Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maarten Lankhorst | 1593 | 70.64% | 5 | 9.62% |
Ben Skeggs | 515 | 22.84% | 24 | 46.15% |
Christian König | 47 | 2.08% | 7 | 13.46% |
Francisco Jerez | 36 | 1.60% | 7 | 13.46% |
Chris Wilson | 29 | 1.29% | 1 | 1.92% |
Linus Torvalds | 16 | 0.71% | 1 | 1.92% |
Marcin Ślusarz | 8 | 0.35% | 1 | 1.92% |
Vasiliy Kulikov | 3 | 0.13% | 1 | 1.92% |
Sam Ravnborg | 3 | 0.13% | 1 | 1.92% |
Gerd Hoffmann | 2 | 0.09% | 1 | 1.92% |
Lucas Stach | 1 | 0.04% | 1 | 1.92% |
Yue haibing | 1 | 0.04% | 1 | 1.92% |
Peter Zijlstra | 1 | 0.04% | 1 | 1.92% |
Total | 2255 | 52 |
/* * Copyright (C) 2007 Ben Skeggs. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/ktime.h> #include <linux/hrtimer.h> #include <linux/sched/signal.h> #include <trace/events/dma_fence.h> #include <nvif/cl826e.h> #include <nvif/notify.h> #include <nvif/event.h> #include "nouveau_drv.h" #include "nouveau_dma.h" #include "nouveau_fence.h" static const struct dma_fence_ops nouveau_fence_ops_uevent; static const struct dma_fence_ops nouveau_fence_ops_legacy; static inline struct nouveau_fence * from_fence(struct dma_fence *fence) { return container_of(fence, struct nouveau_fence, base); } static inline struct nouveau_fence_chan * nouveau_fctx(struct nouveau_fence *fence) { return container_of(fence->base.lock, struct nouveau_fence_chan, lock); } static int nouveau_fence_signal(struct nouveau_fence *fence) { int drop = 0; dma_fence_signal_locked(&fence->base); list_del(&fence->head); rcu_assign_pointer(fence->channel, NULL); if (test_bit(DMA_FENCE_FLAG_USER_BITS, &fence->base.flags)) { struct nouveau_fence_chan *fctx = nouveau_fctx(fence); if (!--fctx->notify_ref) drop = 1; } dma_fence_put(&fence->base); return drop; } static struct nouveau_fence * nouveau_local_fence(struct dma_fence *fence, struct nouveau_drm *drm) { if (fence->ops != &nouveau_fence_ops_legacy && fence->ops != &nouveau_fence_ops_uevent) return NULL; if (fence->context < drm->chan.context_base || fence->context >= drm->chan.context_base + drm->chan.nr) return NULL; return from_fence(fence); } void nouveau_fence_context_kill(struct nouveau_fence_chan *fctx, int error) { struct nouveau_fence *fence; spin_lock_irq(&fctx->lock); while (!list_empty(&fctx->pending)) { fence = list_entry(fctx->pending.next, typeof(*fence), head); if (error) dma_fence_set_error(&fence->base, error); if (nouveau_fence_signal(fence)) nvif_notify_put(&fctx->notify); } spin_unlock_irq(&fctx->lock); } void nouveau_fence_context_del(struct nouveau_fence_chan *fctx) { nouveau_fence_context_kill(fctx, 0); nvif_notify_dtor(&fctx->notify); fctx->dead = 1; /* * Ensure that all accesses to fence->channel complete before freeing * the channel. */ synchronize_rcu(); } static void nouveau_fence_context_put(struct kref *fence_ref) { kfree(container_of(fence_ref, struct nouveau_fence_chan, fence_ref)); } void nouveau_fence_context_free(struct nouveau_fence_chan *fctx) { kref_put(&fctx->fence_ref, nouveau_fence_context_put); } static int nouveau_fence_update(struct nouveau_channel *chan, struct nouveau_fence_chan *fctx) { struct nouveau_fence *fence; int drop = 0; u32 seq = fctx->read(chan); while (!list_empty(&fctx->pending)) { fence = list_entry(fctx->pending.next, typeof(*fence), head); if ((int)(seq - fence->base.seqno) < 0) break; drop |= nouveau_fence_signal(fence); } return drop; } static int nouveau_fence_wait_uevent_handler(struct nvif_notify *notify) { struct nouveau_fence_chan *fctx = container_of(notify, typeof(*fctx), notify); unsigned long flags; int ret = NVIF_NOTIFY_KEEP; spin_lock_irqsave(&fctx->lock, flags); if (!list_empty(&fctx->pending)) { struct nouveau_fence *fence; struct nouveau_channel *chan; fence = list_entry(fctx->pending.next, typeof(*fence), head); chan = rcu_dereference_protected(fence->channel, lockdep_is_held(&fctx->lock)); if (nouveau_fence_update(chan, fctx)) ret = NVIF_NOTIFY_DROP; } spin_unlock_irqrestore(&fctx->lock, flags); return ret; } void nouveau_fence_context_new(struct nouveau_channel *chan, struct nouveau_fence_chan *fctx) { struct nouveau_fence_priv *priv = (void*)chan->drm->fence; struct nouveau_cli *cli = (void *)chan->user.client; int ret; INIT_LIST_HEAD(&fctx->flip); INIT_LIST_HEAD(&fctx->pending); spin_lock_init(&fctx->lock); fctx->context = chan->drm->chan.context_base + chan->chid; if (chan == chan->drm->cechan) strcpy(fctx->name, "copy engine channel"); else if (chan == chan->drm->channel) strcpy(fctx->name, "generic kernel channel"); else strcpy(fctx->name, nvxx_client(&cli->base)->name); kref_init(&fctx->fence_ref); if (!priv->uevent) return; ret = nvif_notify_ctor(&chan->user, "fenceNonStallIntr", nouveau_fence_wait_uevent_handler, false, NV826E_V0_NTFY_NON_STALL_INTERRUPT, &(struct nvif_notify_uevent_req) { }, sizeof(struct nvif_notify_uevent_req), sizeof(struct nvif_notify_uevent_rep), &fctx->notify); WARN_ON(ret); } int nouveau_fence_emit(struct nouveau_fence *fence, struct nouveau_channel *chan) { struct nouveau_fence_chan *fctx = chan->fence; struct nouveau_fence_priv *priv = (void*)chan->drm->fence; int ret; fence->channel = chan; fence->timeout = jiffies + (15 * HZ); if (priv->uevent) dma_fence_init(&fence->base, &nouveau_fence_ops_uevent, &fctx->lock, fctx->context, ++fctx->sequence); else dma_fence_init(&fence->base, &nouveau_fence_ops_legacy, &fctx->lock, fctx->context, ++fctx->sequence); kref_get(&fctx->fence_ref); ret = fctx->emit(fence); if (!ret) { dma_fence_get(&fence->base); spin_lock_irq(&fctx->lock); if (nouveau_fence_update(chan, fctx)) nvif_notify_put(&fctx->notify); list_add_tail(&fence->head, &fctx->pending); spin_unlock_irq(&fctx->lock); } return ret; } bool nouveau_fence_done(struct nouveau_fence *fence) { if (fence->base.ops == &nouveau_fence_ops_legacy || fence->base.ops == &nouveau_fence_ops_uevent) { struct nouveau_fence_chan *fctx = nouveau_fctx(fence); struct nouveau_channel *chan; unsigned long flags; if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags)) return true; spin_lock_irqsave(&fctx->lock, flags); chan = rcu_dereference_protected(fence->channel, lockdep_is_held(&fctx->lock)); if (chan && nouveau_fence_update(chan, fctx)) nvif_notify_put(&fctx->notify); spin_unlock_irqrestore(&fctx->lock, flags); } return dma_fence_is_signaled(&fence->base); } static long nouveau_fence_wait_legacy(struct dma_fence *f, bool intr, long wait) { struct nouveau_fence *fence = from_fence(f); unsigned long sleep_time = NSEC_PER_MSEC / 1000; unsigned long t = jiffies, timeout = t + wait; while (!nouveau_fence_done(fence)) { ktime_t kt; t = jiffies; if (wait != MAX_SCHEDULE_TIMEOUT && time_after_eq(t, timeout)) { __set_current_state(TASK_RUNNING); return 0; } __set_current_state(intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); kt = sleep_time; schedule_hrtimeout(&kt, HRTIMER_MODE_REL); sleep_time *= 2; if (sleep_time > NSEC_PER_MSEC) sleep_time = NSEC_PER_MSEC; if (intr && signal_pending(current)) return -ERESTARTSYS; } __set_current_state(TASK_RUNNING); return timeout - t; } static int nouveau_fence_wait_busy(struct nouveau_fence *fence, bool intr) { int ret = 0; while (!nouveau_fence_done(fence)) { if (time_after_eq(jiffies, fence->timeout)) { ret = -EBUSY; break; } __set_current_state(intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (intr && signal_pending(current)) { ret = -ERESTARTSYS; break; } } __set_current_state(TASK_RUNNING); return ret; } int nouveau_fence_wait(struct nouveau_fence *fence, bool lazy, bool intr) { long ret; if (!lazy) return nouveau_fence_wait_busy(fence, intr); ret = dma_fence_wait_timeout(&fence->base, intr, 15 * HZ); if (ret < 0) return ret; else if (!ret) return -EBUSY; else return 0; } int nouveau_fence_sync(struct nouveau_bo *nvbo, struct nouveau_channel *chan, bool exclusive, bool intr) { struct nouveau_fence_chan *fctx = chan->fence; struct dma_resv *resv = nvbo->bo.base.resv; int i, ret; ret = dma_resv_reserve_fences(resv, 1); if (ret) return ret; /* Waiting for the writes first causes performance regressions * under some circumstances. So manually wait for the reads first. */ for (i = 0; i < 2; ++i) { struct dma_resv_iter cursor; struct dma_fence *fence; dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(exclusive), fence) { enum dma_resv_usage usage; struct nouveau_fence *f; usage = dma_resv_iter_usage(&cursor); if (i == 0 && usage == DMA_RESV_USAGE_WRITE) continue; f = nouveau_local_fence(fence, chan->drm); if (f) { struct nouveau_channel *prev; bool must_wait = true; rcu_read_lock(); prev = rcu_dereference(f->channel); if (prev && (prev == chan || fctx->sync(f, prev, chan) == 0)) must_wait = false; rcu_read_unlock(); if (!must_wait) continue; } ret = dma_fence_wait(fence, intr); if (ret) return ret; } } return 0; } void nouveau_fence_unref(struct nouveau_fence **pfence) { if (*pfence) dma_fence_put(&(*pfence)->base); *pfence = NULL; } int nouveau_fence_new(struct nouveau_channel *chan, bool sysmem, struct nouveau_fence **pfence) { struct nouveau_fence *fence; int ret = 0; if (unlikely(!chan->fence)) return -ENODEV; fence = kzalloc(sizeof(*fence), GFP_KERNEL); if (!fence) return -ENOMEM; ret = nouveau_fence_emit(fence, chan); if (ret) nouveau_fence_unref(&fence); *pfence = fence; return ret; } static const char *nouveau_fence_get_get_driver_name(struct dma_fence *fence) { return "nouveau"; } static const char *nouveau_fence_get_timeline_name(struct dma_fence *f) { struct nouveau_fence *fence = from_fence(f); struct nouveau_fence_chan *fctx = nouveau_fctx(fence); return !fctx->dead ? fctx->name : "dead channel"; } /* * In an ideal world, read would not assume the channel context is still alive. * This function may be called from another device, running into free memory as a * result. The drm node should still be there, so we can derive the index from * the fence context. */ static bool nouveau_fence_is_signaled(struct dma_fence *f) { struct nouveau_fence *fence = from_fence(f); struct nouveau_fence_chan *fctx = nouveau_fctx(fence); struct nouveau_channel *chan; bool ret = false; rcu_read_lock(); chan = rcu_dereference(fence->channel); if (chan) ret = (int)(fctx->read(chan) - fence->base.seqno) >= 0; rcu_read_unlock(); return ret; } static bool nouveau_fence_no_signaling(struct dma_fence *f) { struct nouveau_fence *fence = from_fence(f); /* * caller should have a reference on the fence, * else fence could get freed here */ WARN_ON(kref_read(&fence->base.refcount) <= 1); /* * This needs uevents to work correctly, but dma_fence_add_callback relies on * being able to enable signaling. It will still get signaled eventually, * just not right away. */ if (nouveau_fence_is_signaled(f)) { list_del(&fence->head); dma_fence_put(&fence->base); return false; } return true; } static void nouveau_fence_release(struct dma_fence *f) { struct nouveau_fence *fence = from_fence(f); struct nouveau_fence_chan *fctx = nouveau_fctx(fence); kref_put(&fctx->fence_ref, nouveau_fence_context_put); dma_fence_free(&fence->base); } static const struct dma_fence_ops nouveau_fence_ops_legacy = { .get_driver_name = nouveau_fence_get_get_driver_name, .get_timeline_name = nouveau_fence_get_timeline_name, .enable_signaling = nouveau_fence_no_signaling, .signaled = nouveau_fence_is_signaled, .wait = nouveau_fence_wait_legacy, .release = nouveau_fence_release }; static bool nouveau_fence_enable_signaling(struct dma_fence *f) { struct nouveau_fence *fence = from_fence(f); struct nouveau_fence_chan *fctx = nouveau_fctx(fence); bool ret; if (!fctx->notify_ref++) nvif_notify_get(&fctx->notify); ret = nouveau_fence_no_signaling(f); if (ret) set_bit(DMA_FENCE_FLAG_USER_BITS, &fence->base.flags); else if (!--fctx->notify_ref) nvif_notify_put(&fctx->notify); return ret; } static const struct dma_fence_ops nouveau_fence_ops_uevent = { .get_driver_name = nouveau_fence_get_get_driver_name, .get_timeline_name = nouveau_fence_get_timeline_name, .enable_signaling = nouveau_fence_enable_signaling, .signaled = nouveau_fence_is_signaled, .release = nouveau_fence_release };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1