Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jordan Crouse | 5758 | 85.06% | 4 | 16.67% |
Rob Clark | 638 | 9.43% | 10 | 41.67% |
Sharat Masetty | 151 | 2.23% | 2 | 8.33% |
Akhil P Oommen | 144 | 2.13% | 2 | 8.33% |
Jonathan Marek | 71 | 1.05% | 2 | 8.33% |
Lee Jones | 3 | 0.04% | 1 | 4.17% |
Doug Anderson | 2 | 0.03% | 1 | 4.17% |
Dmitry Eremin-Solenikov | 1 | 0.01% | 1 | 4.17% |
Duan Zhenzhong | 1 | 0.01% | 1 | 4.17% |
Total | 6769 | 24 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018-2019 The Linux Foundation. All rights reserved. */ #include <linux/ascii85.h> #include "msm_gem.h" #include "a6xx_gpu.h" #include "a6xx_gmu.h" #include "a6xx_gpu_state.h" #include "a6xx_gmu.xml.h" struct a6xx_gpu_state_obj { const void *handle; u32 *data; }; struct a6xx_gpu_state { struct msm_gpu_state base; struct a6xx_gpu_state_obj *gmu_registers; int nr_gmu_registers; struct a6xx_gpu_state_obj *registers; int nr_registers; struct a6xx_gpu_state_obj *shaders; int nr_shaders; struct a6xx_gpu_state_obj *clusters; int nr_clusters; struct a6xx_gpu_state_obj *dbgahb_clusters; int nr_dbgahb_clusters; struct a6xx_gpu_state_obj *indexed_regs; int nr_indexed_regs; struct a6xx_gpu_state_obj *debugbus; int nr_debugbus; struct a6xx_gpu_state_obj *vbif_debugbus; struct a6xx_gpu_state_obj *cx_debugbus; int nr_cx_debugbus; struct msm_gpu_state_bo *gmu_log; struct msm_gpu_state_bo *gmu_hfi; struct msm_gpu_state_bo *gmu_debug; s32 hfi_queue_history[2][HFI_HISTORY_SZ]; struct list_head objs; bool gpu_initialized; }; static inline int CRASHDUMP_WRITE(u64 *in, u32 reg, u32 val) { in[0] = val; in[1] = (((u64) reg) << 44 | (1 << 21) | 1); return 2; } static inline int CRASHDUMP_READ(u64 *in, u32 reg, u32 dwords, u64 target) { in[0] = target; in[1] = (((u64) reg) << 44 | dwords); return 2; } static inline int CRASHDUMP_FINI(u64 *in) { in[0] = 0; in[1] = 0; return 2; } struct a6xx_crashdumper { void *ptr; struct drm_gem_object *bo; u64 iova; }; struct a6xx_state_memobj { struct list_head node; unsigned long long data[]; }; static void *state_kcalloc(struct a6xx_gpu_state *a6xx_state, int nr, size_t objsize) { struct a6xx_state_memobj *obj = kvzalloc((nr * objsize) + sizeof(*obj), GFP_KERNEL); if (!obj) return NULL; list_add_tail(&obj->node, &a6xx_state->objs); return &obj->data; } static void *state_kmemdup(struct a6xx_gpu_state *a6xx_state, void *src, size_t size) { void *dst = state_kcalloc(a6xx_state, 1, size); if (dst) memcpy(dst, src, size); return dst; } /* * Allocate 1MB for the crashdumper scratch region - 8k for the script and * the rest for the data */ #define A6XX_CD_DATA_OFFSET 8192 #define A6XX_CD_DATA_SIZE (SZ_1M - 8192) static int a6xx_crashdumper_init(struct msm_gpu *gpu, struct a6xx_crashdumper *dumper) { dumper->ptr = msm_gem_kernel_new(gpu->dev, SZ_1M, MSM_BO_WC, gpu->aspace, &dumper->bo, &dumper->iova); if (!IS_ERR(dumper->ptr)) msm_gem_object_set_name(dumper->bo, "crashdump"); return PTR_ERR_OR_ZERO(dumper->ptr); } static int a6xx_crashdumper_run(struct msm_gpu *gpu, struct a6xx_crashdumper *dumper) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); u32 val; int ret; if (IS_ERR_OR_NULL(dumper->ptr)) return -EINVAL; if (!a6xx_gmu_sptprac_is_on(&a6xx_gpu->gmu)) return -EINVAL; /* Make sure all pending memory writes are posted */ wmb(); gpu_write64(gpu, REG_A6XX_CP_CRASH_SCRIPT_BASE_LO, REG_A6XX_CP_CRASH_SCRIPT_BASE_HI, dumper->iova); gpu_write(gpu, REG_A6XX_CP_CRASH_DUMP_CNTL, 1); ret = gpu_poll_timeout(gpu, REG_A6XX_CP_CRASH_DUMP_STATUS, val, val & 0x02, 100, 10000); gpu_write(gpu, REG_A6XX_CP_CRASH_DUMP_CNTL, 0); return ret; } /* read a value from the GX debug bus */ static int debugbus_read(struct msm_gpu *gpu, u32 block, u32 offset, u32 *data) { u32 reg = A6XX_DBGC_CFG_DBGBUS_SEL_D_PING_INDEX(offset) | A6XX_DBGC_CFG_DBGBUS_SEL_D_PING_BLK_SEL(block); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_A, reg); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_B, reg); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_C, reg); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_SEL_D, reg); /* Wait 1 us to make sure the data is flowing */ udelay(1); data[0] = gpu_read(gpu, REG_A6XX_DBGC_CFG_DBGBUS_TRACE_BUF2); data[1] = gpu_read(gpu, REG_A6XX_DBGC_CFG_DBGBUS_TRACE_BUF1); return 2; } #define cxdbg_write(ptr, offset, val) \ msm_writel((val), (ptr) + ((offset) << 2)) #define cxdbg_read(ptr, offset) \ msm_readl((ptr) + ((offset) << 2)) /* read a value from the CX debug bus */ static int cx_debugbus_read(void __iomem *cxdbg, u32 block, u32 offset, u32 *data) { u32 reg = A6XX_CX_DBGC_CFG_DBGBUS_SEL_A_PING_INDEX(offset) | A6XX_CX_DBGC_CFG_DBGBUS_SEL_A_PING_BLK_SEL(block); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_A, reg); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_B, reg); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_C, reg); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_SEL_D, reg); /* Wait 1 us to make sure the data is flowing */ udelay(1); data[0] = cxdbg_read(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_TRACE_BUF2); data[1] = cxdbg_read(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_TRACE_BUF1); return 2; } /* Read a chunk of data from the VBIF debug bus */ static int vbif_debugbus_read(struct msm_gpu *gpu, u32 ctrl0, u32 ctrl1, u32 reg, int count, u32 *data) { int i; gpu_write(gpu, ctrl0, reg); for (i = 0; i < count; i++) { gpu_write(gpu, ctrl1, i); data[i] = gpu_read(gpu, REG_A6XX_VBIF_TEST_BUS_OUT); } return count; } #define AXI_ARB_BLOCKS 2 #define XIN_AXI_BLOCKS 5 #define XIN_CORE_BLOCKS 4 #define VBIF_DEBUGBUS_BLOCK_SIZE \ ((16 * AXI_ARB_BLOCKS) + \ (18 * XIN_AXI_BLOCKS) + \ (12 * XIN_CORE_BLOCKS)) static void a6xx_get_vbif_debugbus_block(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, struct a6xx_gpu_state_obj *obj) { u32 clk, *ptr; int i; obj->data = state_kcalloc(a6xx_state, VBIF_DEBUGBUS_BLOCK_SIZE, sizeof(u32)); if (!obj->data) return; obj->handle = NULL; /* Get the current clock setting */ clk = gpu_read(gpu, REG_A6XX_VBIF_CLKON); /* Force on the bus so we can read it */ gpu_write(gpu, REG_A6XX_VBIF_CLKON, clk | A6XX_VBIF_CLKON_FORCE_ON_TESTBUS); /* We will read from BUS2 first, so disable BUS1 */ gpu_write(gpu, REG_A6XX_VBIF_TEST_BUS1_CTRL0, 0); /* Enable the VBIF bus for reading */ gpu_write(gpu, REG_A6XX_VBIF_TEST_BUS_OUT_CTRL, 1); ptr = obj->data; for (i = 0; i < AXI_ARB_BLOCKS; i++) ptr += vbif_debugbus_read(gpu, REG_A6XX_VBIF_TEST_BUS2_CTRL0, REG_A6XX_VBIF_TEST_BUS2_CTRL1, 1 << (i + 16), 16, ptr); for (i = 0; i < XIN_AXI_BLOCKS; i++) ptr += vbif_debugbus_read(gpu, REG_A6XX_VBIF_TEST_BUS2_CTRL0, REG_A6XX_VBIF_TEST_BUS2_CTRL1, 1 << i, 18, ptr); /* Stop BUS2 so we can turn on BUS1 */ gpu_write(gpu, REG_A6XX_VBIF_TEST_BUS2_CTRL0, 0); for (i = 0; i < XIN_CORE_BLOCKS; i++) ptr += vbif_debugbus_read(gpu, REG_A6XX_VBIF_TEST_BUS1_CTRL0, REG_A6XX_VBIF_TEST_BUS1_CTRL1, 1 << i, 12, ptr); /* Restore the VBIF clock setting */ gpu_write(gpu, REG_A6XX_VBIF_CLKON, clk); } static void a6xx_get_debugbus_block(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_debugbus_block *block, struct a6xx_gpu_state_obj *obj) { int i; u32 *ptr; obj->data = state_kcalloc(a6xx_state, block->count, sizeof(u64)); if (!obj->data) return; obj->handle = block; for (ptr = obj->data, i = 0; i < block->count; i++) ptr += debugbus_read(gpu, block->id, i, ptr); } static void a6xx_get_cx_debugbus_block(void __iomem *cxdbg, struct a6xx_gpu_state *a6xx_state, const struct a6xx_debugbus_block *block, struct a6xx_gpu_state_obj *obj) { int i; u32 *ptr; obj->data = state_kcalloc(a6xx_state, block->count, sizeof(u64)); if (!obj->data) return; obj->handle = block; for (ptr = obj->data, i = 0; i < block->count; i++) ptr += cx_debugbus_read(cxdbg, block->id, i, ptr); } static void a6xx_get_debugbus(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state) { struct resource *res; void __iomem *cxdbg = NULL; int nr_debugbus_blocks; /* Set up the GX debug bus */ gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_CNTLT, A6XX_DBGC_CFG_DBGBUS_CNTLT_SEGT(0xf)); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_CNTLM, A6XX_DBGC_CFG_DBGBUS_CNTLM_ENABLE(0xf)); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_0, 0); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_1, 0); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_2, 0); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_IVTL_3, 0); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_BYTEL_0, 0x76543210); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_BYTEL_1, 0xFEDCBA98); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_0, 0); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_1, 0); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_2, 0); gpu_write(gpu, REG_A6XX_DBGC_CFG_DBGBUS_MASKL_3, 0); /* Set up the CX debug bus - it lives elsewhere in the system so do a * temporary ioremap for the registers */ res = platform_get_resource_byname(gpu->pdev, IORESOURCE_MEM, "cx_dbgc"); if (res) cxdbg = ioremap(res->start, resource_size(res)); if (cxdbg) { cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_CNTLT, A6XX_DBGC_CFG_DBGBUS_CNTLT_SEGT(0xf)); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_CNTLM, A6XX_DBGC_CFG_DBGBUS_CNTLM_ENABLE(0xf)); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_0, 0); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_1, 0); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_2, 0); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_IVTL_3, 0); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_BYTEL_0, 0x76543210); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_BYTEL_1, 0xFEDCBA98); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_0, 0); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_1, 0); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_2, 0); cxdbg_write(cxdbg, REG_A6XX_CX_DBGC_CFG_DBGBUS_MASKL_3, 0); } nr_debugbus_blocks = ARRAY_SIZE(a6xx_debugbus_blocks) + (a6xx_has_gbif(to_adreno_gpu(gpu)) ? 1 : 0); a6xx_state->debugbus = state_kcalloc(a6xx_state, nr_debugbus_blocks, sizeof(*a6xx_state->debugbus)); if (a6xx_state->debugbus) { int i; for (i = 0; i < ARRAY_SIZE(a6xx_debugbus_blocks); i++) a6xx_get_debugbus_block(gpu, a6xx_state, &a6xx_debugbus_blocks[i], &a6xx_state->debugbus[i]); a6xx_state->nr_debugbus = ARRAY_SIZE(a6xx_debugbus_blocks); /* * GBIF has same debugbus as of other GPU blocks, fall back to * default path if GPU uses GBIF, also GBIF uses exactly same * ID as of VBIF. */ if (a6xx_has_gbif(to_adreno_gpu(gpu))) { a6xx_get_debugbus_block(gpu, a6xx_state, &a6xx_gbif_debugbus_block, &a6xx_state->debugbus[i]); a6xx_state->nr_debugbus += 1; } } /* Dump the VBIF debugbus on applicable targets */ if (!a6xx_has_gbif(to_adreno_gpu(gpu))) { a6xx_state->vbif_debugbus = state_kcalloc(a6xx_state, 1, sizeof(*a6xx_state->vbif_debugbus)); if (a6xx_state->vbif_debugbus) a6xx_get_vbif_debugbus_block(gpu, a6xx_state, a6xx_state->vbif_debugbus); } if (cxdbg) { a6xx_state->cx_debugbus = state_kcalloc(a6xx_state, ARRAY_SIZE(a6xx_cx_debugbus_blocks), sizeof(*a6xx_state->cx_debugbus)); if (a6xx_state->cx_debugbus) { int i; for (i = 0; i < ARRAY_SIZE(a6xx_cx_debugbus_blocks); i++) a6xx_get_cx_debugbus_block(cxdbg, a6xx_state, &a6xx_cx_debugbus_blocks[i], &a6xx_state->cx_debugbus[i]); a6xx_state->nr_cx_debugbus = ARRAY_SIZE(a6xx_cx_debugbus_blocks); } iounmap(cxdbg); } } #define RANGE(reg, a) ((reg)[(a) + 1] - (reg)[(a)] + 1) /* Read a data cluster from behind the AHB aperture */ static void a6xx_get_dbgahb_cluster(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_dbgahb_cluster *dbgahb, struct a6xx_gpu_state_obj *obj, struct a6xx_crashdumper *dumper) { u64 *in = dumper->ptr; u64 out = dumper->iova + A6XX_CD_DATA_OFFSET; size_t datasize; int i, regcount = 0; for (i = 0; i < A6XX_NUM_CONTEXTS; i++) { int j; in += CRASHDUMP_WRITE(in, REG_A6XX_HLSQ_DBG_READ_SEL, (dbgahb->statetype + i * 2) << 8); for (j = 0; j < dbgahb->count; j += 2) { int count = RANGE(dbgahb->registers, j); u32 offset = REG_A6XX_HLSQ_DBG_AHB_READ_APERTURE + dbgahb->registers[j] - (dbgahb->base >> 2); in += CRASHDUMP_READ(in, offset, count, out); out += count * sizeof(u32); if (i == 0) regcount += count; } } CRASHDUMP_FINI(in); datasize = regcount * A6XX_NUM_CONTEXTS * sizeof(u32); if (WARN_ON(datasize > A6XX_CD_DATA_SIZE)) return; if (a6xx_crashdumper_run(gpu, dumper)) return; obj->handle = dbgahb; obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET, datasize); } static void a6xx_get_dbgahb_clusters(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, struct a6xx_crashdumper *dumper) { int i; a6xx_state->dbgahb_clusters = state_kcalloc(a6xx_state, ARRAY_SIZE(a6xx_dbgahb_clusters), sizeof(*a6xx_state->dbgahb_clusters)); if (!a6xx_state->dbgahb_clusters) return; a6xx_state->nr_dbgahb_clusters = ARRAY_SIZE(a6xx_dbgahb_clusters); for (i = 0; i < ARRAY_SIZE(a6xx_dbgahb_clusters); i++) a6xx_get_dbgahb_cluster(gpu, a6xx_state, &a6xx_dbgahb_clusters[i], &a6xx_state->dbgahb_clusters[i], dumper); } /* Read a data cluster from the CP aperture with the crashdumper */ static void a6xx_get_cluster(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_cluster *cluster, struct a6xx_gpu_state_obj *obj, struct a6xx_crashdumper *dumper) { u64 *in = dumper->ptr; u64 out = dumper->iova + A6XX_CD_DATA_OFFSET; size_t datasize; int i, regcount = 0; /* Some clusters need a selector register to be programmed too */ if (cluster->sel_reg) in += CRASHDUMP_WRITE(in, cluster->sel_reg, cluster->sel_val); for (i = 0; i < A6XX_NUM_CONTEXTS; i++) { int j; in += CRASHDUMP_WRITE(in, REG_A6XX_CP_APERTURE_CNTL_CD, (cluster->id << 8) | (i << 4) | i); for (j = 0; j < cluster->count; j += 2) { int count = RANGE(cluster->registers, j); in += CRASHDUMP_READ(in, cluster->registers[j], count, out); out += count * sizeof(u32); if (i == 0) regcount += count; } } CRASHDUMP_FINI(in); datasize = regcount * A6XX_NUM_CONTEXTS * sizeof(u32); if (WARN_ON(datasize > A6XX_CD_DATA_SIZE)) return; if (a6xx_crashdumper_run(gpu, dumper)) return; obj->handle = cluster; obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET, datasize); } static void a6xx_get_clusters(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, struct a6xx_crashdumper *dumper) { int i; a6xx_state->clusters = state_kcalloc(a6xx_state, ARRAY_SIZE(a6xx_clusters), sizeof(*a6xx_state->clusters)); if (!a6xx_state->clusters) return; a6xx_state->nr_clusters = ARRAY_SIZE(a6xx_clusters); for (i = 0; i < ARRAY_SIZE(a6xx_clusters); i++) a6xx_get_cluster(gpu, a6xx_state, &a6xx_clusters[i], &a6xx_state->clusters[i], dumper); } /* Read a shader / debug block from the HLSQ aperture with the crashdumper */ static void a6xx_get_shader_block(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_shader_block *block, struct a6xx_gpu_state_obj *obj, struct a6xx_crashdumper *dumper) { u64 *in = dumper->ptr; size_t datasize = block->size * A6XX_NUM_SHADER_BANKS * sizeof(u32); int i; if (WARN_ON(datasize > A6XX_CD_DATA_SIZE)) return; for (i = 0; i < A6XX_NUM_SHADER_BANKS; i++) { in += CRASHDUMP_WRITE(in, REG_A6XX_HLSQ_DBG_READ_SEL, (block->type << 8) | i); in += CRASHDUMP_READ(in, REG_A6XX_HLSQ_DBG_AHB_READ_APERTURE, block->size, dumper->iova + A6XX_CD_DATA_OFFSET); } CRASHDUMP_FINI(in); if (a6xx_crashdumper_run(gpu, dumper)) return; obj->handle = block; obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET, datasize); } static void a6xx_get_shaders(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, struct a6xx_crashdumper *dumper) { int i; a6xx_state->shaders = state_kcalloc(a6xx_state, ARRAY_SIZE(a6xx_shader_blocks), sizeof(*a6xx_state->shaders)); if (!a6xx_state->shaders) return; a6xx_state->nr_shaders = ARRAY_SIZE(a6xx_shader_blocks); for (i = 0; i < ARRAY_SIZE(a6xx_shader_blocks); i++) a6xx_get_shader_block(gpu, a6xx_state, &a6xx_shader_blocks[i], &a6xx_state->shaders[i], dumper); } /* Read registers from behind the HLSQ aperture with the crashdumper */ static void a6xx_get_crashdumper_hlsq_registers(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_registers *regs, struct a6xx_gpu_state_obj *obj, struct a6xx_crashdumper *dumper) { u64 *in = dumper->ptr; u64 out = dumper->iova + A6XX_CD_DATA_OFFSET; int i, regcount = 0; in += CRASHDUMP_WRITE(in, REG_A6XX_HLSQ_DBG_READ_SEL, regs->val1); for (i = 0; i < regs->count; i += 2) { u32 count = RANGE(regs->registers, i); u32 offset = REG_A6XX_HLSQ_DBG_AHB_READ_APERTURE + regs->registers[i] - (regs->val0 >> 2); in += CRASHDUMP_READ(in, offset, count, out); out += count * sizeof(u32); regcount += count; } CRASHDUMP_FINI(in); if (WARN_ON((regcount * sizeof(u32)) > A6XX_CD_DATA_SIZE)) return; if (a6xx_crashdumper_run(gpu, dumper)) return; obj->handle = regs; obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET, regcount * sizeof(u32)); } /* Read a block of registers using the crashdumper */ static void a6xx_get_crashdumper_registers(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_registers *regs, struct a6xx_gpu_state_obj *obj, struct a6xx_crashdumper *dumper) { u64 *in = dumper->ptr; u64 out = dumper->iova + A6XX_CD_DATA_OFFSET; int i, regcount = 0; /* Some blocks might need to program a selector register first */ if (regs->val0) in += CRASHDUMP_WRITE(in, regs->val0, regs->val1); for (i = 0; i < regs->count; i += 2) { u32 count = RANGE(regs->registers, i); in += CRASHDUMP_READ(in, regs->registers[i], count, out); out += count * sizeof(u32); regcount += count; } CRASHDUMP_FINI(in); if (WARN_ON((regcount * sizeof(u32)) > A6XX_CD_DATA_SIZE)) return; if (a6xx_crashdumper_run(gpu, dumper)) return; obj->handle = regs; obj->data = state_kmemdup(a6xx_state, dumper->ptr + A6XX_CD_DATA_OFFSET, regcount * sizeof(u32)); } /* Read a block of registers via AHB */ static void a6xx_get_ahb_gpu_registers(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_registers *regs, struct a6xx_gpu_state_obj *obj) { int i, regcount = 0, index = 0; for (i = 0; i < regs->count; i += 2) regcount += RANGE(regs->registers, i); obj->handle = (const void *) regs; obj->data = state_kcalloc(a6xx_state, regcount, sizeof(u32)); if (!obj->data) return; for (i = 0; i < regs->count; i += 2) { u32 count = RANGE(regs->registers, i); int j; for (j = 0; j < count; j++) obj->data[index++] = gpu_read(gpu, regs->registers[i] + j); } } /* Read a block of GMU registers */ static void _a6xx_get_gmu_registers(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_registers *regs, struct a6xx_gpu_state_obj *obj, bool rscc) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gmu *gmu = &a6xx_gpu->gmu; int i, regcount = 0, index = 0; for (i = 0; i < regs->count; i += 2) regcount += RANGE(regs->registers, i); obj->handle = (const void *) regs; obj->data = state_kcalloc(a6xx_state, regcount, sizeof(u32)); if (!obj->data) return; for (i = 0; i < regs->count; i += 2) { u32 count = RANGE(regs->registers, i); int j; for (j = 0; j < count; j++) { u32 offset = regs->registers[i] + j; u32 val; if (rscc) val = gmu_read_rscc(gmu, offset); else val = gmu_read(gmu, offset); obj->data[index++] = val; } } } static void a6xx_get_gmu_registers(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); a6xx_state->gmu_registers = state_kcalloc(a6xx_state, 3, sizeof(*a6xx_state->gmu_registers)); if (!a6xx_state->gmu_registers) return; a6xx_state->nr_gmu_registers = 3; /* Get the CX GMU registers from AHB */ _a6xx_get_gmu_registers(gpu, a6xx_state, &a6xx_gmu_reglist[0], &a6xx_state->gmu_registers[0], false); _a6xx_get_gmu_registers(gpu, a6xx_state, &a6xx_gmu_reglist[1], &a6xx_state->gmu_registers[1], true); if (!a6xx_gmu_gx_is_on(&a6xx_gpu->gmu)) return; /* Set the fence to ALLOW mode so we can access the registers */ gpu_write(gpu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0); _a6xx_get_gmu_registers(gpu, a6xx_state, &a6xx_gmu_reglist[2], &a6xx_state->gmu_registers[2], false); } static struct msm_gpu_state_bo *a6xx_snapshot_gmu_bo( struct a6xx_gpu_state *a6xx_state, struct a6xx_gmu_bo *bo) { struct msm_gpu_state_bo *snapshot; if (!bo->size) return NULL; snapshot = state_kcalloc(a6xx_state, 1, sizeof(*snapshot)); if (!snapshot) return NULL; snapshot->iova = bo->iova; snapshot->size = bo->size; snapshot->data = kvzalloc(snapshot->size, GFP_KERNEL); if (!snapshot->data) return NULL; memcpy(snapshot->data, bo->virt, bo->size); return snapshot; } static void a6xx_snapshot_gmu_hfi_history(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gmu *gmu = &a6xx_gpu->gmu; unsigned i, j; BUILD_BUG_ON(ARRAY_SIZE(gmu->queues) != ARRAY_SIZE(a6xx_state->hfi_queue_history)); for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) { struct a6xx_hfi_queue *queue = &gmu->queues[i]; for (j = 0; j < HFI_HISTORY_SZ; j++) { unsigned idx = (j + queue->history_idx) % HFI_HISTORY_SZ; a6xx_state->hfi_queue_history[i][j] = queue->history[idx]; } } } #define A6XX_GBIF_REGLIST_SIZE 1 static void a6xx_get_registers(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, struct a6xx_crashdumper *dumper) { int i, count = ARRAY_SIZE(a6xx_ahb_reglist) + ARRAY_SIZE(a6xx_reglist) + ARRAY_SIZE(a6xx_hlsq_reglist) + A6XX_GBIF_REGLIST_SIZE; int index = 0; struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); a6xx_state->registers = state_kcalloc(a6xx_state, count, sizeof(*a6xx_state->registers)); if (!a6xx_state->registers) return; a6xx_state->nr_registers = count; for (i = 0; i < ARRAY_SIZE(a6xx_ahb_reglist); i++) a6xx_get_ahb_gpu_registers(gpu, a6xx_state, &a6xx_ahb_reglist[i], &a6xx_state->registers[index++]); if (a6xx_has_gbif(adreno_gpu)) a6xx_get_ahb_gpu_registers(gpu, a6xx_state, &a6xx_gbif_reglist, &a6xx_state->registers[index++]); else a6xx_get_ahb_gpu_registers(gpu, a6xx_state, &a6xx_vbif_reglist, &a6xx_state->registers[index++]); if (!dumper) { /* * We can't use the crashdumper when the SMMU is stalled, * because the GPU has no memory access until we resume * translation (but we don't want to do that until after * we have captured as much useful GPU state as possible). * So instead collect registers via the CPU: */ for (i = 0; i < ARRAY_SIZE(a6xx_reglist); i++) a6xx_get_ahb_gpu_registers(gpu, a6xx_state, &a6xx_reglist[i], &a6xx_state->registers[index++]); return; } for (i = 0; i < ARRAY_SIZE(a6xx_reglist); i++) a6xx_get_crashdumper_registers(gpu, a6xx_state, &a6xx_reglist[i], &a6xx_state->registers[index++], dumper); for (i = 0; i < ARRAY_SIZE(a6xx_hlsq_reglist); i++) a6xx_get_crashdumper_hlsq_registers(gpu, a6xx_state, &a6xx_hlsq_reglist[i], &a6xx_state->registers[index++], dumper); } /* Read a block of data from an indexed register pair */ static void a6xx_get_indexed_regs(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state, const struct a6xx_indexed_registers *indexed, struct a6xx_gpu_state_obj *obj) { int i; obj->handle = (const void *) indexed; obj->data = state_kcalloc(a6xx_state, indexed->count, sizeof(u32)); if (!obj->data) return; /* All the indexed banks start at address 0 */ gpu_write(gpu, indexed->addr, 0); /* Read the data - each read increments the internal address by 1 */ for (i = 0; i < indexed->count; i++) obj->data[i] = gpu_read(gpu, indexed->data); } static void a6xx_get_indexed_registers(struct msm_gpu *gpu, struct a6xx_gpu_state *a6xx_state) { u32 mempool_size; int count = ARRAY_SIZE(a6xx_indexed_reglist) + 1; int i; a6xx_state->indexed_regs = state_kcalloc(a6xx_state, count, sizeof(*a6xx_state->indexed_regs)); if (!a6xx_state->indexed_regs) return; for (i = 0; i < ARRAY_SIZE(a6xx_indexed_reglist); i++) a6xx_get_indexed_regs(gpu, a6xx_state, &a6xx_indexed_reglist[i], &a6xx_state->indexed_regs[i]); /* Set the CP mempool size to 0 to stabilize it while dumping */ mempool_size = gpu_read(gpu, REG_A6XX_CP_MEM_POOL_SIZE); gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 0); /* Get the contents of the CP mempool */ a6xx_get_indexed_regs(gpu, a6xx_state, &a6xx_cp_mempool_indexed, &a6xx_state->indexed_regs[i]); /* * Offset 0x2000 in the mempool is the size - copy the saved size over * so the data is consistent */ a6xx_state->indexed_regs[i].data[0x2000] = mempool_size; /* Restore the size in the hardware */ gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, mempool_size); a6xx_state->nr_indexed_regs = count; } struct msm_gpu_state *a6xx_gpu_state_get(struct msm_gpu *gpu) { struct a6xx_crashdumper _dumper = { 0 }, *dumper = NULL; struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); struct a6xx_gpu_state *a6xx_state = kzalloc(sizeof(*a6xx_state), GFP_KERNEL); bool stalled = !!(gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT); if (!a6xx_state) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&a6xx_state->objs); /* Get the generic state from the adreno core */ adreno_gpu_state_get(gpu, &a6xx_state->base); a6xx_get_gmu_registers(gpu, a6xx_state); a6xx_state->gmu_log = a6xx_snapshot_gmu_bo(a6xx_state, &a6xx_gpu->gmu.log); a6xx_state->gmu_hfi = a6xx_snapshot_gmu_bo(a6xx_state, &a6xx_gpu->gmu.hfi); a6xx_state->gmu_debug = a6xx_snapshot_gmu_bo(a6xx_state, &a6xx_gpu->gmu.debug); a6xx_snapshot_gmu_hfi_history(gpu, a6xx_state); /* If GX isn't on the rest of the data isn't going to be accessible */ if (!a6xx_gmu_gx_is_on(&a6xx_gpu->gmu)) return &a6xx_state->base; /* Get the banks of indexed registers */ a6xx_get_indexed_registers(gpu, a6xx_state); /* * Try to initialize the crashdumper, if we are not dumping state * with the SMMU stalled. The crashdumper needs memory access to * write out GPU state, so we need to skip this when the SMMU is * stalled in response to an iova fault */ if (!stalled && !gpu->needs_hw_init && !a6xx_crashdumper_init(gpu, &_dumper)) { dumper = &_dumper; } a6xx_get_registers(gpu, a6xx_state, dumper); if (dumper) { a6xx_get_shaders(gpu, a6xx_state, dumper); a6xx_get_clusters(gpu, a6xx_state, dumper); a6xx_get_dbgahb_clusters(gpu, a6xx_state, dumper); msm_gem_kernel_put(dumper->bo, gpu->aspace); } if (snapshot_debugbus) a6xx_get_debugbus(gpu, a6xx_state); a6xx_state->gpu_initialized = !gpu->needs_hw_init; return &a6xx_state->base; } static void a6xx_gpu_state_destroy(struct kref *kref) { struct a6xx_state_memobj *obj, *tmp; struct msm_gpu_state *state = container_of(kref, struct msm_gpu_state, ref); struct a6xx_gpu_state *a6xx_state = container_of(state, struct a6xx_gpu_state, base); if (a6xx_state->gmu_log) kvfree(a6xx_state->gmu_log->data); if (a6xx_state->gmu_hfi) kvfree(a6xx_state->gmu_hfi->data); if (a6xx_state->gmu_debug) kvfree(a6xx_state->gmu_debug->data); list_for_each_entry_safe(obj, tmp, &a6xx_state->objs, node) { list_del(&obj->node); kvfree(obj); } adreno_gpu_state_destroy(state); kfree(a6xx_state); } int a6xx_gpu_state_put(struct msm_gpu_state *state) { if (IS_ERR_OR_NULL(state)) return 1; return kref_put(&state->ref, a6xx_gpu_state_destroy); } static void a6xx_show_registers(const u32 *registers, u32 *data, size_t count, struct drm_printer *p) { int i, index = 0; if (!data) return; for (i = 0; i < count; i += 2) { u32 count = RANGE(registers, i); u32 offset = registers[i]; int j; for (j = 0; j < count; index++, offset++, j++) { if (data[index] == 0xdeafbead) continue; drm_printf(p, " - { offset: 0x%06x, value: 0x%08x }\n", offset << 2, data[index]); } } } static void print_ascii85(struct drm_printer *p, size_t len, u32 *data) { char out[ASCII85_BUFSZ]; long i, l, datalen = 0; for (i = 0; i < len >> 2; i++) { if (data[i]) datalen = (i + 1) << 2; } if (datalen == 0) return; drm_puts(p, " data: !!ascii85 |\n"); drm_puts(p, " "); l = ascii85_encode_len(datalen); for (i = 0; i < l; i++) drm_puts(p, ascii85_encode(data[i], out)); drm_puts(p, "\n"); } static void print_name(struct drm_printer *p, const char *fmt, const char *name) { drm_puts(p, fmt); drm_puts(p, name); drm_puts(p, "\n"); } static void a6xx_show_shader(struct a6xx_gpu_state_obj *obj, struct drm_printer *p) { const struct a6xx_shader_block *block = obj->handle; int i; if (!obj->handle) return; print_name(p, " - type: ", block->name); for (i = 0; i < A6XX_NUM_SHADER_BANKS; i++) { drm_printf(p, " - bank: %d\n", i); drm_printf(p, " size: %d\n", block->size); if (!obj->data) continue; print_ascii85(p, block->size << 2, obj->data + (block->size * i)); } } static void a6xx_show_cluster_data(const u32 *registers, int size, u32 *data, struct drm_printer *p) { int ctx, index = 0; for (ctx = 0; ctx < A6XX_NUM_CONTEXTS; ctx++) { int j; drm_printf(p, " - context: %d\n", ctx); for (j = 0; j < size; j += 2) { u32 count = RANGE(registers, j); u32 offset = registers[j]; int k; for (k = 0; k < count; index++, offset++, k++) { if (data[index] == 0xdeafbead) continue; drm_printf(p, " - { offset: 0x%06x, value: 0x%08x }\n", offset << 2, data[index]); } } } } static void a6xx_show_dbgahb_cluster(struct a6xx_gpu_state_obj *obj, struct drm_printer *p) { const struct a6xx_dbgahb_cluster *dbgahb = obj->handle; if (dbgahb) { print_name(p, " - cluster-name: ", dbgahb->name); a6xx_show_cluster_data(dbgahb->registers, dbgahb->count, obj->data, p); } } static void a6xx_show_cluster(struct a6xx_gpu_state_obj *obj, struct drm_printer *p) { const struct a6xx_cluster *cluster = obj->handle; if (cluster) { print_name(p, " - cluster-name: ", cluster->name); a6xx_show_cluster_data(cluster->registers, cluster->count, obj->data, p); } } static void a6xx_show_indexed_regs(struct a6xx_gpu_state_obj *obj, struct drm_printer *p) { const struct a6xx_indexed_registers *indexed = obj->handle; if (!indexed) return; print_name(p, " - regs-name: ", indexed->name); drm_printf(p, " dwords: %d\n", indexed->count); print_ascii85(p, indexed->count << 2, obj->data); } static void a6xx_show_debugbus_block(const struct a6xx_debugbus_block *block, u32 *data, struct drm_printer *p) { if (block) { print_name(p, " - debugbus-block: ", block->name); /* * count for regular debugbus data is in quadwords, * but print the size in dwords for consistency */ drm_printf(p, " count: %d\n", block->count << 1); print_ascii85(p, block->count << 3, data); } } static void a6xx_show_debugbus(struct a6xx_gpu_state *a6xx_state, struct drm_printer *p) { int i; for (i = 0; i < a6xx_state->nr_debugbus; i++) { struct a6xx_gpu_state_obj *obj = &a6xx_state->debugbus[i]; a6xx_show_debugbus_block(obj->handle, obj->data, p); } if (a6xx_state->vbif_debugbus) { struct a6xx_gpu_state_obj *obj = a6xx_state->vbif_debugbus; drm_puts(p, " - debugbus-block: A6XX_DBGBUS_VBIF\n"); drm_printf(p, " count: %d\n", VBIF_DEBUGBUS_BLOCK_SIZE); /* vbif debugbus data is in dwords. Confusing, huh? */ print_ascii85(p, VBIF_DEBUGBUS_BLOCK_SIZE << 2, obj->data); } for (i = 0; i < a6xx_state->nr_cx_debugbus; i++) { struct a6xx_gpu_state_obj *obj = &a6xx_state->cx_debugbus[i]; a6xx_show_debugbus_block(obj->handle, obj->data, p); } } void a6xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state, struct drm_printer *p) { struct a6xx_gpu_state *a6xx_state = container_of(state, struct a6xx_gpu_state, base); int i; if (IS_ERR_OR_NULL(state)) return; drm_printf(p, "gpu-initialized: %d\n", a6xx_state->gpu_initialized); adreno_show(gpu, state, p); drm_puts(p, "gmu-log:\n"); if (a6xx_state->gmu_log) { struct msm_gpu_state_bo *gmu_log = a6xx_state->gmu_log; drm_printf(p, " iova: 0x%016llx\n", gmu_log->iova); drm_printf(p, " size: %zu\n", gmu_log->size); adreno_show_object(p, &gmu_log->data, gmu_log->size, &gmu_log->encoded); } drm_puts(p, "gmu-hfi:\n"); if (a6xx_state->gmu_hfi) { struct msm_gpu_state_bo *gmu_hfi = a6xx_state->gmu_hfi; unsigned i, j; drm_printf(p, " iova: 0x%016llx\n", gmu_hfi->iova); drm_printf(p, " size: %zu\n", gmu_hfi->size); for (i = 0; i < ARRAY_SIZE(a6xx_state->hfi_queue_history); i++) { drm_printf(p, " queue-history[%u]:", i); for (j = 0; j < HFI_HISTORY_SZ; j++) { drm_printf(p, " %d", a6xx_state->hfi_queue_history[i][j]); } drm_printf(p, "\n"); } adreno_show_object(p, &gmu_hfi->data, gmu_hfi->size, &gmu_hfi->encoded); } drm_puts(p, "gmu-debug:\n"); if (a6xx_state->gmu_debug) { struct msm_gpu_state_bo *gmu_debug = a6xx_state->gmu_debug; drm_printf(p, " iova: 0x%016llx\n", gmu_debug->iova); drm_printf(p, " size: %zu\n", gmu_debug->size); adreno_show_object(p, &gmu_debug->data, gmu_debug->size, &gmu_debug->encoded); } drm_puts(p, "registers:\n"); for (i = 0; i < a6xx_state->nr_registers; i++) { struct a6xx_gpu_state_obj *obj = &a6xx_state->registers[i]; const struct a6xx_registers *regs = obj->handle; if (!obj->handle) continue; a6xx_show_registers(regs->registers, obj->data, regs->count, p); } drm_puts(p, "registers-gmu:\n"); for (i = 0; i < a6xx_state->nr_gmu_registers; i++) { struct a6xx_gpu_state_obj *obj = &a6xx_state->gmu_registers[i]; const struct a6xx_registers *regs = obj->handle; if (!obj->handle) continue; a6xx_show_registers(regs->registers, obj->data, regs->count, p); } drm_puts(p, "indexed-registers:\n"); for (i = 0; i < a6xx_state->nr_indexed_regs; i++) a6xx_show_indexed_regs(&a6xx_state->indexed_regs[i], p); drm_puts(p, "shader-blocks:\n"); for (i = 0; i < a6xx_state->nr_shaders; i++) a6xx_show_shader(&a6xx_state->shaders[i], p); drm_puts(p, "clusters:\n"); for (i = 0; i < a6xx_state->nr_clusters; i++) a6xx_show_cluster(&a6xx_state->clusters[i], p); for (i = 0; i < a6xx_state->nr_dbgahb_clusters; i++) a6xx_show_dbgahb_cluster(&a6xx_state->dbgahb_clusters[i], p); drm_puts(p, "debugbus:\n"); a6xx_show_debugbus(a6xx_state, p); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1