Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 4023 | 43.39% | 95 | 57.58% |
Maarten Lankhorst | 1811 | 19.53% | 15 | 9.09% |
Joonas Lahtinen | 1215 | 13.11% | 1 | 0.61% |
Thomas Hellstrom | 1151 | 12.42% | 11 | 6.67% |
Rodrigo Vivi | 470 | 5.07% | 1 | 0.61% |
Matthew Auld | 190 | 2.05% | 14 | 8.48% |
Nirmoy Das | 101 | 1.09% | 2 | 1.21% |
CQ Tang | 94 | 1.01% | 1 | 0.61% |
Karol Herbst | 43 | 0.46% | 1 | 0.61% |
Anusha Srivatsa | 32 | 0.35% | 1 | 0.61% |
Ville Syrjälä | 27 | 0.29% | 1 | 0.61% |
Tvrtko A. Ursulin | 24 | 0.26% | 4 | 2.42% |
Niranjana Vishwanathapura | 20 | 0.22% | 1 | 0.61% |
Jani Nikula | 14 | 0.15% | 4 | 2.42% |
Matthew Brost | 12 | 0.13% | 1 | 0.61% |
Christian König | 11 | 0.12% | 2 | 1.21% |
Abdiel Janulgue | 9 | 0.10% | 1 | 0.61% |
Daniele Ceraolo Spurio | 7 | 0.08% | 1 | 0.61% |
Juha-Pekka Heikkila | 5 | 0.05% | 1 | 0.61% |
Mauro Carvalho Chehab | 3 | 0.03% | 1 | 0.61% |
Daniel Vetter | 2 | 0.02% | 1 | 0.61% |
Kefeng Wang | 2 | 0.02% | 1 | 0.61% |
Liam R. Howlett | 2 | 0.02% | 1 | 0.61% |
Jason Ekstrand | 1 | 0.01% | 1 | 0.61% |
Khan, Imran | 1 | 0.01% | 1 | 0.61% |
Imre Deak | 1 | 0.01% | 1 | 0.61% |
Total | 9271 | 165 |
/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include <linux/sched/mm.h> #include <linux/dma-fence-array.h> #include <drm/drm_gem.h> #include "display/intel_frontbuffer.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_tiling.h" #include "gt/intel_engine.h" #include "gt/intel_engine_heartbeat.h" #include "gt/intel_gt.h" #include "gt/intel_gt_requests.h" #include "i915_drv.h" #include "i915_gem_evict.h" #include "i915_sw_fence_work.h" #include "i915_trace.h" #include "i915_vma.h" #include "i915_vma_resource.h" static inline void assert_vma_held_evict(const struct i915_vma *vma) { /* * We may be forced to unbind when the vm is dead, to clean it up. * This is the only exception to the requirement of the object lock * being held. */ if (kref_read(&vma->vm->ref)) assert_object_held_shared(vma->obj); } static struct kmem_cache *slab_vmas; static struct i915_vma *i915_vma_alloc(void) { return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); } static void i915_vma_free(struct i915_vma *vma) { return kmem_cache_free(slab_vmas, vma); } #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) #include <linux/stackdepot.h> static void vma_print_allocator(struct i915_vma *vma, const char *reason) { char buf[512]; if (!vma->node.stack) { DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", vma->node.start, vma->node.size, reason); return; } stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0); DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", vma->node.start, vma->node.size, reason, buf); } #else static void vma_print_allocator(struct i915_vma *vma, const char *reason) { } #endif static inline struct i915_vma *active_to_vma(struct i915_active *ref) { return container_of(ref, typeof(struct i915_vma), active); } static int __i915_vma_active(struct i915_active *ref) { return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; } static void __i915_vma_retire(struct i915_active *ref) { i915_vma_put(active_to_vma(ref)); } static struct i915_vma * vma_create(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_gtt_view *view) { struct i915_vma *pos = ERR_PTR(-E2BIG); struct i915_vma *vma; struct rb_node *rb, **p; int err; /* The aliasing_ppgtt should never be used directly! */ GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); vma = i915_vma_alloc(); if (vma == NULL) return ERR_PTR(-ENOMEM); vma->ops = &vm->vma_ops; vma->obj = obj; vma->size = obj->base.size; vma->display_alignment = I915_GTT_MIN_ALIGNMENT; i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); /* Declare ourselves safe for use inside shrinkers */ if (IS_ENABLED(CONFIG_LOCKDEP)) { fs_reclaim_acquire(GFP_KERNEL); might_lock(&vma->active.mutex); fs_reclaim_release(GFP_KERNEL); } INIT_LIST_HEAD(&vma->closed_link); INIT_LIST_HEAD(&vma->obj_link); RB_CLEAR_NODE(&vma->obj_node); if (view && view->type != I915_GTT_VIEW_NORMAL) { vma->gtt_view = *view; if (view->type == I915_GTT_VIEW_PARTIAL) { GEM_BUG_ON(range_overflows_t(u64, view->partial.offset, view->partial.size, obj->base.size >> PAGE_SHIFT)); vma->size = view->partial.size; vma->size <<= PAGE_SHIFT; GEM_BUG_ON(vma->size > obj->base.size); } else if (view->type == I915_GTT_VIEW_ROTATED) { vma->size = intel_rotation_info_size(&view->rotated); vma->size <<= PAGE_SHIFT; } else if (view->type == I915_GTT_VIEW_REMAPPED) { vma->size = intel_remapped_info_size(&view->remapped); vma->size <<= PAGE_SHIFT; } } if (unlikely(vma->size > vm->total)) goto err_vma; GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); err = mutex_lock_interruptible(&vm->mutex); if (err) { pos = ERR_PTR(err); goto err_vma; } vma->vm = vm; list_add_tail(&vma->vm_link, &vm->unbound_list); spin_lock(&obj->vma.lock); if (i915_is_ggtt(vm)) { if (unlikely(overflows_type(vma->size, u32))) goto err_unlock; vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, i915_gem_object_get_tiling(obj), i915_gem_object_get_stride(obj)); if (unlikely(vma->fence_size < vma->size || /* overflow */ vma->fence_size > vm->total)) goto err_unlock; GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, i915_gem_object_get_tiling(obj), i915_gem_object_get_stride(obj)); GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); } rb = NULL; p = &obj->vma.tree.rb_node; while (*p) { long cmp; rb = *p; pos = rb_entry(rb, struct i915_vma, obj_node); /* * If the view already exists in the tree, another thread * already created a matching vma, so return the older instance * and dispose of ours. */ cmp = i915_vma_compare(pos, vm, view); if (cmp < 0) p = &rb->rb_right; else if (cmp > 0) p = &rb->rb_left; else goto err_unlock; } rb_link_node(&vma->obj_node, rb, p); rb_insert_color(&vma->obj_node, &obj->vma.tree); if (i915_vma_is_ggtt(vma)) /* * We put the GGTT vma at the start of the vma-list, followed * by the ppGGTT vma. This allows us to break early when * iterating over only the GGTT vma for an object, see * for_each_ggtt_vma() */ list_add(&vma->obj_link, &obj->vma.list); else list_add_tail(&vma->obj_link, &obj->vma.list); spin_unlock(&obj->vma.lock); mutex_unlock(&vm->mutex); return vma; err_unlock: spin_unlock(&obj->vma.lock); list_del_init(&vma->vm_link); mutex_unlock(&vm->mutex); err_vma: i915_vma_free(vma); return pos; } static struct i915_vma * i915_vma_lookup(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_gtt_view *view) { struct rb_node *rb; rb = obj->vma.tree.rb_node; while (rb) { struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); long cmp; cmp = i915_vma_compare(vma, vm, view); if (cmp == 0) return vma; if (cmp < 0) rb = rb->rb_right; else rb = rb->rb_left; } return NULL; } /** * i915_vma_instance - return the singleton instance of the VMA * @obj: parent &struct drm_i915_gem_object to be mapped * @vm: address space in which the mapping is located * @view: additional mapping requirements * * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with * the same @view characteristics. If a match is not found, one is created. * Once created, the VMA is kept until either the object is freed, or the * address space is closed. * * Returns the vma, or an error pointer. */ struct i915_vma * i915_vma_instance(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_gtt_view *view) { struct i915_vma *vma; GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); GEM_BUG_ON(!kref_read(&vm->ref)); spin_lock(&obj->vma.lock); vma = i915_vma_lookup(obj, vm, view); spin_unlock(&obj->vma.lock); /* vma_create() will resolve the race if another creates the vma */ if (unlikely(!vma)) vma = vma_create(obj, vm, view); GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); return vma; } struct i915_vma_work { struct dma_fence_work base; struct i915_address_space *vm; struct i915_vm_pt_stash stash; struct i915_vma_resource *vma_res; struct drm_i915_gem_object *obj; struct i915_sw_dma_fence_cb cb; enum i915_cache_level cache_level; unsigned int flags; }; static void __vma_bind(struct dma_fence_work *work) { struct i915_vma_work *vw = container_of(work, typeof(*vw), base); struct i915_vma_resource *vma_res = vw->vma_res; /* * We are about the bind the object, which must mean we have already * signaled the work to potentially clear/move the pages underneath. If * something went wrong at that stage then the object should have * unknown_state set, in which case we need to skip the bind. */ if (i915_gem_object_has_unknown_state(vw->obj)) return; vma_res->ops->bind_vma(vma_res->vm, &vw->stash, vma_res, vw->cache_level, vw->flags); } static void __vma_release(struct dma_fence_work *work) { struct i915_vma_work *vw = container_of(work, typeof(*vw), base); if (vw->obj) i915_gem_object_put(vw->obj); i915_vm_free_pt_stash(vw->vm, &vw->stash); if (vw->vma_res) i915_vma_resource_put(vw->vma_res); } static const struct dma_fence_work_ops bind_ops = { .name = "bind", .work = __vma_bind, .release = __vma_release, }; struct i915_vma_work *i915_vma_work(void) { struct i915_vma_work *vw; vw = kzalloc(sizeof(*vw), GFP_KERNEL); if (!vw) return NULL; dma_fence_work_init(&vw->base, &bind_ops); vw->base.dma.error = -EAGAIN; /* disable the worker by default */ return vw; } int i915_vma_wait_for_bind(struct i915_vma *vma) { int err = 0; if (rcu_access_pointer(vma->active.excl.fence)) { struct dma_fence *fence; rcu_read_lock(); fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); rcu_read_unlock(); if (fence) { err = dma_fence_wait(fence, true); dma_fence_put(fence); } } return err; } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) static int i915_vma_verify_bind_complete(struct i915_vma *vma) { struct dma_fence *fence = i915_active_fence_get(&vma->active.excl); int err; if (!fence) return 0; if (dma_fence_is_signaled(fence)) err = fence->error; else err = -EBUSY; dma_fence_put(fence); return err; } #else #define i915_vma_verify_bind_complete(_vma) 0 #endif I915_SELFTEST_EXPORT void i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res, struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes, obj->mm.rsgt, i915_gem_object_is_readonly(obj), i915_gem_object_is_lmem(obj), obj->mm.region, vma->ops, vma->private, vma->node.start, vma->node.size, vma->size); } /** * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. * @vma: VMA to map * @cache_level: mapping cache level * @flags: flags like global or local mapping * @work: preallocated worker for allocating and binding the PTE * @vma_res: pointer to a preallocated vma resource. The resource is either * consumed or freed. * * DMA addresses are taken from the scatter-gather table of this object (or of * this VMA in case of non-default GGTT views) and PTE entries set up. * Note that DMA addresses are also the only part of the SG table we care about. */ int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags, struct i915_vma_work *work, struct i915_vma_resource *vma_res) { u32 bind_flags; u32 vma_flags; int ret; lockdep_assert_held(&vma->vm->mutex); GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(vma->size > vma->node.size); if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, vma->node.size, vma->vm->total))) { i915_vma_resource_free(vma_res); return -ENODEV; } if (GEM_DEBUG_WARN_ON(!flags)) { i915_vma_resource_free(vma_res); return -EINVAL; } bind_flags = flags; bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; vma_flags = atomic_read(&vma->flags); vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; bind_flags &= ~vma_flags; if (bind_flags == 0) { i915_vma_resource_free(vma_res); return 0; } GEM_BUG_ON(!atomic_read(&vma->pages_count)); /* Wait for or await async unbinds touching our range */ if (work && bind_flags & vma->vm->bind_async_flags) ret = i915_vma_resource_bind_dep_await(vma->vm, &work->base.chain, vma->node.start, vma->node.size, true, GFP_NOWAIT | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); else ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start, vma->node.size, true); if (ret) { i915_vma_resource_free(vma_res); return ret; } if (vma->resource || !vma_res) { /* Rebinding with an additional I915_VMA_*_BIND */ GEM_WARN_ON(!vma_flags); i915_vma_resource_free(vma_res); } else { i915_vma_resource_init_from_vma(vma_res, vma); vma->resource = vma_res; } trace_i915_vma_bind(vma, bind_flags); if (work && bind_flags & vma->vm->bind_async_flags) { struct dma_fence *prev; work->vma_res = i915_vma_resource_get(vma->resource); work->cache_level = cache_level; work->flags = bind_flags; /* * Note we only want to chain up to the migration fence on * the pages (not the object itself). As we don't track that, * yet, we have to use the exclusive fence instead. * * Also note that we do not want to track the async vma as * part of the obj->resv->excl_fence as it only affects * execution and not content or object's backing store lifetime. */ prev = i915_active_set_exclusive(&vma->active, &work->base.dma); if (prev) { __i915_sw_fence_await_dma_fence(&work->base.chain, prev, &work->cb); dma_fence_put(prev); } work->base.dma.error = 0; /* enable the queue_work() */ work->obj = i915_gem_object_get(vma->obj); } else { ret = i915_gem_object_wait_moving_fence(vma->obj, true); if (ret) { i915_vma_resource_free(vma->resource); vma->resource = NULL; return ret; } vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level, bind_flags); } atomic_or(bind_flags, &vma->flags); return 0; } void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) { void __iomem *ptr; int err; if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY)) return IOMEM_ERR_PTR(-EINVAL); GEM_BUG_ON(!i915_vma_is_ggtt(vma)); GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); GEM_BUG_ON(i915_vma_verify_bind_complete(vma)); ptr = READ_ONCE(vma->iomap); if (ptr == NULL) { /* * TODO: consider just using i915_gem_object_pin_map() for lmem * instead, which already supports mapping non-contiguous chunks * of pages, that way we can also drop the * I915_BO_ALLOC_CONTIGUOUS when allocating the object. */ if (i915_gem_object_is_lmem(vma->obj)) { ptr = i915_gem_object_lmem_io_map(vma->obj, 0, vma->obj->base.size); } else if (i915_vma_is_map_and_fenceable(vma)) { ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, vma->node.start, vma->node.size); } else { ptr = (void __iomem *) i915_gem_object_pin_map(vma->obj, I915_MAP_WC); if (IS_ERR(ptr)) { err = PTR_ERR(ptr); goto err; } ptr = page_pack_bits(ptr, 1); } if (ptr == NULL) { err = -ENOMEM; goto err; } if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { if (page_unmask_bits(ptr)) __i915_gem_object_release_map(vma->obj); else io_mapping_unmap(ptr); ptr = vma->iomap; } } __i915_vma_pin(vma); err = i915_vma_pin_fence(vma); if (err) goto err_unpin; i915_vma_set_ggtt_write(vma); /* NB Access through the GTT requires the device to be awake. */ return page_mask_bits(ptr); err_unpin: __i915_vma_unpin(vma); err: return IOMEM_ERR_PTR(err); } void i915_vma_flush_writes(struct i915_vma *vma) { if (i915_vma_unset_ggtt_write(vma)) intel_gt_flush_ggtt_writes(vma->vm->gt); } void i915_vma_unpin_iomap(struct i915_vma *vma) { GEM_BUG_ON(vma->iomap == NULL); /* XXX We keep the mapping until __i915_vma_unbind()/evict() */ i915_vma_flush_writes(vma); i915_vma_unpin_fence(vma); i915_vma_unpin(vma); } void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) { struct i915_vma *vma; struct drm_i915_gem_object *obj; vma = fetch_and_zero(p_vma); if (!vma) return; obj = vma->obj; GEM_BUG_ON(!obj); i915_vma_unpin(vma); if (flags & I915_VMA_RELEASE_MAP) i915_gem_object_unpin_map(obj); i915_gem_object_put(obj); } bool i915_vma_misplaced(const struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { if (!drm_mm_node_allocated(&vma->node)) return false; if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) return true; if (vma->node.size < size) return true; GEM_BUG_ON(alignment && !is_power_of_2(alignment)); if (alignment && !IS_ALIGNED(vma->node.start, alignment)) return true; if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) return true; if (flags & PIN_OFFSET_BIAS && vma->node.start < (flags & PIN_OFFSET_MASK)) return true; if (flags & PIN_OFFSET_FIXED && vma->node.start != (flags & PIN_OFFSET_MASK)) return true; return false; } void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) { bool mappable, fenceable; GEM_BUG_ON(!i915_vma_is_ggtt(vma)); GEM_BUG_ON(!vma->fence_size); fenceable = (vma->node.size >= vma->fence_size && IS_ALIGNED(vma->node.start, vma->fence_alignment)); mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; if (mappable && fenceable) set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); else clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); } bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) { struct drm_mm_node *node = &vma->node; struct drm_mm_node *other; /* * On some machines we have to be careful when putting differing types * of snoopable memory together to avoid the prefetcher crossing memory * domains and dying. During vm initialisation, we decide whether or not * these constraints apply and set the drm_mm.color_adjust * appropriately. */ if (!i915_vm_has_cache_coloring(vma->vm)) return true; /* Only valid to be called on an already inserted vma */ GEM_BUG_ON(!drm_mm_node_allocated(node)); GEM_BUG_ON(list_empty(&node->node_list)); other = list_prev_entry(node, node_list); if (i915_node_color_differs(other, color) && !drm_mm_hole_follows(other)) return false; other = list_next_entry(node, node_list); if (i915_node_color_differs(other, color) && !drm_mm_hole_follows(node)) return false; return true; } /** * i915_vma_insert - finds a slot for the vma in its address space * @vma: the vma * @size: requested size in bytes (can be larger than the VMA) * @alignment: required alignment * @flags: mask of PIN_* flags to use * * First we try to allocate some free space that meets the requirements for * the VMA. Failiing that, if the flags permit, it will evict an old VMA, * preferrably the oldest idle entry to make room for the new VMA. * * Returns: * 0 on success, negative error code otherwise. */ static int i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, u64 size, u64 alignment, u64 flags) { unsigned long color; u64 start, end; int ret; GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); size = max(size, vma->size); alignment = max(alignment, vma->display_alignment); if (flags & PIN_MAPPABLE) { size = max_t(typeof(size), size, vma->fence_size); alignment = max_t(typeof(alignment), alignment, vma->fence_alignment); } GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); GEM_BUG_ON(!is_power_of_2(alignment)); start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); end = vma->vm->total; if (flags & PIN_MAPPABLE) end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); if (flags & PIN_ZONE_4G) end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj)); /* * for compact-pt we round up the reservation to prevent * any smaller pages being used within the same PDE */ if (NEEDS_COMPACT_PT(vma->vm->i915)) size = round_up(size, alignment); /* If binding the object/GGTT view requires more space than the entire * aperture has, reject it early before evicting everything in a vain * attempt to find space. */ if (size > end) { DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", size, flags & PIN_MAPPABLE ? "mappable" : "total", end); return -ENOSPC; } color = 0; if (i915_vm_has_cache_coloring(vma->vm)) color = vma->obj->cache_level; if (flags & PIN_OFFSET_FIXED) { u64 offset = flags & PIN_OFFSET_MASK; if (!IS_ALIGNED(offset, alignment) || range_overflows(offset, size, end)) return -EINVAL; ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node, size, offset, color, flags); if (ret) return ret; } else { /* * We only support huge gtt pages through the 48b PPGTT, * however we also don't want to force any alignment for * objects which need to be tightly packed into the low 32bits. * * Note that we assume that GGTT are limited to 4GiB for the * forseeable future. See also i915_ggtt_offset(). */ if (upper_32_bits(end - 1) && vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { /* * We can't mix 64K and 4K PTEs in the same page-table * (2M block), and so to avoid the ugliness and * complexity of coloring we opt for just aligning 64K * objects to 2M. */ u64 page_alignment = rounddown_pow_of_two(vma->page_sizes.sg | I915_GTT_PAGE_SIZE_2M); /* * Check we don't expand for the limited Global GTT * (mappable aperture is even more precious!). This * also checks that we exclude the aliasing-ppgtt. */ GEM_BUG_ON(i915_vma_is_ggtt(vma)); alignment = max(alignment, page_alignment); if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) size = round_up(size, I915_GTT_PAGE_SIZE_2M); } ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node, size, alignment, color, start, end, flags); if (ret) return ret; GEM_BUG_ON(vma->node.start < start); GEM_BUG_ON(vma->node.start + vma->node.size > end); } GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); list_move_tail(&vma->vm_link, &vma->vm->bound_list); return 0; } static void i915_vma_detach(struct i915_vma *vma) { GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); /* * And finally now the object is completely decoupled from this * vma, we can drop its hold on the backing storage and allow * it to be reaped by the shrinker. */ list_move_tail(&vma->vm_link, &vma->vm->unbound_list); } static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) { unsigned int bound; bound = atomic_read(&vma->flags); if (flags & PIN_VALIDATE) { flags &= I915_VMA_BIND_MASK; return (flags & bound) == flags; } /* with the lock mandatory for unbind, we don't race here */ flags &= I915_VMA_BIND_MASK; do { if (unlikely(flags & ~bound)) return false; if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) return false; GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); return true; } static struct scatterlist * rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, unsigned int width, unsigned int height, unsigned int src_stride, unsigned int dst_stride, struct sg_table *st, struct scatterlist *sg) { unsigned int column, row; unsigned int src_idx; for (column = 0; column < width; column++) { unsigned int left; src_idx = src_stride * (height - 1) + column + offset; for (row = 0; row < height; row++) { st->nents++; /* * We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); sg_dma_address(sg) = i915_gem_object_get_dma_address(obj, src_idx); sg_dma_len(sg) = I915_GTT_PAGE_SIZE; sg = sg_next(sg); src_idx -= src_stride; } left = (dst_stride - height) * I915_GTT_PAGE_SIZE; if (!left) continue; st->nents++; /* * The DE ignores the PTEs for the padding tiles, the sg entry * here is just a conenience to indicate how many padding PTEs * to insert at this spot. */ sg_set_page(sg, NULL, left, 0); sg_dma_address(sg) = 0; sg_dma_len(sg) = left; sg = sg_next(sg); } return sg; } static noinline struct sg_table * intel_rotate_pages(struct intel_rotation_info *rot_info, struct drm_i915_gem_object *obj) { unsigned int size = intel_rotation_info_size(rot_info); struct drm_i915_private *i915 = to_i915(obj->base.dev); struct sg_table *st; struct scatterlist *sg; int ret = -ENOMEM; int i; /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) sg = rotate_pages(obj, rot_info->plane[i].offset, rot_info->plane[i].width, rot_info->plane[i].height, rot_info->plane[i].src_stride, rot_info->plane[i].dst_stride, st, sg); return st; err_sg_alloc: kfree(st); err_st_alloc: drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); return ERR_PTR(ret); } static struct scatterlist * add_padding_pages(unsigned int count, struct sg_table *st, struct scatterlist *sg) { st->nents++; /* * The DE ignores the PTEs for the padding tiles, the sg entry * here is just a convenience to indicate how many padding PTEs * to insert at this spot. */ sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0); sg_dma_address(sg) = 0; sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE; sg = sg_next(sg); return sg; } static struct scatterlist * remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj, unsigned int offset, unsigned int alignment_pad, unsigned int width, unsigned int height, unsigned int src_stride, unsigned int dst_stride, struct sg_table *st, struct scatterlist *sg, unsigned int *gtt_offset) { unsigned int row; if (!width || !height) return sg; if (alignment_pad) sg = add_padding_pages(alignment_pad, st, sg); for (row = 0; row < height; row++) { unsigned int left = width * I915_GTT_PAGE_SIZE; while (left) { dma_addr_t addr; unsigned int length; /* * We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ addr = i915_gem_object_get_dma_address_len(obj, offset, &length); length = min(left, length); st->nents++; sg_set_page(sg, NULL, length, 0); sg_dma_address(sg) = addr; sg_dma_len(sg) = length; sg = sg_next(sg); offset += length / I915_GTT_PAGE_SIZE; left -= length; } offset += src_stride - width; left = (dst_stride - width) * I915_GTT_PAGE_SIZE; if (!left) continue; sg = add_padding_pages(left >> PAGE_SHIFT, st, sg); } *gtt_offset += alignment_pad + dst_stride * height; return sg; } static struct scatterlist * remap_contiguous_pages(struct drm_i915_gem_object *obj, unsigned int obj_offset, unsigned int count, struct sg_table *st, struct scatterlist *sg) { struct scatterlist *iter; unsigned int offset; iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset); GEM_BUG_ON(!iter); do { unsigned int len; len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT), count << PAGE_SHIFT); sg_set_page(sg, NULL, len, 0); sg_dma_address(sg) = sg_dma_address(iter) + (offset << PAGE_SHIFT); sg_dma_len(sg) = len; st->nents++; count -= len >> PAGE_SHIFT; if (count == 0) return sg; sg = __sg_next(sg); iter = __sg_next(iter); offset = 0; } while (1); } static struct scatterlist * remap_linear_color_plane_pages(struct drm_i915_gem_object *obj, unsigned int obj_offset, unsigned int alignment_pad, unsigned int size, struct sg_table *st, struct scatterlist *sg, unsigned int *gtt_offset) { if (!size) return sg; if (alignment_pad) sg = add_padding_pages(alignment_pad, st, sg); sg = remap_contiguous_pages(obj, obj_offset, size, st, sg); sg = sg_next(sg); *gtt_offset += alignment_pad + size; return sg; } static struct scatterlist * remap_color_plane_pages(const struct intel_remapped_info *rem_info, struct drm_i915_gem_object *obj, int color_plane, struct sg_table *st, struct scatterlist *sg, unsigned int *gtt_offset) { unsigned int alignment_pad = 0; if (rem_info->plane_alignment) alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset; if (rem_info->plane[color_plane].linear) sg = remap_linear_color_plane_pages(obj, rem_info->plane[color_plane].offset, alignment_pad, rem_info->plane[color_plane].size, st, sg, gtt_offset); else sg = remap_tiled_color_plane_pages(obj, rem_info->plane[color_plane].offset, alignment_pad, rem_info->plane[color_plane].width, rem_info->plane[color_plane].height, rem_info->plane[color_plane].src_stride, rem_info->plane[color_plane].dst_stride, st, sg, gtt_offset); return sg; } static noinline struct sg_table * intel_remap_pages(struct intel_remapped_info *rem_info, struct drm_i915_gem_object *obj) { unsigned int size = intel_remapped_info_size(rem_info); struct drm_i915_private *i915 = to_i915(obj->base.dev); struct sg_table *st; struct scatterlist *sg; unsigned int gtt_offset = 0; int ret = -ENOMEM; int i; /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset); i915_sg_trim(st); return st; err_sg_alloc: kfree(st); err_st_alloc: drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size); return ERR_PTR(ret); } static noinline struct sg_table * intel_partial_pages(const struct i915_gtt_view *view, struct drm_i915_gem_object *obj) { struct sg_table *st; struct scatterlist *sg; unsigned int count = view->partial.size; int ret = -ENOMEM; st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, count, GFP_KERNEL); if (ret) goto err_sg_alloc; st->nents = 0; sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl); sg_mark_end(sg); i915_sg_trim(st); /* Drop any unused tail entries. */ return st; err_sg_alloc: kfree(st); err_st_alloc: return ERR_PTR(ret); } static int __i915_vma_get_pages(struct i915_vma *vma) { struct sg_table *pages; /* * The vma->pages are only valid within the lifespan of the borrowed * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so * must be the vma->pages. A simple rule is that vma->pages must only * be accessed when the obj->mm.pages are pinned. */ GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); switch (vma->gtt_view.type) { default: GEM_BUG_ON(vma->gtt_view.type); fallthrough; case I915_GTT_VIEW_NORMAL: pages = vma->obj->mm.pages; break; case I915_GTT_VIEW_ROTATED: pages = intel_rotate_pages(&vma->gtt_view.rotated, vma->obj); break; case I915_GTT_VIEW_REMAPPED: pages = intel_remap_pages(&vma->gtt_view.remapped, vma->obj); break; case I915_GTT_VIEW_PARTIAL: pages = intel_partial_pages(&vma->gtt_view, vma->obj); break; } if (IS_ERR(pages)) { drm_err(&vma->vm->i915->drm, "Failed to get pages for VMA view type %u (%ld)!\n", vma->gtt_view.type, PTR_ERR(pages)); return PTR_ERR(pages); } vma->pages = pages; return 0; } I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma) { int err; if (atomic_add_unless(&vma->pages_count, 1, 0)) return 0; err = i915_gem_object_pin_pages(vma->obj); if (err) return err; err = __i915_vma_get_pages(vma); if (err) goto err_unpin; vma->page_sizes = vma->obj->mm.page_sizes; atomic_inc(&vma->pages_count); return 0; err_unpin: __i915_gem_object_unpin_pages(vma->obj); return err; } void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb) { /* * Before we release the pages that were bound by this vma, we * must invalidate all the TLBs that may still have a reference * back to our physical address. It only needs to be done once, * so after updating the PTE to point away from the pages, record * the most recent TLB invalidation seqno, and if we have not yet * flushed the TLBs upon release, perform a full invalidation. */ WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt)); } static void __vma_put_pages(struct i915_vma *vma, unsigned int count) { /* We allocate under vma_get_pages, so beware the shrinker */ GEM_BUG_ON(atomic_read(&vma->pages_count) < count); if (atomic_sub_return(count, &vma->pages_count) == 0) { if (vma->pages != vma->obj->mm.pages) { sg_free_table(vma->pages); kfree(vma->pages); } vma->pages = NULL; i915_gem_object_unpin_pages(vma->obj); } } I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma) { if (atomic_add_unless(&vma->pages_count, -1, 1)) return; __vma_put_pages(vma, 1); } static void vma_unbind_pages(struct i915_vma *vma) { unsigned int count; lockdep_assert_held(&vma->vm->mutex); /* The upper portion of pages_count is the number of bindings */ count = atomic_read(&vma->pages_count); count >>= I915_VMA_PAGES_BIAS; GEM_BUG_ON(!count); __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); } int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, u64 size, u64 alignment, u64 flags) { struct i915_vma_work *work = NULL; struct dma_fence *moving = NULL; struct i915_vma_resource *vma_res = NULL; intel_wakeref_t wakeref = 0; unsigned int bound; int err; assert_vma_held(vma); GEM_BUG_ON(!ww); BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); /* First try and grab the pin without rebinding the vma */ if (try_qad_pin(vma, flags)) return 0; err = i915_vma_get_pages(vma); if (err) return err; if (flags & PIN_GLOBAL) wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); if (flags & vma->vm->bind_async_flags) { /* lock VM */ err = i915_vm_lock_objects(vma->vm, ww); if (err) goto err_rpm; work = i915_vma_work(); if (!work) { err = -ENOMEM; goto err_rpm; } work->vm = vma->vm; err = i915_gem_object_get_moving_fence(vma->obj, &moving); if (err) goto err_rpm; dma_fence_work_chain(&work->base, moving); /* Allocate enough page directories to used PTE */ if (vma->vm->allocate_va_range) { err = i915_vm_alloc_pt_stash(vma->vm, &work->stash, vma->size); if (err) goto err_fence; err = i915_vm_map_pt_stash(vma->vm, &work->stash); if (err) goto err_fence; } } vma_res = i915_vma_resource_alloc(); if (IS_ERR(vma_res)) { err = PTR_ERR(vma_res); goto err_fence; } /* * Differentiate between user/kernel vma inside the aliasing-ppgtt. * * We conflate the Global GTT with the user's vma when using the * aliasing-ppgtt, but it is still vitally important to try and * keep the use cases distinct. For example, userptr objects are * not allowed inside the Global GTT as that will cause lock * inversions when we have to evict them the mmu_notifier callbacks - * but they are allowed to be part of the user ppGTT which can never * be mapped. As such we try to give the distinct users of the same * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt * and i915_ppgtt separate]. * * NB this may cause us to mask real lock inversions -- while the * code is safe today, lockdep may not be able to spot future * transgressions. */ err = mutex_lock_interruptible_nested(&vma->vm->mutex, !(flags & PIN_GLOBAL)); if (err) goto err_vma_res; /* No more allocations allowed now we hold vm->mutex */ if (unlikely(i915_vma_is_closed(vma))) { err = -ENOENT; goto err_unlock; } bound = atomic_read(&vma->flags); if (unlikely(bound & I915_VMA_ERROR)) { err = -ENOMEM; goto err_unlock; } if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { err = -EAGAIN; /* pins are meant to be fairly temporary */ goto err_unlock; } if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { if (!(flags & PIN_VALIDATE)) __i915_vma_pin(vma); goto err_unlock; } err = i915_active_acquire(&vma->active); if (err) goto err_unlock; if (!(bound & I915_VMA_BIND_MASK)) { err = i915_vma_insert(vma, ww, size, alignment, flags); if (err) goto err_active; if (i915_is_ggtt(vma->vm)) __i915_vma_set_map_and_fenceable(vma); } GEM_BUG_ON(!vma->pages); err = i915_vma_bind(vma, vma->obj->cache_level, flags, work, vma_res); vma_res = NULL; if (err) goto err_remove; /* There should only be at most 2 active bindings (user, global) */ GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); list_move_tail(&vma->vm_link, &vma->vm->bound_list); if (!(flags & PIN_VALIDATE)) { __i915_vma_pin(vma); GEM_BUG_ON(!i915_vma_is_pinned(vma)); } GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); err_remove: if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { i915_vma_detach(vma); drm_mm_remove_node(&vma->node); } err_active: i915_active_release(&vma->active); err_unlock: mutex_unlock(&vma->vm->mutex); err_vma_res: i915_vma_resource_free(vma_res); err_fence: if (work) dma_fence_work_commit_imm(&work->base); err_rpm: if (wakeref) intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); if (moving) dma_fence_put(moving); i915_vma_put_pages(vma); return err; } static void flush_idle_contexts(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) intel_engine_flush_barriers(engine); intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); } static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, u32 align, unsigned int flags) { struct i915_address_space *vm = vma->vm; int err; do { err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); if (err != -ENOSPC) { if (!err) { err = i915_vma_wait_for_bind(vma); if (err) i915_vma_unpin(vma); } return err; } /* Unlike i915_vma_pin, we don't take no for an answer! */ flush_idle_contexts(vm->gt); if (mutex_lock_interruptible(&vm->mutex) == 0) { /* * We pass NULL ww here, as we don't want to unbind * locked objects when called from execbuf when pinning * is removed. This would probably regress badly. */ i915_gem_evict_vm(vm, NULL); mutex_unlock(&vm->mutex); } } while (1); } int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, u32 align, unsigned int flags) { struct i915_gem_ww_ctx _ww; int err; GEM_BUG_ON(!i915_vma_is_ggtt(vma)); if (ww) return __i915_ggtt_pin(vma, ww, align, flags); lockdep_assert_not_held(&vma->obj->base.resv->lock.base); for_i915_gem_ww(&_ww, err, true) { err = i915_gem_object_lock(vma->obj, &_ww); if (!err) err = __i915_ggtt_pin(vma, &_ww, align, flags); } return err; } static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) { /* * We defer actually closing, unbinding and destroying the VMA until * the next idle point, or if the object is freed in the meantime. By * postponing the unbind, we allow for it to be resurrected by the * client, avoiding the work required to rebind the VMA. This is * advantageous for DRI, where the client/server pass objects * between themselves, temporarily opening a local VMA to the * object, and then closing it again. The same object is then reused * on the next frame (or two, depending on the depth of the swap queue) * causing us to rebind the VMA once more. This ends up being a lot * of wasted work for the steady state. */ GEM_BUG_ON(i915_vma_is_closed(vma)); list_add(&vma->closed_link, >->closed_vma); } void i915_vma_close(struct i915_vma *vma) { struct intel_gt *gt = vma->vm->gt; unsigned long flags; if (i915_vma_is_ggtt(vma)) return; GEM_BUG_ON(!atomic_read(&vma->open_count)); if (atomic_dec_and_lock_irqsave(&vma->open_count, >->closed_lock, flags)) { __vma_close(vma, gt); spin_unlock_irqrestore(>->closed_lock, flags); } } static void __i915_vma_remove_closed(struct i915_vma *vma) { list_del_init(&vma->closed_link); } void i915_vma_reopen(struct i915_vma *vma) { struct intel_gt *gt = vma->vm->gt; spin_lock_irq(>->closed_lock); if (i915_vma_is_closed(vma)) __i915_vma_remove_closed(vma); spin_unlock_irq(>->closed_lock); } static void force_unbind(struct i915_vma *vma) { if (!drm_mm_node_allocated(&vma->node)) return; atomic_and(~I915_VMA_PIN_MASK, &vma->flags); WARN_ON(__i915_vma_unbind(vma)); GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); } static void release_references(struct i915_vma *vma, struct intel_gt *gt, bool vm_ddestroy) { struct drm_i915_gem_object *obj = vma->obj; GEM_BUG_ON(i915_vma_is_active(vma)); spin_lock(&obj->vma.lock); list_del(&vma->obj_link); if (!RB_EMPTY_NODE(&vma->obj_node)) rb_erase(&vma->obj_node, &obj->vma.tree); spin_unlock(&obj->vma.lock); spin_lock_irq(>->closed_lock); __i915_vma_remove_closed(vma); spin_unlock_irq(>->closed_lock); if (vm_ddestroy) i915_vm_resv_put(vma->vm); i915_active_fini(&vma->active); GEM_WARN_ON(vma->resource); i915_vma_free(vma); } /** * i915_vma_destroy_locked - Remove all weak reference to the vma and put * the initial reference. * * This function should be called when it's decided the vma isn't needed * anymore. The caller must assure that it doesn't race with another lookup * plus destroy, typically by taking an appropriate reference. * * Current callsites are * - __i915_gem_object_pages_fini() * - __i915_vm_close() - Blocks the above function by taking a reference on * the object. * - __i915_vma_parked() - Blocks the above functions by taking a reference * on the vm and a reference on the object. Also takes the object lock so * destruction from __i915_vma_parked() can be blocked by holding the * object lock. Since the object lock is only allowed from within i915 with * an object refcount, holding the object lock also implicitly blocks the * vma freeing from __i915_gem_object_pages_fini(). * * Because of locks taken during destruction, a vma is also guaranteed to * stay alive while the following locks are held if it was looked up while * holding one of the locks: * - vm->mutex * - obj->vma.lock * - gt->closed_lock */ void i915_vma_destroy_locked(struct i915_vma *vma) { lockdep_assert_held(&vma->vm->mutex); force_unbind(vma); list_del_init(&vma->vm_link); release_references(vma, vma->vm->gt, false); } void i915_vma_destroy(struct i915_vma *vma) { struct intel_gt *gt; bool vm_ddestroy; mutex_lock(&vma->vm->mutex); force_unbind(vma); list_del_init(&vma->vm_link); vm_ddestroy = vma->vm_ddestroy; vma->vm_ddestroy = false; /* vma->vm may be freed when releasing vma->vm->mutex. */ gt = vma->vm->gt; mutex_unlock(&vma->vm->mutex); release_references(vma, gt, vm_ddestroy); } void i915_vma_parked(struct intel_gt *gt) { struct i915_vma *vma, *next; LIST_HEAD(closed); spin_lock_irq(>->closed_lock); list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { struct drm_i915_gem_object *obj = vma->obj; struct i915_address_space *vm = vma->vm; /* XXX All to avoid keeping a reference on i915_vma itself */ if (!kref_get_unless_zero(&obj->base.refcount)) continue; if (!i915_vm_tryget(vm)) { i915_gem_object_put(obj); continue; } list_move(&vma->closed_link, &closed); } spin_unlock_irq(>->closed_lock); /* As the GT is held idle, no vma can be reopened as we destroy them */ list_for_each_entry_safe(vma, next, &closed, closed_link) { struct drm_i915_gem_object *obj = vma->obj; struct i915_address_space *vm = vma->vm; if (i915_gem_object_trylock(obj, NULL)) { INIT_LIST_HEAD(&vma->closed_link); i915_vma_destroy(vma); i915_gem_object_unlock(obj); } else { /* back you go.. */ spin_lock_irq(>->closed_lock); list_add(&vma->closed_link, >->closed_vma); spin_unlock_irq(>->closed_lock); } i915_gem_object_put(obj); i915_vm_put(vm); } } static void __i915_vma_iounmap(struct i915_vma *vma) { GEM_BUG_ON(i915_vma_is_pinned(vma)); if (vma->iomap == NULL) return; if (page_unmask_bits(vma->iomap)) __i915_gem_object_release_map(vma->obj); else io_mapping_unmap(vma->iomap); vma->iomap = NULL; } void i915_vma_revoke_mmap(struct i915_vma *vma) { struct drm_vma_offset_node *node; u64 vma_offset; if (!i915_vma_has_userfault(vma)) return; GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); GEM_BUG_ON(!vma->obj->userfault_count); node = &vma->mmo->vma_node; vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, drm_vma_node_offset_addr(node) + vma_offset, vma->size, 1); i915_vma_unset_userfault(vma); if (!--vma->obj->userfault_count) list_del(&vma->obj->userfault_link); } static int __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) { return __i915_request_await_exclusive(rq, &vma->active); } static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) { int err; /* Wait for the vma to be bound before we start! */ err = __i915_request_await_bind(rq, vma); if (err) return err; return i915_active_add_request(&vma->active, rq); } int _i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq, struct dma_fence *fence, unsigned int flags) { struct drm_i915_gem_object *obj = vma->obj; int err; assert_object_held(obj); GEM_BUG_ON(!vma->pages); err = __i915_vma_move_to_active(vma, rq); if (unlikely(err)) return err; /* * Reserve fences slot early to prevent an allocation after preparing * the workload and associating fences with dma_resv. */ if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) { struct dma_fence *curr; int idx; dma_fence_array_for_each(curr, idx, fence) ; err = dma_resv_reserve_fences(vma->obj->base.resv, idx); if (unlikely(err)) return err; } if (flags & EXEC_OBJECT_WRITE) { struct intel_frontbuffer *front; front = __intel_frontbuffer_get(obj); if (unlikely(front)) { if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) i915_active_add_request(&front->write, rq); intel_frontbuffer_put(front); } } if (fence) { struct dma_fence *curr; enum dma_resv_usage usage; int idx; if (flags & EXEC_OBJECT_WRITE) { usage = DMA_RESV_USAGE_WRITE; obj->write_domain = I915_GEM_DOMAIN_RENDER; obj->read_domains = 0; } else { usage = DMA_RESV_USAGE_READ; obj->write_domain = 0; } dma_fence_array_for_each(curr, idx, fence) dma_resv_add_fence(vma->obj->base.resv, curr, usage); } if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) i915_active_add_request(&vma->fence->active, rq); obj->read_domains |= I915_GEM_GPU_DOMAINS; obj->mm.dirty = true; GEM_BUG_ON(!i915_vma_is_active(vma)); return 0; } struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async) { struct i915_vma_resource *vma_res = vma->resource; struct dma_fence *unbind_fence; GEM_BUG_ON(i915_vma_is_pinned(vma)); assert_vma_held_evict(vma); if (i915_vma_is_map_and_fenceable(vma)) { /* Force a pagefault for domain tracking on next user access */ i915_vma_revoke_mmap(vma); /* * Check that we have flushed all writes through the GGTT * before the unbind, other due to non-strict nature of those * indirect writes they may end up referencing the GGTT PTE * after the unbind. * * Note that we may be concurrently poking at the GGTT_WRITE * bit from set-domain, as we mark all GGTT vma associated * with an object. We know this is for another vma, as we * are currently unbinding this one -- so if this vma will be * reused, it will be refaulted and have its dirty bit set * before the next write. */ i915_vma_flush_writes(vma); /* release the fence reg _after_ flushing */ i915_vma_revoke_fence(vma); clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); } __i915_vma_iounmap(vma); GEM_BUG_ON(vma->fence); GEM_BUG_ON(i915_vma_has_userfault(vma)); /* Object backend must be async capable. */ GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt); /* If vm is not open, unbind is a nop. */ vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) && kref_read(&vma->vm->ref); vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) || vma->vm->skip_pte_rewrite; trace_i915_vma_unbind(vma); if (async) unbind_fence = i915_vma_resource_unbind(vma_res, &vma->obj->mm.tlb); else unbind_fence = i915_vma_resource_unbind(vma_res, NULL); vma->resource = NULL; atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), &vma->flags); i915_vma_detach(vma); if (!async) { if (unbind_fence) { dma_fence_wait(unbind_fence, false); dma_fence_put(unbind_fence); unbind_fence = NULL; } vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb); } /* * Binding itself may not have completed until the unbind fence signals, * so don't drop the pages until that happens, unless the resource is * async_capable. */ vma_unbind_pages(vma); return unbind_fence; } int __i915_vma_unbind(struct i915_vma *vma) { int ret; lockdep_assert_held(&vma->vm->mutex); assert_vma_held_evict(vma); if (!drm_mm_node_allocated(&vma->node)) return 0; if (i915_vma_is_pinned(vma)) { vma_print_allocator(vma, "is pinned"); return -EAGAIN; } /* * After confirming that no one else is pinning this vma, wait for * any laggards who may have crept in during the wait (through * a residual pin skipping the vm->mutex) to complete. */ ret = i915_vma_sync(vma); if (ret) return ret; GEM_BUG_ON(i915_vma_is_active(vma)); __i915_vma_evict(vma, false); drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ return 0; } static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma) { struct dma_fence *fence; lockdep_assert_held(&vma->vm->mutex); if (!drm_mm_node_allocated(&vma->node)) return NULL; if (i915_vma_is_pinned(vma) || &vma->obj->mm.rsgt->table != vma->resource->bi.pages) return ERR_PTR(-EAGAIN); /* * We probably need to replace this with awaiting the fences of the * object's dma_resv when the vma active goes away. When doing that * we need to be careful to not add the vma_resource unbind fence * immediately to the object's dma_resv, because then unbinding * the next vma from the object, in case there are many, will * actually await the unbinding of the previous vmas, which is * undesirable. */ if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active, I915_ACTIVE_AWAIT_EXCL | I915_ACTIVE_AWAIT_ACTIVE) < 0) { return ERR_PTR(-EBUSY); } fence = __i915_vma_evict(vma, true); drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ return fence; } int i915_vma_unbind(struct i915_vma *vma) { struct i915_address_space *vm = vma->vm; intel_wakeref_t wakeref = 0; int err; assert_object_held_shared(vma->obj); /* Optimistic wait before taking the mutex */ err = i915_vma_sync(vma); if (err) return err; if (!drm_mm_node_allocated(&vma->node)) return 0; if (i915_vma_is_pinned(vma)) { vma_print_allocator(vma, "is pinned"); return -EAGAIN; } if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) /* XXX not always required: nop_clear_range */ wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); if (err) goto out_rpm; err = __i915_vma_unbind(vma); mutex_unlock(&vm->mutex); out_rpm: if (wakeref) intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); return err; } int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm) { struct drm_i915_gem_object *obj = vma->obj; struct i915_address_space *vm = vma->vm; intel_wakeref_t wakeref = 0; struct dma_fence *fence; int err; /* * We need the dma-resv lock since we add the * unbind fence to the dma-resv object. */ assert_object_held(obj); if (!drm_mm_node_allocated(&vma->node)) return 0; if (i915_vma_is_pinned(vma)) { vma_print_allocator(vma, "is pinned"); return -EAGAIN; } if (!obj->mm.rsgt) return -EBUSY; err = dma_resv_reserve_fences(obj->base.resv, 1); if (err) return -EBUSY; /* * It would be great if we could grab this wakeref from the * async unbind work if needed, but we can't because it uses * kmalloc and it's in the dma-fence signalling critical path. */ if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); if (trylock_vm && !mutex_trylock(&vm->mutex)) { err = -EBUSY; goto out_rpm; } else if (!trylock_vm) { err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref); if (err) goto out_rpm; } fence = __i915_vma_unbind_async(vma); mutex_unlock(&vm->mutex); if (IS_ERR_OR_NULL(fence)) { err = PTR_ERR_OR_ZERO(fence); goto out_rpm; } dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ); dma_fence_put(fence); out_rpm: if (wakeref) intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); return err; } int i915_vma_unbind_unlocked(struct i915_vma *vma) { int err; i915_gem_object_lock(vma->obj, NULL); err = i915_vma_unbind(vma); i915_gem_object_unlock(vma->obj); return err; } struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) { i915_gem_object_make_unshrinkable(vma->obj); return vma; } void i915_vma_make_shrinkable(struct i915_vma *vma) { i915_gem_object_make_shrinkable(vma->obj); } void i915_vma_make_purgeable(struct i915_vma *vma) { i915_gem_object_make_purgeable(vma->obj); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/i915_vma.c" #endif void i915_vma_module_exit(void) { kmem_cache_destroy(slab_vmas); } int __init i915_vma_module_init(void) { slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); if (!slab_vmas) return -ENOMEM; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1