guc_capture_add_node_to_cachelist(struct intel_guc_state_capture *gc, struct __guc_capture_parsed_output *node) { guc_capture_add_node_to_list(node, &gc->cachelist); } static void guc_capture_init_node(struct intel_guc *guc, struct __guc_capture_parsed_output *node) { struct guc_mmio_reg *tmp[GUC_CAPTURE_LIST_TYPE_MAX]; int i; for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { tmp[i] = node->reginfo[i].regs; memset(tmp[i], 0, sizeof(struct guc_mmio_reg) * guc->capture->max_mmio_per_node); } memset(node, 0, sizeof(*node)); for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) node->reginfo[i].regs = tmp[i]; INIT_LIST_HEAD(&node->link); } static struct __guc_capture_parsed_output * guc_capture_get_prealloc_node(struct intel_guc *guc) { struct __guc_capture_parsed_output *found = NULL; if (!list_empty(&guc->capture->cachelist)) { struct __guc_capture_parsed_output *n, *ntmp; /* get first avail node from the cache list */ list_for_each_entry_safe(n, ntmp, &guc->capture->cachelist, link) { found = n; list_del(&n->link); break; } } else { struct __guc_capture_parsed_output *n, *ntmp; /* traverse down and steal back the oldest node already allocated */ list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) { found = n; } if (found) list_del(&found->link); } if (found) guc_capture_init_node(guc, found); return found; } static struct __guc_capture_parsed_output * guc_capture_alloc_one_node(struct intel_guc *guc) { struct __guc_capture_parsed_output *new; int i; new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { new->reginfo[i].regs = kcalloc(guc->capture->max_mmio_per_node, sizeof(struct guc_mmio_reg), GFP_KERNEL); if (!new->reginfo[i].regs) { while (i) kfree(new->reginfo[--i].regs); kfree(new); return NULL; } } guc_capture_init_node(guc, new); return new; } static struct __guc_capture_parsed_output * guc_capture_clone_node(struct intel_guc *guc, struct __guc_capture_parsed_output *original, u32 keep_reglist_mask) { struct __guc_capture_parsed_output *new; int i; new = guc_capture_get_prealloc_node(guc); if (!new) return NULL; if (!original) return new; new->is_partial = original->is_partial; /* copy reg-lists that we want to clone */ for (i = 0; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { if (keep_reglist_mask & BIT(i)) { GEM_BUG_ON(original->reginfo[i].num_regs > guc->capture->max_mmio_per_node); memcpy(new->reginfo[i].regs, original->reginfo[i].regs, original->reginfo[i].num_regs * sizeof(struct guc_mmio_reg)); new->reginfo[i].num_regs = original->reginfo[i].num_regs; new->reginfo[i].vfid = original->reginfo[i].vfid; if (i == GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS) { new->eng_class = original->eng_class; } else if (i == GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE) { new->eng_inst = original->eng_inst; new->guc_id = original->guc_id; new->lrca = original->lrca; } } } return new; } static void __guc_capture_create_prealloc_nodes(struct intel_guc *guc) { struct __guc_capture_parsed_output *node = NULL; struct drm_i915_private *i915 = guc_to_gt(guc)->i915; int i; for (i = 0; i < PREALLOC_NODES_MAX_COUNT; ++i) { node = guc_capture_alloc_one_node(guc); if (!node) { drm_warn(&i915->drm, "GuC Capture pre-alloc-cache failure\n"); /* dont free the priors, use what we got and cleanup at shutdown */ return; } guc_capture_add_node_to_cachelist(guc->capture, node); } } static int guc_get_max_reglist_count(struct intel_guc *guc) { int i, j, k, tmp, maxregcount = 0; for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; ++i) { for (j = 0; j < GUC_CAPTURE_LIST_TYPE_MAX; ++j) { for (k = 0; k < GUC_MAX_ENGINE_CLASSES; ++k) { if (j == GUC_CAPTURE_LIST_TYPE_GLOBAL && k > 0) continue; tmp = guc_cap_list_num_regs(guc->capture, i, j, k); if (tmp > maxregcount) maxregcount = tmp; } } } if (!maxregcount) maxregcount = PREALLOC_NODES_DEFAULT_NUMREGS; return maxregcount; } static void guc_capture_create_prealloc_nodes(struct intel_guc *guc) { /* skip if we've already done the pre-alloc */ if (guc->capture->max_mmio_per_node) return; guc->capture->max_mmio_per_node = guc_get_max_reglist_count(guc); __guc_capture_create_prealloc_nodes(guc); } static int guc_capture_extract_reglists(struct intel_guc *guc, struct __guc_capture_bufstate *buf) { struct drm_i915_private *i915 = guc_to_gt(guc)->i915; struct guc_state_capture_group_header_t ghdr = {0}; struct guc_state_capture_header_t hdr = {0}; struct __guc_capture_parsed_output *node = NULL; struct guc_mmio_reg *regs = NULL; int i, numlists, numregs, ret = 0; enum guc_capture_type datatype; struct guc_mmio_reg tmp; bool is_partial = false; i = guc_capture_buf_cnt(buf); if (!i) return -ENODATA; if (i % sizeof(u32)) { drm_warn(&i915->drm, "GuC Capture new entries unaligned\n"); ret = -EIO; goto bailout; } /* first get the capture group header */ if (guc_capture_log_get_group_hdr(guc, buf, &ghdr)) { ret = -EIO; goto bailout; } /* * we would typically expect a layout as below where n would be expected to be * anywhere between 3 to n where n > 3 if we are seeing multiple dependent engine * instances being reset together. * ____________________________________________ * | Capture Group | * | ________________________________________ | * | | Capture Group Header: | | * | | - num_captures = 5 | | * | |______________________________________| | * | ________________________________________ | * | | Capture1: | | * | | Hdr: GLOBAL, numregs=a | | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... rega | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture2: | | * | | Hdr: CLASS=RENDER/COMPUTE, numregs=b| | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... regb | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture3: | | * | | Hdr: INSTANCE=RCS, numregs=c | | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... regc | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture4: | | * | | Hdr: CLASS=RENDER/COMPUTE, numregs=d| | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... regd | | | * | | |__________________________________| | | * | |______________________________________| | * | ________________________________________ | * | | Capture5: | | * | | Hdr: INSTANCE=CCS0, numregs=e | | * | | ____________________________________ | | * | | | Reglist | | | * | | | - reg1, reg2, ... rege | | | * | | |__________________________________| | | * | |______________________________________| | * |__________________________________________| */ is_partial = FIELD_GET(CAP_GRP_HDR_CAPTURE_TYPE, ghdr.info); numlists = FIELD_GET(CAP_GRP_HDR_NUM_CAPTURES, ghdr.info); while (numlists--) { if (guc_capture_log_get_data_hdr(guc, buf, &hdr)) { ret = -EIO; break; } datatype = FIELD_GET(CAP_HDR_CAPTURE_TYPE, hdr.info); if (datatype > GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE) { /* unknown capture type - skip over to next capture set */ numregs = FIELD_GET(CAP_HDR_NUM_MMIOS, hdr.num_mmios); while (numregs--) { if (guc_capture_log_get_register(guc, buf, &tmp)) { ret = -EIO; break; } } continue; } else if (node) { /* * Based on the current capture type and what we have so far, * decide if we should add the current node into the internal * linked list for match-up when i915_gpu_coredump calls later * (and alloc a blank node for the next set of reglists) * or continue with the same node or clone the current node * but only retain the global or class registers (such as the * case of dependent engine resets). */ if (datatype == GUC_CAPTURE_LIST_TYPE_GLOBAL) { guc_capture_add_node_to_outlist(guc->capture, node); node = NULL; } else if (datatype == GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS && node->reginfo[GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS].num_regs) { /* Add to list, clone node and duplicate global list */ guc_capture_add_node_to_outlist(guc->capture, node); node = guc_capture_clone_node(guc, node, GCAP_PARSED_REGLIST_INDEX_GLOBAL); } else if (datatype == GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE && node->reginfo[GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE].num_regs) { /* Add to list, clone node and duplicate global + class lists */ guc_capture_add_node_to_outlist(guc->capture, node); node = guc_capture_clone_node(guc, node, (GCAP_PARSED_REGLIST_INDEX_GLOBAL | GCAP_PARSED_REGLIST_INDEX_ENGCLASS)); } } if (!node) { node = guc_capture_get_prealloc_node(guc); if (!node) { ret = -ENOMEM; break; } if (datatype != GUC_CAPTURE_LIST_TYPE_GLOBAL) drm_dbg(&i915->drm, "GuC Capture missing global dump: %08x!\n", datatype); } node->is_partial = is_partial; node->reginfo[datatype].vfid = FIELD_GET(CAP_HDR_CAPTURE_VFID, hdr.owner); switch (datatype) { case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE: node->eng_class = FIELD_GET(CAP_HDR_ENGINE_CLASS, hdr.info); node->eng_inst = FIELD_GET(CAP_HDR_ENGINE_INSTANCE, hdr.info); node->lrca = hdr.lrca; node->guc_id = hdr.guc_id; break; case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS: node->eng_class = FIELD_GET(CAP_HDR_ENGINE_CLASS, hdr.info); break; default: break; } numregs = FIELD_GET(CAP_HDR_NUM_MMIOS, hdr.num_mmios); if (numregs > guc->capture->max_mmio_per_node) { drm_dbg(&i915->drm, "GuC Capture list extraction clipped by prealloc!\n"); numregs = guc->capture->max_mmio_per_node; } node->reginfo[datatype].num_regs = numregs; regs = node->reginfo[datatype].regs; i = 0; while (numregs--) { if (guc_capture_log_get_register(guc, buf, ®s[i++])) { ret = -EIO; break; } } } bailout: if (node) { /* If we have data, add to linked list for match-up when i915_gpu_coredump calls */ for (i = GUC_CAPTURE_LIST_TYPE_GLOBAL; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { if (node->reginfo[i].regs) { guc_capture_add_node_to_outlist(guc->capture, node); node = NULL; break; } } if (node) /* else return it back to cache list */ guc_capture_add_node_to_cachelist(guc->capture, node); } return ret; } static int __guc_capture_flushlog_complete(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE, GUC_CAPTURE_LOG_BUFFER }; return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0); } static void __guc_capture_process_output(struct intel_guc *guc) { unsigned int buffer_size, read_offset, write_offset, full_count; struct intel_uc *uc = container_of(guc, typeof(*uc), guc); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; struct guc_log_buffer_state log_buf_state_local; struct guc_log_buffer_state *log_buf_state; struct __guc_capture_bufstate buf; void *src_data = NULL; bool new_overflow; int ret; log_buf_state = guc->log.buf_addr + (sizeof(struct guc_log_buffer_state) * GUC_CAPTURE_LOG_BUFFER); src_data = guc->log.buf_addr + intel_guc_get_log_buffer_offset(&guc->log, GUC_CAPTURE_LOG_BUFFER); /* * Make a copy of the state structure, inside GuC log buffer * (which is uncached mapped), on the stack to avoid reading * from it multiple times. */ memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state)); buffer_size = intel_guc_get_log_buffer_size(&guc->log, GUC_CAPTURE_LOG_BUFFER); read_offset = log_buf_state_local.read_ptr; write_offset = log_buf_state_local.sampled_write_ptr; full_count = log_buf_state_local.buffer_full_cnt; /* Bookkeeping stuff */ guc->log.stats[GUC_CAPTURE_LOG_BUFFER].flush += log_buf_state_local.flush_to_file; new_overflow = intel_guc_check_log_buf_overflow(&guc->log, GUC_CAPTURE_LOG_BUFFER, full_count); /* Now copy the actual logs. */ if (unlikely(new_overflow)) { /* copy the whole buffer in case of overflow */ read_offset = 0; write_offset = buffer_size; } else if (unlikely((read_offset > buffer_size) || (write_offset > buffer_size))) { drm_err(&i915->drm, "invalid GuC log capture buffer state!\n"); /* copy whole buffer as offsets are unreliable */ read_offset = 0; write_offset = buffer_size; } buf.size = buffer_size; buf.rd = read_offset; buf.wr = write_offset; buf.data = src_data; if (!uc->reset_in_progress) { do { ret = guc_capture_extract_reglists(guc, &buf); } while (ret >= 0); } /* Update the state of log buffer err-cap state */ log_buf_state->read_ptr = write_offset; log_buf_state->flush_to_file = 0; __guc_capture_flushlog_complete(guc); } #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) static const char * guc_capture_reg_to_str(const struct intel_guc *guc, u32 owner, u32 type, u32 class, u32 id, u32 offset, u32 *is_ext) { const struct __guc_mmio_reg_descr_group *reglists = guc->capture->reglists; struct __guc_mmio_reg_descr_group *extlists = guc->capture->extlists; const struct __guc_mmio_reg_descr_group *match; struct __guc_mmio_reg_descr_group *matchext; int j; *is_ext = 0; if (!reglists) return NULL; match = guc_capture_get_one_list(reglists, owner, type, id); if (!match) return NULL; for (j = 0; j < match->num_regs; ++j) { if (offset == match->list[j].reg.reg) return match->list[j].regname; } if (extlists) { matchext = guc_capture_get_one_ext_list(extlists, owner, type, id); if (!matchext) return NULL; for (j = 0; j < matchext->num_regs; ++j) { if (offset == matchext->extlist[j].reg.reg) { *is_ext = 1; return matchext->extlist[j].regname; } } } return NULL; } #define GCAP_PRINT_INTEL_ENG_INFO(ebuf, eng) \ do { \ i915_error_printf(ebuf, " i915-Eng-Name: %s command stream\n", \ (eng)->name); \ i915_error_printf(ebuf, " i915-Eng-Inst-Class: 0x%02x\n", (eng)->class); \ i915_error_printf(ebuf, " i915-Eng-Inst-Id: 0x%02x\n", (eng)->instance); \ i915_error_printf(ebuf, " i915-Eng-LogicalMask: 0x%08x\n", \ (eng)->logical_mask); \ } while (0) #define GCAP_PRINT_GUC_INST_INFO(ebuf, node) \ do { \ i915_error_printf(ebuf, " GuC-Engine-Inst-Id: 0x%08x\n", \ (node)->eng_inst); \ i915_error_printf(ebuf, " GuC-Context-Id: 0x%08x\n", (node)->guc_id); \ i915_error_printf(ebuf, " LRCA: 0x%08x\n", (node)->lrca); \ } while (0) int intel_guc_capture_print_engine_node(struct drm_i915_error_state_buf *ebuf, const struct intel_engine_coredump *ee) { const char *grptype[GUC_STATE_CAPTURE_GROUP_TYPE_MAX] = { "full-capture", "partial-capture" }; const char *datatype[GUC_CAPTURE_LIST_TYPE_MAX] = { "Global", "Engine-Class", "Engine-Instance" }; struct intel_guc_state_capture *cap; struct __guc_capture_parsed_output *node; struct intel_engine_cs *eng; struct guc_mmio_reg *regs; struct intel_guc *guc; const char *str; int numregs, i, j; u32 is_ext; if (!ebuf || !ee) return -EINVAL; cap = ee->capture; if (!cap || !ee->engine) return -ENODEV; guc = &ee->engine->gt->uc.guc; i915_error_printf(ebuf, "global --- GuC Error Capture on %s command stream:\n", ee->engine->name); node = ee->guc_capture_node; if (!node) { i915_error_printf(ebuf, " No matching ee-node\n"); return 0; } i915_error_printf(ebuf, "Coverage: %s\n", grptype[node->is_partial]); for (i = GUC_CAPTURE_LIST_TYPE_GLOBAL; i < GUC_CAPTURE_LIST_TYPE_MAX; ++i) { i915_error_printf(ebuf, " RegListType: %s\n", datatype[i % GUC_CAPTURE_LIST_TYPE_MAX]); i915_error_printf(ebuf, " Owner-Id: %d\n", node->reginfo[i].vfid); switch (i) { case GUC_CAPTURE_LIST_TYPE_GLOBAL: default: break; case GUC_CAPTURE_LIST_TYPE_ENGINE_CLASS: i915_error_printf(ebuf, " GuC-Eng-Class: %d\n", node->eng_class); i915_error_printf(ebuf, " i915-Eng-Class: %d\n", guc_class_to_engine_class(node->eng_class)); break; case GUC_CAPTURE_LIST_TYPE_ENGINE_INSTANCE: eng = intel_guc_lookup_engine(guc, node->eng_class, node->eng_inst); if (eng) GCAP_PRINT_INTEL_ENG_INFO(ebuf, eng); else i915_error_printf(ebuf, " i915-Eng-Lookup Fail!\n"); GCAP_PRINT_GUC_INST_INFO(ebuf, node); break; } numregs = node->reginfo[i].num_regs; i915_error_printf(ebuf, " NumRegs: %d\n", numregs); j = 0; while (numregs--) { regs = node->reginfo[i].regs; str = guc_capture_reg_to_str(guc, GUC_CAPTURE_LIST_INDEX_PF, i, node->eng_class, 0, regs[j].offset, &is_ext); if (!str) i915_error_printf(ebuf, " REG-0x%08x", regs[j].offset); else i915_error_printf(ebuf, " %s", str); if (is_ext) i915_error_printf(ebuf, "[%ld][%ld]", FIELD_GET(GUC_REGSET_STEERING_GROUP, regs[j].flags), FIELD_GET(GUC_REGSET_STEERING_INSTANCE, regs[j].flags)); i915_error_printf(ebuf, ": 0x%08x\n", regs[j].value); ++j; } } return 0; } #endif //CONFIG_DRM_I915_CAPTURE_ERROR void intel_guc_capture_free_node(struct intel_engine_coredump *ee) { if (!ee || !ee->guc_capture_node) return; guc_capture_add_node_to_cachelist(ee->capture, ee->guc_capture_node); ee->capture = NULL; ee->guc_capture_node = NULL; } void intel_guc_capture_get_matching_node(struct intel_gt *gt, struct intel_engine_coredump *ee, struct intel_context *ce) { struct __guc_capture_parsed_output *n, *ntmp; struct drm_i915_private *i915; struct intel_guc *guc; if (!gt || !ee || !ce) return; i915 = gt->i915; guc = >->uc.guc; if (!guc->capture) return; GEM_BUG_ON(ee->guc_capture_node); /* * Look for a matching GuC reported error capture node from * the internal output link-list based on lrca, guc-id and engine * identification. */ list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) { if (n->eng_inst == GUC_ID_TO_ENGINE_INSTANCE(ee->engine->guc_id) && n->eng_class == GUC_ID_TO_ENGINE_CLASS(ee->engine->guc_id) && n->guc_id && n->guc_id == ce->guc_id.id && (n->lrca & CTX_GTT_ADDRESS_MASK) && (n->lrca & CTX_GTT_ADDRESS_MASK) == (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) { list_del(&n->link); ee->guc_capture_node = n; ee->capture = guc->capture; return; } } drm_dbg(&i915->drm, "GuC capture can't match ee to node\n"); } void intel_guc_capture_process(struct intel_guc *guc) { if (guc->capture) __guc_capture_process_output(guc); } static void guc_capture_free_ads_cache(struct intel_guc_state_capture *gc) { int i, j, k; struct __guc_capture_ads_cache *cache; for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; ++i) { for (j = 0; j < GUC_CAPTURE_LIST_TYPE_MAX; ++j) { for (k = 0; k < GUC_MAX_ENGINE_CLASSES; ++k) { cache = &gc->ads_cache[i][j][k]; if (cache->is_valid) kfree(cache->ptr); } } } kfree(gc->ads_null_cache); } void intel_guc_capture_destroy(struct intel_guc *guc) { if (!guc->capture) return; guc_capture_free_ads_cache(guc->capture); guc_capture_delete_prealloc_nodes(guc); guc_capture_free_extlists(guc->capture->extlists); kfree(guc->capture->extlists); kfree(guc->capture); guc->capture = NULL; } int intel_guc_capture_init(struct intel_guc *guc) { guc->capture = kzalloc(sizeof(*guc->capture), GFP_KERNEL); if (!guc->capture) return -ENOMEM; guc->capture->reglists = guc_capture_get_device_reglist(guc); INIT_LIST_HEAD(&guc->capture->outlist); INIT_LIST_HEAD(&guc->capture->cachelist); check_guc_capture_size(guc); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1