Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Skeggs | 3222 | 96.96% | 85 | 85.86% |
Francisco Jerez | 58 | 1.75% | 4 | 4.04% |
Marcin Ślusarz | 30 | 0.90% | 3 | 3.03% |
Christian König | 8 | 0.24% | 3 | 3.03% |
Maarten Lankhorst | 2 | 0.06% | 1 | 1.01% |
Alexandre Courbot | 1 | 0.03% | 1 | 1.01% |
Dave Airlie | 1 | 0.03% | 1 | 1.01% |
Jordan Crouse | 1 | 0.03% | 1 | 1.01% |
Total | 3323 | 99 |
/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include <nvif/push006c.h> #include <nvif/class.h> #include <nvif/cl0002.h> #include <nvif/cl006b.h> #include <nvif/cl506f.h> #include <nvif/cl906f.h> #include <nvif/cla06f.h> #include <nvif/clc36f.h> #include <nvif/ioctl.h> #include "nouveau_drv.h" #include "nouveau_dma.h" #include "nouveau_bo.h" #include "nouveau_chan.h" #include "nouveau_fence.h" #include "nouveau_abi16.h" #include "nouveau_vmm.h" #include "nouveau_svm.h" MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM"); int nouveau_vram_pushbuf; module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400); static int nouveau_channel_killed(struct nvif_notify *ntfy) { struct nouveau_channel *chan = container_of(ntfy, typeof(*chan), kill); struct nouveau_cli *cli = (void *)chan->user.client; NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid); atomic_set(&chan->killed, 1); if (chan->fence) nouveau_fence_context_kill(chan->fence, -ENODEV); return NVIF_NOTIFY_DROP; } int nouveau_channel_idle(struct nouveau_channel *chan) { if (likely(chan && chan->fence && !atomic_read(&chan->killed))) { struct nouveau_cli *cli = (void *)chan->user.client; struct nouveau_fence *fence = NULL; int ret; ret = nouveau_fence_new(chan, false, &fence); if (!ret) { ret = nouveau_fence_wait(fence, false, false); nouveau_fence_unref(&fence); } if (ret) { NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n", chan->chid, nvxx_client(&cli->base)->name); return ret; } } return 0; } void nouveau_channel_del(struct nouveau_channel **pchan) { struct nouveau_channel *chan = *pchan; if (chan) { struct nouveau_cli *cli = (void *)chan->user.client; if (chan->fence) nouveau_fence(chan->drm)->context_del(chan); if (cli) nouveau_svmm_part(chan->vmm->svmm, chan->inst); nvif_object_dtor(&chan->nvsw); nvif_object_dtor(&chan->gart); nvif_object_dtor(&chan->vram); nvif_notify_dtor(&chan->kill); nvif_object_dtor(&chan->user); nvif_object_dtor(&chan->push.ctxdma); nouveau_vma_del(&chan->push.vma); nouveau_bo_unmap(chan->push.buffer); if (chan->push.buffer && chan->push.buffer->bo.pin_count) nouveau_bo_unpin(chan->push.buffer); nouveau_bo_ref(NULL, &chan->push.buffer); kfree(chan); } *pchan = NULL; } static void nouveau_channel_kick(struct nvif_push *push) { struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push); chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn); FIRE_RING(chan); chan->chan._push.bgn = chan->chan._push.cur; } static int nouveau_channel_wait(struct nvif_push *push, u32 size) { struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push); int ret; chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn); ret = RING_SPACE(chan, size); if (ret == 0) { chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr; chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur; chan->chan._push.cur = chan->chan._push.bgn; chan->chan._push.end = chan->chan._push.bgn + size; } return ret; } static int nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device, u32 size, struct nouveau_channel **pchan) { struct nouveau_cli *cli = (void *)device->object.client; struct nv_dma_v0 args = {}; struct nouveau_channel *chan; u32 target; int ret; chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; chan->device = device; chan->drm = drm; chan->vmm = cli->svm.cli ? &cli->svm : &cli->vmm; atomic_set(&chan->killed, 0); /* allocate memory for dma push buffer */ target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT; if (nouveau_vram_pushbuf) target = NOUVEAU_GEM_DOMAIN_VRAM; ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL, &chan->push.buffer); if (ret == 0) { ret = nouveau_bo_pin(chan->push.buffer, target, false); if (ret == 0) ret = nouveau_bo_map(chan->push.buffer); } if (ret) { nouveau_channel_del(pchan); return ret; } chan->chan._push.mem.object.parent = cli->base.object.parent; chan->chan._push.mem.object.client = &cli->base; chan->chan._push.mem.object.name = "chanPush"; chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual; chan->chan._push.wait = nouveau_channel_wait; chan->chan._push.kick = nouveau_channel_kick; chan->chan.push = &chan->chan._push; /* create dma object covering the *entire* memory space that the * pushbuf lives in, this is because the GEM code requires that * we be able to call out to other (indirect) push buffers */ chan->push.addr = chan->push.buffer->offset; if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { ret = nouveau_vma_new(chan->push.buffer, chan->vmm, &chan->push.vma); if (ret) { nouveau_channel_del(pchan); return ret; } chan->push.addr = chan->push.vma->addr; if (device->info.family >= NV_DEVICE_INFO_V0_FERMI) return 0; args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_VM; args.start = 0; args.limit = chan->vmm->vmm.limit - 1; } else if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) { if (device->info.family == NV_DEVICE_INFO_V0_TNT) { /* nv04 vram pushbuf hack, retarget to its location in * the framebuffer bar rather than direct vram access.. * nfi why this exists, it came from the -nv ddx. */ args.target = NV_DMA_V0_TARGET_PCI; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = nvxx_device(device)->func-> resource_addr(nvxx_device(device), 1); args.limit = args.start + device->info.ram_user - 1; } else { args.target = NV_DMA_V0_TARGET_VRAM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = device->info.ram_user - 1; } } else { if (chan->drm->agp.bridge) { args.target = NV_DMA_V0_TARGET_AGP; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = chan->drm->agp.base; args.limit = chan->drm->agp.base + chan->drm->agp.size - 1; } else { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = chan->vmm->vmm.limit - 1; } } ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0, NV_DMA_FROM_MEMORY, &args, sizeof(args), &chan->push.ctxdma); if (ret) { nouveau_channel_del(pchan); return ret; } return 0; } static int nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device, u64 runlist, bool priv, struct nouveau_channel **pchan) { static const u16 oclasses[] = { AMPERE_CHANNEL_GPFIFO_B, TURING_CHANNEL_GPFIFO_A, VOLTA_CHANNEL_GPFIFO_A, PASCAL_CHANNEL_GPFIFO_A, MAXWELL_CHANNEL_GPFIFO_A, KEPLER_CHANNEL_GPFIFO_B, KEPLER_CHANNEL_GPFIFO_A, FERMI_CHANNEL_GPFIFO, G82_CHANNEL_GPFIFO, NV50_CHANNEL_GPFIFO, 0 }; const u16 *oclass = oclasses; union { struct nv50_channel_gpfifo_v0 nv50; struct fermi_channel_gpfifo_v0 fermi; struct kepler_channel_gpfifo_a_v0 kepler; struct volta_channel_gpfifo_a_v0 volta; } args; struct nouveau_channel *chan; u32 size; int ret; /* allocate dma push buffer */ ret = nouveau_channel_prep(drm, device, 0x12000, &chan); *pchan = chan; if (ret) return ret; /* create channel object */ do { if (oclass[0] >= VOLTA_CHANNEL_GPFIFO_A) { args.volta.version = 0; args.volta.ilength = 0x02000; args.volta.ioffset = 0x10000 + chan->push.addr; args.volta.runlist = runlist; args.volta.vmm = nvif_handle(&chan->vmm->vmm.object); args.volta.priv = priv; size = sizeof(args.volta); } else if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) { args.kepler.version = 0; args.kepler.ilength = 0x02000; args.kepler.ioffset = 0x10000 + chan->push.addr; args.kepler.runlist = runlist; args.kepler.vmm = nvif_handle(&chan->vmm->vmm.object); args.kepler.priv = priv; size = sizeof(args.kepler); } else if (oclass[0] >= FERMI_CHANNEL_GPFIFO) { args.fermi.version = 0; args.fermi.ilength = 0x02000; args.fermi.ioffset = 0x10000 + chan->push.addr; args.fermi.vmm = nvif_handle(&chan->vmm->vmm.object); size = sizeof(args.fermi); } else { args.nv50.version = 0; args.nv50.ilength = 0x02000; args.nv50.ioffset = 0x10000 + chan->push.addr; args.nv50.pushbuf = nvif_handle(&chan->push.ctxdma); args.nv50.vmm = nvif_handle(&chan->vmm->vmm.object); size = sizeof(args.nv50); } ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, *oclass++, &args, size, &chan->user); if (ret == 0) { if (chan->user.oclass >= VOLTA_CHANNEL_GPFIFO_A) { chan->chid = args.volta.chid; chan->inst = args.volta.inst; chan->token = args.volta.token; } else if (chan->user.oclass >= KEPLER_CHANNEL_GPFIFO_A) { chan->chid = args.kepler.chid; chan->inst = args.kepler.inst; } else if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) { chan->chid = args.fermi.chid; } else { chan->chid = args.nv50.chid; } return ret; } } while (*oclass); nouveau_channel_del(pchan); return ret; } static int nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device, struct nouveau_channel **pchan) { static const u16 oclasses[] = { NV40_CHANNEL_DMA, NV17_CHANNEL_DMA, NV10_CHANNEL_DMA, NV03_CHANNEL_DMA, 0 }; const u16 *oclass = oclasses; struct nv03_channel_dma_v0 args; struct nouveau_channel *chan; int ret; /* allocate dma push buffer */ ret = nouveau_channel_prep(drm, device, 0x10000, &chan); *pchan = chan; if (ret) return ret; /* create channel object */ args.version = 0; args.pushbuf = nvif_handle(&chan->push.ctxdma); args.offset = chan->push.addr; do { ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, *oclass++, &args, sizeof(args), &chan->user); if (ret == 0) { chan->chid = args.chid; return ret; } } while (ret && *oclass); nouveau_channel_del(pchan); return ret; } static int nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart) { struct nvif_device *device = chan->device; struct nouveau_drm *drm = chan->drm; struct nv_dma_v0 args = {}; int ret, i; ret = nvif_object_map(&chan->user, NULL, 0); if (ret) return ret; if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO && chan->user.oclass < AMPERE_CHANNEL_GPFIFO_B) { ret = nvif_notify_ctor(&chan->user, "abi16ChanKilled", nouveau_channel_killed, true, NV906F_V0_NTFY_KILLED, NULL, 0, 0, &chan->kill); if (ret == 0) ret = nvif_notify_get(&chan->kill); if (ret) { NV_ERROR(drm, "Failed to request channel kill " "notification: %d\n", ret); return ret; } } /* allocate dma objects to cover all allowed vram, and gart */ if (device->info.family < NV_DEVICE_INFO_V0_FERMI) { if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_VM; args.start = 0; args.limit = chan->vmm->vmm.limit - 1; } else { args.target = NV_DMA_V0_TARGET_VRAM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = device->info.ram_user - 1; } ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram, NV_DMA_IN_MEMORY, &args, sizeof(args), &chan->vram); if (ret) return ret; if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_VM; args.start = 0; args.limit = chan->vmm->vmm.limit - 1; } else if (chan->drm->agp.bridge) { args.target = NV_DMA_V0_TARGET_AGP; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = chan->drm->agp.base; args.limit = chan->drm->agp.base + chan->drm->agp.size - 1; } else { args.target = NV_DMA_V0_TARGET_VM; args.access = NV_DMA_V0_ACCESS_RDWR; args.start = 0; args.limit = chan->vmm->vmm.limit - 1; } ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart, NV_DMA_IN_MEMORY, &args, sizeof(args), &chan->gart); if (ret) return ret; } /* initialise dma tracking parameters */ switch (chan->user.oclass & 0x00ff) { case 0x006b: case 0x006e: chan->user_put = 0x40; chan->user_get = 0x44; chan->dma.max = (0x10000 / 4) - 2; break; default: chan->user_put = 0x40; chan->user_get = 0x44; chan->user_get_hi = 0x60; chan->dma.ib_base = 0x10000 / 4; chan->dma.ib_max = (0x02000 / 8) - 1; chan->dma.ib_put = 0; chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put; chan->dma.max = chan->dma.ib_base; break; } chan->dma.put = 0; chan->dma.cur = chan->dma.put; chan->dma.free = chan->dma.max - chan->dma.cur; ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS); if (ret) return ret; for (i = 0; i < NOUVEAU_DMA_SKIPS; i++) PUSH_DATA(chan->chan.push, 0x00000000); /* allocate software object class (used for fences on <= nv05) */ if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) { ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e, NVIF_CLASS_SW_NV04, NULL, 0, &chan->nvsw); if (ret) return ret; ret = PUSH_WAIT(chan->chan.push, 2); if (ret) return ret; PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle); PUSH_KICK(chan->chan.push); } /* initialise synchronisation */ return nouveau_fence(chan->drm)->context_new(chan); } int nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device, u32 arg0, u32 arg1, bool priv, struct nouveau_channel **pchan) { struct nouveau_cli *cli = (void *)device->object.client; int ret; /* hack until fencenv50 is fixed, and agp access relaxed */ ret = nouveau_channel_ind(drm, device, arg0, priv, pchan); if (ret) { NV_PRINTK(dbg, cli, "ib channel create, %d\n", ret); ret = nouveau_channel_dma(drm, device, pchan); if (ret) { NV_PRINTK(dbg, cli, "dma channel create, %d\n", ret); return ret; } } ret = nouveau_channel_init(*pchan, arg0, arg1); if (ret) { NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret); nouveau_channel_del(pchan); return ret; } ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst); if (ret) nouveau_channel_del(pchan); return ret; } int nouveau_channels_init(struct nouveau_drm *drm) { struct { struct nv_device_info_v1 m; struct { struct nv_device_info_v1_data channels; } v; } args = { .m.version = 1, .m.count = sizeof(args.v) / sizeof(args.v.channels), .v.channels.mthd = NV_DEVICE_HOST_CHANNELS, }; struct nvif_object *device = &drm->client.device.object; int ret; ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args)); if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID) return -ENODEV; drm->chan.nr = args.v.channels.data; drm->chan.context_base = dma_fence_context_alloc(drm->chan.nr); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1