Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michal Wajdeczko | 1240 | 35.21% | 15 | 22.39% |
John Harrison | 764 | 21.69% | 4 | 5.97% |
Daniele Ceraolo Spurio | 368 | 10.45% | 3 | 4.48% |
Michał Winiarski | 319 | 9.06% | 12 | 17.91% |
Sagar Arun Kamble | 183 | 5.20% | 3 | 4.48% |
Alan Previn | 181 | 5.14% | 6 | 8.96% |
Chris Wilson | 156 | 4.43% | 9 | 13.43% |
Robert M. Fosha | 105 | 2.98% | 1 | 1.49% |
Oscar Mateo | 101 | 2.87% | 2 | 2.99% |
Jani Nikula | 49 | 1.39% | 4 | 5.97% |
Piotr Piórkowski | 38 | 1.08% | 2 | 2.99% |
Greg Kroah-Hartman | 10 | 0.28% | 1 | 1.49% |
Lucas De Marchi | 5 | 0.14% | 2 | 2.99% |
Julia Lawall | 1 | 0.03% | 1 | 1.49% |
Ville Syrjälä | 1 | 0.03% | 1 | 1.49% |
Maarten Lankhorst | 1 | 0.03% | 1 | 1.49% |
Total | 3522 | 67 |
// SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation */ #include <linux/debugfs.h> #include <linux/string_helpers.h> #include "gt/intel_gt.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_memcpy.h" #include "intel_guc_capture.h" #include "intel_guc_log.h" #if defined(CONFIG_DRM_I915_DEBUG_GUC) #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_4M #elif defined(CONFIG_DRM_I915_DEBUG_GEM) #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_4M #else #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_2M #endif static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log); struct guc_log_section { u32 max; u32 flag; u32 default_val; const char *name; }; static void _guc_log_init_sizes(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = { { GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT, GUC_LOG_LOG_ALLOC_UNITS, GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE, "crash dump" }, { GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT, GUC_LOG_LOG_ALLOC_UNITS, GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE, "debug", }, { GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT, GUC_LOG_CAPTURE_ALLOC_UNITS, GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE, "capture", } }; int i; for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) log->sizes[i].bytes = sections[i].default_val; /* If debug size > 1MB then bump default crash size to keep the same units */ if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M && GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M) log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M; /* Prepare the GuC API structure fields: */ for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) { /* Convert to correct units */ if ((log->sizes[i].bytes % SZ_1M) == 0) { log->sizes[i].units = SZ_1M; log->sizes[i].flag = sections[i].flag; } else { log->sizes[i].units = SZ_4K; log->sizes[i].flag = 0; } if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units)) drm_err(&i915->drm, "Mis-aligned GuC log %s size: 0x%X vs 0x%X!", sections[i].name, log->sizes[i].bytes, log->sizes[i].units); log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units; if (!log->sizes[i].count) { drm_err(&i915->drm, "Zero GuC log %s size!", sections[i].name); } else { /* Size is +1 unit */ log->sizes[i].count--; } /* Clip to field size */ if (log->sizes[i].count > sections[i].max) { drm_err(&i915->drm, "GuC log %s size too large: %d vs %d!", sections[i].name, log->sizes[i].count + 1, sections[i].max + 1); log->sizes[i].count = sections[i].max; } } if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) { drm_err(&i915->drm, "Unit mis-match for GuC log crash and debug sections: %d vs %d!", log->sizes[GUC_LOG_SECTIONS_CRASH].units, log->sizes[GUC_LOG_SECTIONS_DEBUG].units); log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units; log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0; } log->sizes_initialised = true; } static void guc_log_init_sizes(struct intel_guc_log *log) { if (log->sizes_initialised) return; _guc_log_init_sizes(log); } static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log) { guc_log_init_sizes(log); return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes; } static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log) { guc_log_init_sizes(log); return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes; } u32 intel_guc_log_section_size_capture(struct intel_guc_log *log) { guc_log_init_sizes(log); return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes; } static u32 intel_guc_log_size(struct intel_guc_log *log) { /* * GuC Log buffer Layout: * * NB: Ordering must follow "enum guc_log_buffer_type". * * +===============================+ 00B * | Debug state header | * +-------------------------------+ 32B * | Crash dump state header | * +-------------------------------+ 64B * | Capture state header | * +-------------------------------+ 96B * | | * +===============================+ PAGE_SIZE (4KB) * | Debug logs | * +===============================+ + DEBUG_SIZE * | Crash Dump logs | * +===============================+ + CRASH_SIZE * | Capture logs | * +===============================+ + CAPTURE_SIZE */ return PAGE_SIZE + intel_guc_log_section_size_crash(log) + intel_guc_log_section_size_debug(log) + intel_guc_log_section_size_capture(log); } /** * DOC: GuC firmware log * * Firmware log is enabled by setting i915.guc_log_level to the positive level. * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from * i915_guc_load_status will print out firmware loading status and scratch * registers value. */ static int guc_action_flush_log_complete(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE, GUC_DEBUG_LOG_BUFFER }; return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0); } static int guc_action_flush_log(struct intel_guc *guc) { u32 action[] = { INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 0 }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_action_control_log(struct intel_guc *guc, bool enable, bool default_logging, u32 verbosity) { u32 action[] = { INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) }; GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); return intel_guc_send(guc, action, ARRAY_SIZE(action)); } /* * Sub buffer switch callback. Called whenever relay has to switch to a new * sub buffer, relay stays on the same sub buffer if 0 is returned. */ static int subbuf_start_callback(struct rchan_buf *buf, void *subbuf, void *prev_subbuf, size_t prev_padding) { /* * Use no-overwrite mode by default, where relay will stop accepting * new data if there are no empty sub buffers left. * There is no strict synchronization enforced by relay between Consumer * and Producer. In overwrite mode, there is a possibility of getting * inconsistent/garbled data, the producer could be writing on to the * same sub buffer from which Consumer is reading. This can't be avoided * unless Consumer is fast enough and can always run in tandem with * Producer. */ if (relay_buf_full(buf)) return 0; return 1; } /* * file_create() callback. Creates relay file in debugfs. */ static struct dentry *create_buf_file_callback(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global) { struct dentry *buf_file; /* * This to enable the use of a single buffer for the relay channel and * correspondingly have a single file exposed to User, through which * it can collect the logs in order without any post-processing. * Need to set 'is_global' even if parent is NULL for early logging. */ *is_global = 1; if (!parent) return NULL; buf_file = debugfs_create_file(filename, mode, parent, buf, &relay_file_operations); if (IS_ERR(buf_file)) return NULL; return buf_file; } /* * file_remove() default callback. Removes relay file in debugfs. */ static int remove_buf_file_callback(struct dentry *dentry) { debugfs_remove(dentry); return 0; } /* relay channel callbacks */ static const struct rchan_callbacks relay_callbacks = { .subbuf_start = subbuf_start_callback, .create_buf_file = create_buf_file_callback, .remove_buf_file = remove_buf_file_callback, }; static void guc_move_to_next_buf(struct intel_guc_log *log) { /* * Make sure the updates made in the sub buffer are visible when * Consumer sees the following update to offset inside the sub buffer. */ smp_wmb(); /* All data has been written, so now move the offset of sub buffer. */ relay_reserve(log->relay.channel, log->vma->obj->base.size - intel_guc_log_section_size_capture(log)); /* Switch to the next sub buffer */ relay_flush(log->relay.channel); } static void *guc_get_write_buffer(struct intel_guc_log *log) { /* * Just get the base address of a new sub buffer and copy data into it * ourselves. NULL will be returned in no-overwrite mode, if all sub * buffers are full. Could have used the relay_write() to indirectly * copy the data, but that would have been bit convoluted, as we need to * write to only certain locations inside a sub buffer which cannot be * done without using relay_reserve() along with relay_write(). So its * better to use relay_reserve() alone. */ return relay_reserve(log->relay.channel, 0); } bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log, enum guc_log_buffer_type type, unsigned int full_cnt) { unsigned int prev_full_cnt = log->stats[type].sampled_overflow; bool overflow = false; if (full_cnt != prev_full_cnt) { overflow = true; log->stats[type].overflow = full_cnt; log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; if (full_cnt < prev_full_cnt) { /* buffer_full_cnt is a 4 bit counter */ log->stats[type].sampled_overflow += 16; } dev_notice_ratelimited(guc_to_gt(log_to_guc(log))->i915->drm.dev, "GuC log buffer overflow\n"); } return overflow; } unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log, enum guc_log_buffer_type type) { switch (type) { case GUC_DEBUG_LOG_BUFFER: return intel_guc_log_section_size_debug(log); case GUC_CRASH_DUMP_LOG_BUFFER: return intel_guc_log_section_size_crash(log); case GUC_CAPTURE_LOG_BUFFER: return intel_guc_log_section_size_capture(log); default: MISSING_CASE(type); } return 0; } size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log, enum guc_log_buffer_type type) { enum guc_log_buffer_type i; size_t offset = PAGE_SIZE;/* for the log_buffer_states */ for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) { if (i == type) break; offset += intel_guc_get_log_buffer_size(log, i); } return offset; } static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) { unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; struct guc_log_buffer_state log_buf_state_local; enum guc_log_buffer_type type; void *src_data, *dst_data; bool new_overflow; mutex_lock(&log->relay.lock); if (WARN_ON(!intel_guc_log_relay_created(log))) goto out_unlock; /* Get the pointer to shared GuC log buffer */ src_data = log->buf_addr; log_buf_state = src_data; /* Get the pointer to local buffer to store the logs */ log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); if (unlikely(!log_buf_snapshot_state)) { /* * Used rate limited to avoid deluge of messages, logs might be * getting consumed by User at a slow rate. */ DRM_ERROR_RATELIMITED("no sub-buffer to copy general logs\n"); log->relay.full_count++; goto out_unlock; } /* Actual logs are present from the 2nd page */ src_data += PAGE_SIZE; dst_data += PAGE_SIZE; /* For relay logging, we exclude error state capture */ for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) { /* * Make a copy of the state structure, inside GuC log buffer * (which is uncached mapped), on the stack to avoid reading * from it multiple times. */ memcpy(&log_buf_state_local, log_buf_state, sizeof(struct guc_log_buffer_state)); buffer_size = intel_guc_get_log_buffer_size(log, type); read_offset = log_buf_state_local.read_ptr; write_offset = log_buf_state_local.sampled_write_ptr; full_cnt = log_buf_state_local.buffer_full_cnt; /* Bookkeeping stuff */ log->stats[type].flush += log_buf_state_local.flush_to_file; new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt); /* Update the state of shared log buffer */ log_buf_state->read_ptr = write_offset; log_buf_state->flush_to_file = 0; log_buf_state++; /* First copy the state structure in snapshot buffer */ memcpy(log_buf_snapshot_state, &log_buf_state_local, sizeof(struct guc_log_buffer_state)); /* * The write pointer could have been updated by GuC firmware, * after sending the flush interrupt to Host, for consistency * set write pointer value to same value of sampled_write_ptr * in the snapshot buffer. */ log_buf_snapshot_state->write_ptr = write_offset; log_buf_snapshot_state++; /* Now copy the actual logs. */ if (unlikely(new_overflow)) { /* copy the whole buffer in case of overflow */ read_offset = 0; write_offset = buffer_size; } else if (unlikely((read_offset > buffer_size) || (write_offset > buffer_size))) { DRM_ERROR("invalid log buffer state\n"); /* copy whole buffer as offsets are unreliable */ read_offset = 0; write_offset = buffer_size; } /* Just copy the newly written data */ if (read_offset > write_offset) { i915_memcpy_from_wc(dst_data, src_data, write_offset); bytes_to_copy = buffer_size - read_offset; } else { bytes_to_copy = write_offset - read_offset; } i915_memcpy_from_wc(dst_data + read_offset, src_data + read_offset, bytes_to_copy); src_data += buffer_size; dst_data += buffer_size; } guc_move_to_next_buf(log); out_unlock: mutex_unlock(&log->relay.lock); } static void copy_debug_logs_work(struct work_struct *work) { struct intel_guc_log *log = container_of(work, struct intel_guc_log, relay.flush_work); guc_log_copy_debuglogs_for_relay(log); } static int guc_log_relay_map(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); if (!log->vma || !log->buf_addr) return -ENODEV; /* * WC vmalloc mapping of log buffer pages was done at * GuC Log Init time, but lets keep a ref for book-keeping */ i915_gem_object_get(log->vma->obj); log->relay.buf_in_use = true; return 0; } static void guc_log_relay_unmap(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); i915_gem_object_put(log->vma->obj); log->relay.buf_in_use = false; } void intel_guc_log_init_early(struct intel_guc_log *log) { mutex_init(&log->relay.lock); INIT_WORK(&log->relay.flush_work, copy_debug_logs_work); log->relay.started = false; } static int guc_log_relay_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; struct rchan *guc_log_relay_chan; size_t n_subbufs, subbuf_size; int ret; lockdep_assert_held(&log->relay.lock); GEM_BUG_ON(!log->vma); /* * Keep the size of sub buffers same as shared log buffer * but GuC log-events excludes the error-state-capture logs */ subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log); /* * Store up to 8 snapshots, which is large enough to buffer sufficient * boot time logs and provides enough leeway to User, in terms of * latency, for consuming the logs from relay. Also doesn't take * up too much memory. */ n_subbufs = 8; guc_log_relay_chan = relay_open("guc_log", dev_priv->drm.primary->debugfs_root, subbuf_size, n_subbufs, &relay_callbacks, dev_priv); if (!guc_log_relay_chan) { DRM_ERROR("Couldn't create relay chan for GuC logging\n"); ret = -ENOMEM; return ret; } GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); log->relay.channel = guc_log_relay_chan; return 0; } static void guc_log_relay_destroy(struct intel_guc_log *log) { lockdep_assert_held(&log->relay.lock); relay_close(log->relay.channel); log->relay.channel = NULL; } static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; intel_wakeref_t wakeref; _guc_log_copy_debuglogs_for_relay(log); /* * Generally device is expected to be active only at this * time, so get/put should be really quick. */ with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) guc_action_flush_log_complete(guc); } static u32 __get_default_log_level(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; /* A negative value means "use platform/config default" */ if (i915->params.guc_log_level < 0) { return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE; } if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) { DRM_WARN("Incompatible option detected: %s=%d, %s!\n", "guc_log_level", i915->params.guc_log_level, "verbosity too high"); return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED; } GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED); GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX); return i915->params.guc_log_level; } int intel_guc_log_create(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct i915_vma *vma; void *vaddr; u32 guc_log_size; int ret; GEM_BUG_ON(log->vma); guc_log_size = intel_guc_log_size(log); vma = intel_guc_allocate_vma(guc, guc_log_size); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } log->vma = vma; /* * Create a WC (Uncached for read) vmalloc mapping up front immediate access to * data from memory during critical events such as error capture */ vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); i915_vma_unpin_and_release(&log->vma, 0); goto err; } log->buf_addr = vaddr; log->level = __get_default_log_level(log); DRM_DEBUG_DRIVER("guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n", log->level, str_enabled_disabled(log->level), str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)), GUC_LOG_LEVEL_TO_VERBOSITY(log->level)); return 0; err: DRM_ERROR("Failed to allocate or map GuC log buffer. %d\n", ret); return ret; } void intel_guc_log_destroy(struct intel_guc_log *log) { log->buf_addr = NULL; i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP); } int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; intel_wakeref_t wakeref; int ret = 0; BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); GEM_BUG_ON(!log->vma); /* * GuC is recognizing log levels starting from 0 to max, we're using 0 * as indication that logging should be disabled. */ if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) return -EINVAL; mutex_lock(&dev_priv->drm.struct_mutex); if (log->level == level) goto out_unlock; with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level), GUC_LOG_LEVEL_IS_ENABLED(level), GUC_LOG_LEVEL_TO_VERBOSITY(level)); if (ret) { DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret); goto out_unlock; } log->level = level; out_unlock: mutex_unlock(&dev_priv->drm.struct_mutex); return ret; } bool intel_guc_log_relay_created(const struct intel_guc_log *log) { return log->buf_addr; } int intel_guc_log_relay_open(struct intel_guc_log *log) { int ret; if (!log->vma) return -ENODEV; mutex_lock(&log->relay.lock); if (intel_guc_log_relay_created(log)) { ret = -EEXIST; goto out_unlock; } /* * We require SSE 4.1 for fast reads from the GuC log buffer and * it should be present on the chipsets supporting GuC based * submissions. */ if (!i915_has_memcpy_from_wc()) { ret = -ENXIO; goto out_unlock; } ret = guc_log_relay_create(log); if (ret) goto out_unlock; ret = guc_log_relay_map(log); if (ret) goto out_relay; mutex_unlock(&log->relay.lock); return 0; out_relay: guc_log_relay_destroy(log); out_unlock: mutex_unlock(&log->relay.lock); return ret; } int intel_guc_log_relay_start(struct intel_guc_log *log) { if (log->relay.started) return -EEXIST; /* * When GuC is logging without us relaying to userspace, we're ignoring * the flush notification. This means that we need to unconditionally * flush on relay enabling, since GuC only notifies us once. */ queue_work(system_highpri_wq, &log->relay.flush_work); log->relay.started = true; return 0; } void intel_guc_log_relay_flush(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); intel_wakeref_t wakeref; if (!log->relay.started) return; /* * Before initiating the forceful flush, wait for any pending/ongoing * flush to complete otherwise forceful flush may not actually happen. */ flush_work(&log->relay.flush_work); with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref) guc_action_flush_log(guc); /* GuC would have updated log buffer by now, so copy it */ guc_log_copy_debuglogs_for_relay(log); } /* * Stops the relay log. Called from intel_guc_log_relay_close(), so no * possibility of race with start/flush since relay_write cannot race * relay_close. */ static void guc_log_relay_stop(struct intel_guc_log *log) { struct intel_guc *guc = log_to_guc(log); struct drm_i915_private *i915 = guc_to_gt(guc)->i915; if (!log->relay.started) return; intel_synchronize_irq(i915); flush_work(&log->relay.flush_work); log->relay.started = false; } void intel_guc_log_relay_close(struct intel_guc_log *log) { guc_log_relay_stop(log); mutex_lock(&log->relay.lock); GEM_BUG_ON(!intel_guc_log_relay_created(log)); guc_log_relay_unmap(log); guc_log_relay_destroy(log); mutex_unlock(&log->relay.lock); } void intel_guc_log_handle_flush_event(struct intel_guc_log *log) { if (log->relay.started) queue_work(system_highpri_wq, &log->relay.flush_work); } static const char * stringify_guc_log_type(enum guc_log_buffer_type type) { switch (type) { case GUC_DEBUG_LOG_BUFFER: return "DEBUG"; case GUC_CRASH_DUMP_LOG_BUFFER: return "CRASH"; case GUC_CAPTURE_LOG_BUFFER: return "CAPTURE"; default: MISSING_CASE(type); } return ""; } /** * intel_guc_log_info - dump information about GuC log relay * @log: the GuC log * @p: the &drm_printer * * Pretty printer for GuC log info */ void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p) { enum guc_log_buffer_type type; if (!intel_guc_log_relay_created(log)) { drm_puts(p, "GuC log relay not created\n"); return; } drm_puts(p, "GuC logging stats:\n"); drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count); for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n", stringify_guc_log_type(type), log->stats[type].flush, log->stats[type].sampled_overflow); } } /** * intel_guc_log_dump - dump the contents of the GuC log * @log: the GuC log * @p: the &drm_printer * @dump_load_err: dump the log saved on GuC load error * * Pretty printer for the GuC log */ int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p, bool dump_load_err) { struct intel_guc *guc = log_to_guc(log); struct intel_uc *uc = container_of(guc, struct intel_uc, guc); struct drm_i915_gem_object *obj = NULL; void *map; u32 *page; int i, j; if (!intel_guc_is_supported(guc)) return -ENODEV; if (dump_load_err) obj = uc->load_err_log; else if (guc->log.vma) obj = guc->log.vma->obj; if (!obj) return 0; page = (u32 *)__get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; intel_guc_dump_time_info(guc, p); map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(map)) { DRM_DEBUG("Failed to pin object\n"); drm_puts(p, "(log data unaccessible)\n"); free_page((unsigned long)page); return PTR_ERR(map); } for (i = 0; i < obj->base.size; i += PAGE_SIZE) { if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE)) memcpy(page, map + i, PAGE_SIZE); for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4) drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n", *(page + j + 0), *(page + j + 1), *(page + j + 2), *(page + j + 3)); } drm_puts(p, "\n"); i915_gem_object_unpin_map(obj); free_page((unsigned long)page); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1