Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Clark | 3997 | 72.48% | 67 | 50.38% |
Jordan Crouse | 566 | 10.26% | 10 | 7.52% |
Sushmita Susheelendra | 264 | 4.79% | 1 | 0.75% |
Jonathan Marek | 168 | 3.05% | 7 | 5.26% |
Thomas Zimmermann | 135 | 2.45% | 2 | 1.50% |
Iskren Chernev | 70 | 1.27% | 3 | 2.26% |
Akhil P Oommen | 35 | 0.63% | 2 | 1.50% |
Kristian H. Kristensen | 34 | 0.62% | 1 | 0.75% |
Chris Wilson | 25 | 0.45% | 1 | 0.75% |
Dan Carpenter | 24 | 0.44% | 3 | 2.26% |
Prakash Kamliya | 22 | 0.40% | 1 | 0.75% |
Souptick Joarder | 16 | 0.29% | 1 | 0.75% |
Daniel Vetter | 13 | 0.24% | 1 | 0.75% |
Lucas Stach | 12 | 0.22% | 1 | 0.75% |
Brian Masney | 12 | 0.22% | 2 | 1.50% |
Christian König | 12 | 0.22% | 6 | 4.51% |
Wei Yongjun | 10 | 0.18% | 2 | 1.50% |
Jilai Wang | 9 | 0.16% | 1 | 0.75% |
Dave Jiang | 9 | 0.16% | 1 | 0.75% |
Ben Hutchings | 9 | 0.16% | 1 | 0.75% |
Michal Hocko | 8 | 0.15% | 1 | 0.75% |
Jan Kara | 7 | 0.13% | 1 | 0.75% |
Hans Verkuil | 6 | 0.11% | 1 | 0.75% |
Emil Velikov | 6 | 0.11% | 1 | 0.75% |
Mamta Shukla | 5 | 0.09% | 1 | 0.75% |
Marek Szyprowski | 4 | 0.07% | 1 | 0.75% |
Colin Ian King | 4 | 0.07% | 1 | 0.75% |
Gerd Hoffmann | 4 | 0.07% | 1 | 0.75% |
Peter Zijlstra | 4 | 0.07% | 1 | 0.75% |
Christoph Hellwig | 3 | 0.05% | 1 | 0.75% |
Micah Richert | 3 | 0.05% | 1 | 0.75% |
Sam Ravnborg | 3 | 0.05% | 1 | 0.75% |
siyanteng | 3 | 0.05% | 1 | 0.75% |
Dan J Williams | 3 | 0.05% | 1 | 0.75% |
Doug Anderson | 2 | 0.04% | 1 | 0.75% |
Rob Herring | 2 | 0.04% | 1 | 0.75% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.75% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 0.75% |
Lee Jones | 2 | 0.04% | 1 | 0.75% |
Total | 5515 | 133 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Red Hat * Author: Rob Clark <robdclark@gmail.com> */ #include <linux/dma-map-ops.h> #include <linux/vmalloc.h> #include <linux/spinlock.h> #include <linux/shmem_fs.h> #include <linux/dma-buf.h> #include <linux/pfn_t.h> #include <drm/drm_prime.h> #include "msm_drv.h" #include "msm_fence.h" #include "msm_gem.h" #include "msm_gpu.h" #include "msm_mmu.h" static void update_lru(struct drm_gem_object *obj); static dma_addr_t physaddr(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct msm_drm_private *priv = obj->dev->dev_private; return (((dma_addr_t)msm_obj->vram_node->start) << PAGE_SHIFT) + priv->vram.paddr; } static bool use_pages(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); return !msm_obj->vram_node; } /* * Cache sync.. this is a bit over-complicated, to fit dma-mapping * API. Really GPU cache is out of scope here (handled on cmdstream) * and all we need to do is invalidate newly allocated pages before * mapping to CPU as uncached/writecombine. * * On top of this, we have the added headache, that depending on * display generation, the display's iommu may be wired up to either * the toplevel drm device (mdss), or to the mdp sub-node, meaning * that here we either have dma-direct or iommu ops. * * Let this be a cautionary tail of abstraction gone wrong. */ static void sync_for_device(struct msm_gem_object *msm_obj) { struct device *dev = msm_obj->base.dev->dev; dma_map_sgtable(dev, msm_obj->sgt, DMA_BIDIRECTIONAL, 0); } static void sync_for_cpu(struct msm_gem_object *msm_obj) { struct device *dev = msm_obj->base.dev->dev; dma_unmap_sgtable(dev, msm_obj->sgt, DMA_BIDIRECTIONAL, 0); } /* allocate pages from VRAM carveout, used when no IOMMU: */ static struct page **get_pages_vram(struct drm_gem_object *obj, int npages) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct msm_drm_private *priv = obj->dev->dev_private; dma_addr_t paddr; struct page **p; int ret, i; p = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); spin_lock(&priv->vram.lock); ret = drm_mm_insert_node(&priv->vram.mm, msm_obj->vram_node, npages); spin_unlock(&priv->vram.lock); if (ret) { kvfree(p); return ERR_PTR(ret); } paddr = physaddr(obj); for (i = 0; i < npages; i++) { p[i] = pfn_to_page(__phys_to_pfn(paddr)); paddr += PAGE_SIZE; } return p; } static struct page **get_pages(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_assert_locked(obj); if (!msm_obj->pages) { struct drm_device *dev = obj->dev; struct page **p; int npages = obj->size >> PAGE_SHIFT; if (use_pages(obj)) p = drm_gem_get_pages(obj); else p = get_pages_vram(obj, npages); if (IS_ERR(p)) { DRM_DEV_ERROR(dev->dev, "could not get pages: %ld\n", PTR_ERR(p)); return p; } msm_obj->pages = p; msm_obj->sgt = drm_prime_pages_to_sg(obj->dev, p, npages); if (IS_ERR(msm_obj->sgt)) { void *ptr = ERR_CAST(msm_obj->sgt); DRM_DEV_ERROR(dev->dev, "failed to allocate sgt\n"); msm_obj->sgt = NULL; return ptr; } /* For non-cached buffers, ensure the new pages are clean * because display controller, GPU, etc. are not coherent: */ if (msm_obj->flags & MSM_BO_WC) sync_for_device(msm_obj); update_lru(obj); } return msm_obj->pages; } static void put_pages_vram(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct msm_drm_private *priv = obj->dev->dev_private; spin_lock(&priv->vram.lock); drm_mm_remove_node(msm_obj->vram_node); spin_unlock(&priv->vram.lock); kvfree(msm_obj->pages); } static void put_pages(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); if (msm_obj->pages) { if (msm_obj->sgt) { /* For non-cached buffers, ensure the new * pages are clean because display controller, * GPU, etc. are not coherent: */ if (msm_obj->flags & MSM_BO_WC) sync_for_cpu(msm_obj); sg_free_table(msm_obj->sgt); kfree(msm_obj->sgt); msm_obj->sgt = NULL; } if (use_pages(obj)) drm_gem_put_pages(obj, msm_obj->pages, true, false); else put_pages_vram(obj); msm_obj->pages = NULL; update_lru(obj); } } static struct page **msm_gem_pin_pages_locked(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct page **p; msm_gem_assert_locked(obj); if (GEM_WARN_ON(msm_obj->madv != MSM_MADV_WILLNEED)) { return ERR_PTR(-EBUSY); } p = get_pages(obj); if (!IS_ERR(p)) { to_msm_bo(obj)->pin_count++; update_lru(obj); } return p; } struct page **msm_gem_pin_pages(struct drm_gem_object *obj) { struct page **p; msm_gem_lock(obj); p = msm_gem_pin_pages_locked(obj); msm_gem_unlock(obj); return p; } void msm_gem_unpin_pages(struct drm_gem_object *obj) { msm_gem_lock(obj); msm_gem_unpin_locked(obj); msm_gem_unlock(obj); } static pgprot_t msm_gem_pgprot(struct msm_gem_object *msm_obj, pgprot_t prot) { if (msm_obj->flags & MSM_BO_WC) return pgprot_writecombine(prot); return prot; } static vm_fault_t msm_gem_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct drm_gem_object *obj = vma->vm_private_data; struct msm_gem_object *msm_obj = to_msm_bo(obj); struct page **pages; unsigned long pfn; pgoff_t pgoff; int err; vm_fault_t ret; /* * vm_ops.open/drm_gem_mmap_obj and close get and put * a reference on obj. So, we dont need to hold one here. */ err = msm_gem_lock_interruptible(obj); if (err) { ret = VM_FAULT_NOPAGE; goto out; } if (GEM_WARN_ON(msm_obj->madv != MSM_MADV_WILLNEED)) { msm_gem_unlock(obj); return VM_FAULT_SIGBUS; } /* make sure we have pages attached now */ pages = get_pages(obj); if (IS_ERR(pages)) { ret = vmf_error(PTR_ERR(pages)); goto out_unlock; } /* We don't use vmf->pgoff since that has the fake offset: */ pgoff = (vmf->address - vma->vm_start) >> PAGE_SHIFT; pfn = page_to_pfn(pages[pgoff]); VERB("Inserting %p pfn %lx, pa %lx", (void *)vmf->address, pfn, pfn << PAGE_SHIFT); ret = vmf_insert_pfn(vma, vmf->address, pfn); out_unlock: msm_gem_unlock(obj); out: return ret; } /** get mmap offset */ static uint64_t mmap_offset(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; int ret; msm_gem_assert_locked(obj); /* Make it mmapable */ ret = drm_gem_create_mmap_offset(obj); if (ret) { DRM_DEV_ERROR(dev->dev, "could not allocate mmap offset\n"); return 0; } return drm_vma_node_offset_addr(&obj->vma_node); } uint64_t msm_gem_mmap_offset(struct drm_gem_object *obj) { uint64_t offset; msm_gem_lock(obj); offset = mmap_offset(obj); msm_gem_unlock(obj); return offset; } static struct msm_gem_vma *add_vma(struct drm_gem_object *obj, struct msm_gem_address_space *aspace) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct msm_gem_vma *vma; msm_gem_assert_locked(obj); vma = kzalloc(sizeof(*vma), GFP_KERNEL); if (!vma) return ERR_PTR(-ENOMEM); vma->aspace = aspace; list_add_tail(&vma->list, &msm_obj->vmas); return vma; } static struct msm_gem_vma *lookup_vma(struct drm_gem_object *obj, struct msm_gem_address_space *aspace) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct msm_gem_vma *vma; msm_gem_assert_locked(obj); list_for_each_entry(vma, &msm_obj->vmas, list) { if (vma->aspace == aspace) return vma; } return NULL; } static void del_vma(struct msm_gem_vma *vma) { if (!vma) return; list_del(&vma->list); kfree(vma); } /* * If close is true, this also closes the VMA (releasing the allocated * iova range) in addition to removing the iommu mapping. In the eviction * case (!close), we keep the iova allocated, but only remove the iommu * mapping. */ static void put_iova_spaces(struct drm_gem_object *obj, bool close) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct msm_gem_vma *vma; msm_gem_assert_locked(obj); list_for_each_entry(vma, &msm_obj->vmas, list) { if (vma->aspace) { msm_gem_purge_vma(vma->aspace, vma); if (close) msm_gem_close_vma(vma->aspace, vma); } } } /* Called with msm_obj locked */ static void put_iova_vmas(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct msm_gem_vma *vma, *tmp; msm_gem_assert_locked(obj); list_for_each_entry_safe(vma, tmp, &msm_obj->vmas, list) { del_vma(vma); } } static struct msm_gem_vma *get_vma_locked(struct drm_gem_object *obj, struct msm_gem_address_space *aspace, u64 range_start, u64 range_end) { struct msm_gem_vma *vma; msm_gem_assert_locked(obj); vma = lookup_vma(obj, aspace); if (!vma) { int ret; vma = add_vma(obj, aspace); if (IS_ERR(vma)) return vma; ret = msm_gem_init_vma(aspace, vma, obj->size, range_start, range_end); if (ret) { del_vma(vma); return ERR_PTR(ret); } } else { GEM_WARN_ON(vma->iova < range_start); GEM_WARN_ON((vma->iova + obj->size) > range_end); } return vma; } int msm_gem_pin_vma_locked(struct drm_gem_object *obj, struct msm_gem_vma *vma) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct page **pages; int ret, prot = IOMMU_READ; if (!(msm_obj->flags & MSM_BO_GPU_READONLY)) prot |= IOMMU_WRITE; if (msm_obj->flags & MSM_BO_MAP_PRIV) prot |= IOMMU_PRIV; if (msm_obj->flags & MSM_BO_CACHED_COHERENT) prot |= IOMMU_CACHE; msm_gem_assert_locked(obj); if (GEM_WARN_ON(msm_obj->madv != MSM_MADV_WILLNEED)) return -EBUSY; pages = msm_gem_pin_pages_locked(obj); if (IS_ERR(pages)) return PTR_ERR(pages); ret = msm_gem_map_vma(vma->aspace, vma, prot, msm_obj->sgt, obj->size); if (ret) msm_gem_unpin_locked(obj); return ret; } void msm_gem_unpin_locked(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_assert_locked(obj); msm_obj->pin_count--; GEM_WARN_ON(msm_obj->pin_count < 0); update_lru(obj); } struct msm_gem_vma *msm_gem_get_vma_locked(struct drm_gem_object *obj, struct msm_gem_address_space *aspace) { return get_vma_locked(obj, aspace, 0, U64_MAX); } static int get_and_pin_iova_range_locked(struct drm_gem_object *obj, struct msm_gem_address_space *aspace, uint64_t *iova, u64 range_start, u64 range_end) { struct msm_gem_vma *vma; int ret; msm_gem_assert_locked(obj); vma = get_vma_locked(obj, aspace, range_start, range_end); if (IS_ERR(vma)) return PTR_ERR(vma); ret = msm_gem_pin_vma_locked(obj, vma); if (!ret) *iova = vma->iova; return ret; } /* * get iova and pin it. Should have a matching put * limits iova to specified range (in pages) */ int msm_gem_get_and_pin_iova_range(struct drm_gem_object *obj, struct msm_gem_address_space *aspace, uint64_t *iova, u64 range_start, u64 range_end) { int ret; msm_gem_lock(obj); ret = get_and_pin_iova_range_locked(obj, aspace, iova, range_start, range_end); msm_gem_unlock(obj); return ret; } /* get iova and pin it. Should have a matching put */ int msm_gem_get_and_pin_iova(struct drm_gem_object *obj, struct msm_gem_address_space *aspace, uint64_t *iova) { return msm_gem_get_and_pin_iova_range(obj, aspace, iova, 0, U64_MAX); } /* * Get an iova but don't pin it. Doesn't need a put because iovas are currently * valid for the life of the object */ int msm_gem_get_iova(struct drm_gem_object *obj, struct msm_gem_address_space *aspace, uint64_t *iova) { struct msm_gem_vma *vma; int ret = 0; msm_gem_lock(obj); vma = get_vma_locked(obj, aspace, 0, U64_MAX); if (IS_ERR(vma)) { ret = PTR_ERR(vma); } else { *iova = vma->iova; } msm_gem_unlock(obj); return ret; } static int clear_iova(struct drm_gem_object *obj, struct msm_gem_address_space *aspace) { struct msm_gem_vma *vma = lookup_vma(obj, aspace); if (!vma) return 0; if (msm_gem_vma_inuse(vma)) return -EBUSY; msm_gem_purge_vma(vma->aspace, vma); msm_gem_close_vma(vma->aspace, vma); del_vma(vma); return 0; } /* * Get the requested iova but don't pin it. Fails if the requested iova is * not available. Doesn't need a put because iovas are currently valid for * the life of the object. * * Setting an iova of zero will clear the vma. */ int msm_gem_set_iova(struct drm_gem_object *obj, struct msm_gem_address_space *aspace, uint64_t iova) { int ret = 0; msm_gem_lock(obj); if (!iova) { ret = clear_iova(obj, aspace); } else { struct msm_gem_vma *vma; vma = get_vma_locked(obj, aspace, iova, iova + obj->size); if (IS_ERR(vma)) { ret = PTR_ERR(vma); } else if (GEM_WARN_ON(vma->iova != iova)) { clear_iova(obj, aspace); ret = -EBUSY; } } msm_gem_unlock(obj); return ret; } /* * Unpin a iova by updating the reference counts. The memory isn't actually * purged until something else (shrinker, mm_notifier, destroy, etc) decides * to get rid of it */ void msm_gem_unpin_iova(struct drm_gem_object *obj, struct msm_gem_address_space *aspace) { struct msm_gem_vma *vma; msm_gem_lock(obj); vma = lookup_vma(obj, aspace); if (!GEM_WARN_ON(!vma)) { msm_gem_unpin_vma(vma); msm_gem_unpin_locked(obj); } msm_gem_unlock(obj); } int msm_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { args->pitch = align_pitch(args->width, args->bpp); args->size = PAGE_ALIGN(args->pitch * args->height); return msm_gem_new_handle(dev, file, args->size, MSM_BO_SCANOUT | MSM_BO_WC, &args->handle, "dumb"); } int msm_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev, uint32_t handle, uint64_t *offset) { struct drm_gem_object *obj; int ret = 0; /* GEM does all our handle to object mapping */ obj = drm_gem_object_lookup(file, handle); if (obj == NULL) { ret = -ENOENT; goto fail; } *offset = msm_gem_mmap_offset(obj); drm_gem_object_put(obj); fail: return ret; } static void *get_vaddr(struct drm_gem_object *obj, unsigned madv) { struct msm_gem_object *msm_obj = to_msm_bo(obj); int ret = 0; msm_gem_assert_locked(obj); if (obj->import_attach) return ERR_PTR(-ENODEV); if (GEM_WARN_ON(msm_obj->madv > madv)) { DRM_DEV_ERROR(obj->dev->dev, "Invalid madv state: %u vs %u\n", msm_obj->madv, madv); return ERR_PTR(-EBUSY); } /* increment vmap_count *before* vmap() call, so shrinker can * check vmap_count (is_vunmapable()) outside of msm_obj lock. * This guarantees that we won't try to msm_gem_vunmap() this * same object from within the vmap() call (while we already * hold msm_obj lock) */ msm_obj->vmap_count++; if (!msm_obj->vaddr) { struct page **pages = get_pages(obj); if (IS_ERR(pages)) { ret = PTR_ERR(pages); goto fail; } msm_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT, VM_MAP, msm_gem_pgprot(msm_obj, PAGE_KERNEL)); if (msm_obj->vaddr == NULL) { ret = -ENOMEM; goto fail; } update_lru(obj); } return msm_obj->vaddr; fail: msm_obj->vmap_count--; return ERR_PTR(ret); } void *msm_gem_get_vaddr_locked(struct drm_gem_object *obj) { return get_vaddr(obj, MSM_MADV_WILLNEED); } void *msm_gem_get_vaddr(struct drm_gem_object *obj) { void *ret; msm_gem_lock(obj); ret = msm_gem_get_vaddr_locked(obj); msm_gem_unlock(obj); return ret; } /* * Don't use this! It is for the very special case of dumping * submits from GPU hangs or faults, were the bo may already * be MSM_MADV_DONTNEED, but we know the buffer is still on the * active list. */ void *msm_gem_get_vaddr_active(struct drm_gem_object *obj) { return get_vaddr(obj, __MSM_MADV_PURGED); } void msm_gem_put_vaddr_locked(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_assert_locked(obj); GEM_WARN_ON(msm_obj->vmap_count < 1); msm_obj->vmap_count--; } void msm_gem_put_vaddr(struct drm_gem_object *obj) { msm_gem_lock(obj); msm_gem_put_vaddr_locked(obj); msm_gem_unlock(obj); } /* Update madvise status, returns true if not purged, else * false or -errno. */ int msm_gem_madvise(struct drm_gem_object *obj, unsigned madv) { struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_lock(obj); if (msm_obj->madv != __MSM_MADV_PURGED) msm_obj->madv = madv; madv = msm_obj->madv; /* If the obj is inactive, we might need to move it * between inactive lists */ update_lru(obj); msm_gem_unlock(obj); return (madv != __MSM_MADV_PURGED); } void msm_gem_purge(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_assert_locked(obj); GEM_WARN_ON(!is_purgeable(msm_obj)); /* Get rid of any iommu mapping(s): */ put_iova_spaces(obj, true); msm_gem_vunmap(obj); drm_vma_node_unmap(&obj->vma_node, dev->anon_inode->i_mapping); put_pages(obj); put_iova_vmas(obj); msm_obj->madv = __MSM_MADV_PURGED; drm_gem_free_mmap_offset(obj); /* Our goal here is to return as much of the memory as * is possible back to the system as we are called from OOM. * To do this we must instruct the shmfs to drop all of its * backing pages, *now*. */ shmem_truncate_range(file_inode(obj->filp), 0, (loff_t)-1); invalidate_mapping_pages(file_inode(obj->filp)->i_mapping, 0, (loff_t)-1); } /* * Unpin the backing pages and make them available to be swapped out. */ void msm_gem_evict(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_assert_locked(obj); GEM_WARN_ON(is_unevictable(msm_obj)); /* Get rid of any iommu mapping(s): */ put_iova_spaces(obj, false); drm_vma_node_unmap(&obj->vma_node, dev->anon_inode->i_mapping); put_pages(obj); } void msm_gem_vunmap(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_assert_locked(obj); if (!msm_obj->vaddr || GEM_WARN_ON(!is_vunmapable(msm_obj))) return; vunmap(msm_obj->vaddr); msm_obj->vaddr = NULL; } static void update_lru(struct drm_gem_object *obj) { struct msm_drm_private *priv = obj->dev->dev_private; struct msm_gem_object *msm_obj = to_msm_bo(obj); msm_gem_assert_locked(&msm_obj->base); if (!msm_obj->pages) { GEM_WARN_ON(msm_obj->pin_count); GEM_WARN_ON(msm_obj->vmap_count); drm_gem_lru_move_tail(&priv->lru.unbacked, obj); } else if (msm_obj->pin_count || msm_obj->vmap_count) { drm_gem_lru_move_tail(&priv->lru.pinned, obj); } else if (msm_obj->madv == MSM_MADV_WILLNEED) { drm_gem_lru_move_tail(&priv->lru.willneed, obj); } else { GEM_WARN_ON(msm_obj->madv != MSM_MADV_DONTNEED); drm_gem_lru_move_tail(&priv->lru.dontneed, obj); } } bool msm_gem_active(struct drm_gem_object *obj) { msm_gem_assert_locked(obj); if (to_msm_bo(obj)->pin_count) return true; return !dma_resv_test_signaled(obj->resv, dma_resv_usage_rw(true)); } int msm_gem_cpu_prep(struct drm_gem_object *obj, uint32_t op, ktime_t *timeout) { bool write = !!(op & MSM_PREP_WRITE); unsigned long remain = op & MSM_PREP_NOSYNC ? 0 : timeout_to_jiffies(timeout); long ret; ret = dma_resv_wait_timeout(obj->resv, dma_resv_usage_rw(write), true, remain); if (ret == 0) return remain == 0 ? -EBUSY : -ETIMEDOUT; else if (ret < 0) return ret; /* TODO cache maintenance */ return 0; } int msm_gem_cpu_fini(struct drm_gem_object *obj) { /* TODO cache maintenance */ return 0; } #ifdef CONFIG_DEBUG_FS void msm_gem_describe(struct drm_gem_object *obj, struct seq_file *m, struct msm_gem_stats *stats) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct dma_resv *robj = obj->resv; struct msm_gem_vma *vma; uint64_t off = drm_vma_node_start(&obj->vma_node); const char *madv; msm_gem_lock(obj); stats->all.count++; stats->all.size += obj->size; if (msm_gem_active(obj)) { stats->active.count++; stats->active.size += obj->size; } if (msm_obj->pages) { stats->resident.count++; stats->resident.size += obj->size; } switch (msm_obj->madv) { case __MSM_MADV_PURGED: stats->purged.count++; stats->purged.size += obj->size; madv = " purged"; break; case MSM_MADV_DONTNEED: stats->purgeable.count++; stats->purgeable.size += obj->size; madv = " purgeable"; break; case MSM_MADV_WILLNEED: default: madv = ""; break; } seq_printf(m, "%08x: %c %2d (%2d) %08llx %p", msm_obj->flags, msm_gem_active(obj) ? 'A' : 'I', obj->name, kref_read(&obj->refcount), off, msm_obj->vaddr); seq_printf(m, " %08zu %9s %-32s\n", obj->size, madv, msm_obj->name); if (!list_empty(&msm_obj->vmas)) { seq_puts(m, " vmas:"); list_for_each_entry(vma, &msm_obj->vmas, list) { const char *name, *comm; if (vma->aspace) { struct msm_gem_address_space *aspace = vma->aspace; struct task_struct *task = get_pid_task(aspace->pid, PIDTYPE_PID); if (task) { comm = kstrdup(task->comm, GFP_KERNEL); put_task_struct(task); } else { comm = NULL; } name = aspace->name; } else { name = comm = NULL; } seq_printf(m, " [%s%s%s: aspace=%p, %08llx,%s,inuse=%d]", name, comm ? ":" : "", comm ? comm : "", vma->aspace, vma->iova, vma->mapped ? "mapped" : "unmapped", msm_gem_vma_inuse(vma)); kfree(comm); } seq_puts(m, "\n"); } dma_resv_describe(robj, m); msm_gem_unlock(obj); } void msm_gem_describe_objects(struct list_head *list, struct seq_file *m) { struct msm_gem_stats stats = {}; struct msm_gem_object *msm_obj; seq_puts(m, " flags id ref offset kaddr size madv name\n"); list_for_each_entry(msm_obj, list, node) { struct drm_gem_object *obj = &msm_obj->base; seq_puts(m, " "); msm_gem_describe(obj, m, &stats); } seq_printf(m, "Total: %4d objects, %9zu bytes\n", stats.all.count, stats.all.size); seq_printf(m, "Active: %4d objects, %9zu bytes\n", stats.active.count, stats.active.size); seq_printf(m, "Resident: %4d objects, %9zu bytes\n", stats.resident.count, stats.resident.size); seq_printf(m, "Purgeable: %4d objects, %9zu bytes\n", stats.purgeable.count, stats.purgeable.size); seq_printf(m, "Purged: %4d objects, %9zu bytes\n", stats.purged.count, stats.purged.size); } #endif /* don't call directly! Use drm_gem_object_put() */ static void msm_gem_free_object(struct drm_gem_object *obj) { struct msm_gem_object *msm_obj = to_msm_bo(obj); struct drm_device *dev = obj->dev; struct msm_drm_private *priv = dev->dev_private; mutex_lock(&priv->obj_lock); list_del(&msm_obj->node); mutex_unlock(&priv->obj_lock); put_iova_spaces(obj, true); if (obj->import_attach) { GEM_WARN_ON(msm_obj->vaddr); /* Don't drop the pages for imported dmabuf, as they are not * ours, just free the array we allocated: */ kvfree(msm_obj->pages); put_iova_vmas(obj); drm_prime_gem_destroy(obj, msm_obj->sgt); } else { msm_gem_vunmap(obj); put_pages(obj); put_iova_vmas(obj); } drm_gem_object_release(obj); kfree(msm_obj); } static int msm_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) { struct msm_gem_object *msm_obj = to_msm_bo(obj); vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; vma->vm_page_prot = msm_gem_pgprot(msm_obj, vm_get_page_prot(vma->vm_flags)); return 0; } /* convenience method to construct a GEM buffer object, and userspace handle */ int msm_gem_new_handle(struct drm_device *dev, struct drm_file *file, uint32_t size, uint32_t flags, uint32_t *handle, char *name) { struct drm_gem_object *obj; int ret; obj = msm_gem_new(dev, size, flags); if (IS_ERR(obj)) return PTR_ERR(obj); if (name) msm_gem_object_set_name(obj, "%s", name); ret = drm_gem_handle_create(file, obj, handle); /* drop reference from allocate - handle holds it now */ drm_gem_object_put(obj); return ret; } static const struct vm_operations_struct vm_ops = { .fault = msm_gem_fault, .open = drm_gem_vm_open, .close = drm_gem_vm_close, }; static const struct drm_gem_object_funcs msm_gem_object_funcs = { .free = msm_gem_free_object, .pin = msm_gem_prime_pin, .unpin = msm_gem_prime_unpin, .get_sg_table = msm_gem_prime_get_sg_table, .vmap = msm_gem_prime_vmap, .vunmap = msm_gem_prime_vunmap, .mmap = msm_gem_object_mmap, .vm_ops = &vm_ops, }; static int msm_gem_new_impl(struct drm_device *dev, uint32_t size, uint32_t flags, struct drm_gem_object **obj) { struct msm_drm_private *priv = dev->dev_private; struct msm_gem_object *msm_obj; switch (flags & MSM_BO_CACHE_MASK) { case MSM_BO_CACHED: case MSM_BO_WC: break; case MSM_BO_CACHED_COHERENT: if (priv->has_cached_coherent) break; fallthrough; default: DRM_DEV_DEBUG(dev->dev, "invalid cache flag: %x\n", (flags & MSM_BO_CACHE_MASK)); return -EINVAL; } msm_obj = kzalloc(sizeof(*msm_obj), GFP_KERNEL); if (!msm_obj) return -ENOMEM; msm_obj->flags = flags; msm_obj->madv = MSM_MADV_WILLNEED; INIT_LIST_HEAD(&msm_obj->node); INIT_LIST_HEAD(&msm_obj->vmas); *obj = &msm_obj->base; (*obj)->funcs = &msm_gem_object_funcs; return 0; } struct drm_gem_object *msm_gem_new(struct drm_device *dev, uint32_t size, uint32_t flags) { struct msm_drm_private *priv = dev->dev_private; struct msm_gem_object *msm_obj; struct drm_gem_object *obj = NULL; bool use_vram = false; int ret; size = PAGE_ALIGN(size); if (!msm_use_mmu(dev)) use_vram = true; else if ((flags & (MSM_BO_STOLEN | MSM_BO_SCANOUT)) && priv->vram.size) use_vram = true; if (GEM_WARN_ON(use_vram && !priv->vram.size)) return ERR_PTR(-EINVAL); /* Disallow zero sized objects as they make the underlying * infrastructure grumpy */ if (size == 0) return ERR_PTR(-EINVAL); ret = msm_gem_new_impl(dev, size, flags, &obj); if (ret) return ERR_PTR(ret); msm_obj = to_msm_bo(obj); if (use_vram) { struct msm_gem_vma *vma; struct page **pages; drm_gem_private_object_init(dev, obj, size); msm_gem_lock(obj); vma = add_vma(obj, NULL); msm_gem_unlock(obj); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto fail; } to_msm_bo(obj)->vram_node = &vma->node; msm_gem_lock(obj); pages = get_pages(obj); msm_gem_unlock(obj); if (IS_ERR(pages)) { ret = PTR_ERR(pages); goto fail; } vma->iova = physaddr(obj); } else { ret = drm_gem_object_init(dev, obj, size); if (ret) goto fail; /* * Our buffers are kept pinned, so allocating them from the * MOVABLE zone is a really bad idea, and conflicts with CMA. * See comments above new_inode() why this is required _and_ * expected if you're going to pin these pages. */ mapping_set_gfp_mask(obj->filp->f_mapping, GFP_HIGHUSER); } drm_gem_lru_move_tail(&priv->lru.unbacked, obj); mutex_lock(&priv->obj_lock); list_add_tail(&msm_obj->node, &priv->objects); mutex_unlock(&priv->obj_lock); return obj; fail: drm_gem_object_put(obj); return ERR_PTR(ret); } struct drm_gem_object *msm_gem_import(struct drm_device *dev, struct dma_buf *dmabuf, struct sg_table *sgt) { struct msm_drm_private *priv = dev->dev_private; struct msm_gem_object *msm_obj; struct drm_gem_object *obj; uint32_t size; int ret, npages; /* if we don't have IOMMU, don't bother pretending we can import: */ if (!msm_use_mmu(dev)) { DRM_DEV_ERROR(dev->dev, "cannot import without IOMMU\n"); return ERR_PTR(-EINVAL); } size = PAGE_ALIGN(dmabuf->size); ret = msm_gem_new_impl(dev, size, MSM_BO_WC, &obj); if (ret) return ERR_PTR(ret); drm_gem_private_object_init(dev, obj, size); npages = size / PAGE_SIZE; msm_obj = to_msm_bo(obj); msm_gem_lock(obj); msm_obj->sgt = sgt; msm_obj->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); if (!msm_obj->pages) { msm_gem_unlock(obj); ret = -ENOMEM; goto fail; } ret = drm_prime_sg_to_page_array(sgt, msm_obj->pages, npages); if (ret) { msm_gem_unlock(obj); goto fail; } msm_gem_unlock(obj); drm_gem_lru_move_tail(&priv->lru.pinned, obj); mutex_lock(&priv->obj_lock); list_add_tail(&msm_obj->node, &priv->objects); mutex_unlock(&priv->obj_lock); return obj; fail: drm_gem_object_put(obj); return ERR_PTR(ret); } void *msm_gem_kernel_new(struct drm_device *dev, uint32_t size, uint32_t flags, struct msm_gem_address_space *aspace, struct drm_gem_object **bo, uint64_t *iova) { void *vaddr; struct drm_gem_object *obj = msm_gem_new(dev, size, flags); int ret; if (IS_ERR(obj)) return ERR_CAST(obj); if (iova) { ret = msm_gem_get_and_pin_iova(obj, aspace, iova); if (ret) goto err; } vaddr = msm_gem_get_vaddr(obj); if (IS_ERR(vaddr)) { msm_gem_unpin_iova(obj, aspace); ret = PTR_ERR(vaddr); goto err; } if (bo) *bo = obj; return vaddr; err: drm_gem_object_put(obj); return ERR_PTR(ret); } void msm_gem_kernel_put(struct drm_gem_object *bo, struct msm_gem_address_space *aspace) { if (IS_ERR_OR_NULL(bo)) return; msm_gem_put_vaddr(bo); msm_gem_unpin_iova(bo, aspace); drm_gem_object_put(bo); } void msm_gem_object_set_name(struct drm_gem_object *bo, const char *fmt, ...) { struct msm_gem_object *msm_obj = to_msm_bo(bo); va_list ap; if (!fmt) return; va_start(ap, fmt); vsnprintf(msm_obj->name, sizeof(msm_obj->name), fmt, ap); va_end(ap); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1