Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Skeggs | 9159 | 99.98% | 58 | 98.31% |
Emil Velikov | 2 | 0.02% | 1 | 1.69% |
Total | 9161 | 59 |
/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "priv.h" #include "chan.h" #include "head.h" #include "ior.h" #include "outp.h" #include <core/client.h> #include <core/ramht.h> #include <subdev/bios.h> #include <subdev/bios/disp.h> #include <subdev/bios/init.h> #include <subdev/bios/pll.h> #include <subdev/devinit.h> #include <subdev/i2c.h> #include <subdev/mmu.h> #include <subdev/timer.h> #include <nvif/class.h> #include <nvif/unpack.h> static void nv50_pior_clock(struct nvkm_ior *pior) { struct nvkm_device *device = pior->disp->engine.subdev.device; const u32 poff = nv50_ior_base(pior); nvkm_mask(device, 0x614380 + poff, 0x00000707, 0x00000001); } static int nv50_pior_dp_links(struct nvkm_ior *pior, struct nvkm_i2c_aux *aux) { int ret = nvkm_i2c_aux_lnk_ctl(aux, pior->dp.nr, pior->dp.bw, pior->dp.ef); if (ret) return ret; return 1; } static const struct nvkm_ior_func_dp nv50_pior_dp = { .links = nv50_pior_dp_links, }; static void nv50_pior_power_wait(struct nvkm_device *device, u32 poff) { nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x61e004 + poff) & 0x80000000)) break; ); } static void nv50_pior_power(struct nvkm_ior *pior, bool normal, bool pu, bool data, bool vsync, bool hsync) { struct nvkm_device *device = pior->disp->engine.subdev.device; const u32 poff = nv50_ior_base(pior); const u32 shift = normal ? 0 : 16; const u32 state = 0x80000000 | (0x00000001 * !!pu) << shift; const u32 field = 0x80000000 | (0x00000101 << shift); nv50_pior_power_wait(device, poff); nvkm_mask(device, 0x61e004 + poff, field, state); nv50_pior_power_wait(device, poff); } void nv50_pior_depth(struct nvkm_ior *ior, struct nvkm_ior_state *state, u32 ctrl) { /* GF119 moves this information to per-head methods, which is * a lot more convenient, and where our shared code expect it. */ if (state->head && state == &ior->asy) { struct nvkm_head *head = nvkm_head_find(ior->disp, __ffs(state->head)); if (!WARN_ON(!head)) { struct nvkm_head_state *state = &head->asy; switch ((ctrl & 0x000f0000) >> 16) { case 6: state->or.depth = 30; break; case 5: state->or.depth = 24; break; case 2: state->or.depth = 18; break; case 0: state->or.depth = 18; break; /*XXX*/ default: state->or.depth = 18; WARN_ON(1); break; } } } } static void nv50_pior_state(struct nvkm_ior *pior, struct nvkm_ior_state *state) { struct nvkm_device *device = pior->disp->engine.subdev.device; const u32 coff = pior->id * 8 + (state == &pior->arm) * 4; u32 ctrl = nvkm_rd32(device, 0x610b80 + coff); state->proto_evo = (ctrl & 0x00000f00) >> 8; state->rgdiv = 1; switch (state->proto_evo) { case 0: state->proto = TMDS; break; default: state->proto = UNKNOWN; break; } state->head = ctrl & 0x00000003; nv50_pior_depth(pior, state, ctrl); } static const struct nvkm_ior_func nv50_pior = { .state = nv50_pior_state, .power = nv50_pior_power, .clock = nv50_pior_clock, .dp = &nv50_pior_dp, }; int nv50_pior_new(struct nvkm_disp *disp, int id) { return nvkm_ior_new_(&nv50_pior, disp, PIOR, id, false); } int nv50_pior_cnt(struct nvkm_disp *disp, unsigned long *pmask) { struct nvkm_device *device = disp->engine.subdev.device; *pmask = (nvkm_rd32(device, 0x610184) & 0x70000000) >> 28; return 3; } void nv50_sor_clock(struct nvkm_ior *sor) { struct nvkm_device *device = sor->disp->engine.subdev.device; const int div = sor->asy.link == 3; const u32 soff = nv50_ior_base(sor); nvkm_mask(device, 0x614300 + soff, 0x00000707, (div << 8) | div); } static void nv50_sor_power_wait(struct nvkm_device *device, u32 soff) { nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x61c004 + soff) & 0x80000000)) break; ); } void nv50_sor_power(struct nvkm_ior *sor, bool normal, bool pu, bool data, bool vsync, bool hsync) { struct nvkm_device *device = sor->disp->engine.subdev.device; const u32 soff = nv50_ior_base(sor); const u32 shift = normal ? 0 : 16; const u32 state = 0x80000000 | (0x00000001 * !!pu) << shift; const u32 field = 0x80000000 | (0x00000001 << shift); nv50_sor_power_wait(device, soff); nvkm_mask(device, 0x61c004 + soff, field, state); nv50_sor_power_wait(device, soff); nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x61c030 + soff) & 0x10000000)) break; ); } void nv50_sor_state(struct nvkm_ior *sor, struct nvkm_ior_state *state) { struct nvkm_device *device = sor->disp->engine.subdev.device; const u32 coff = sor->id * 8 + (state == &sor->arm) * 4; u32 ctrl = nvkm_rd32(device, 0x610b70 + coff); state->proto_evo = (ctrl & 0x00000f00) >> 8; switch (state->proto_evo) { case 0: state->proto = LVDS; state->link = 1; break; case 1: state->proto = TMDS; state->link = 1; break; case 2: state->proto = TMDS; state->link = 2; break; case 5: state->proto = TMDS; state->link = 3; break; default: state->proto = UNKNOWN; break; } state->head = ctrl & 0x00000003; } static const struct nvkm_ior_func nv50_sor = { .state = nv50_sor_state, .power = nv50_sor_power, .clock = nv50_sor_clock, }; static int nv50_sor_new(struct nvkm_disp *disp, int id) { return nvkm_ior_new_(&nv50_sor, disp, SOR, id, false); } int nv50_sor_cnt(struct nvkm_disp *disp, unsigned long *pmask) { struct nvkm_device *device = disp->engine.subdev.device; *pmask = (nvkm_rd32(device, 0x610184) & 0x03000000) >> 24; return 2; } static void nv50_dac_clock(struct nvkm_ior *dac) { struct nvkm_device *device = dac->disp->engine.subdev.device; const u32 doff = nv50_ior_base(dac); nvkm_mask(device, 0x614280 + doff, 0x07070707, 0x00000000); } int nv50_dac_sense(struct nvkm_ior *dac, u32 loadval) { struct nvkm_device *device = dac->disp->engine.subdev.device; const u32 doff = nv50_ior_base(dac); dac->func->power(dac, false, true, false, false, false); nvkm_wr32(device, 0x61a00c + doff, 0x00100000 | loadval); mdelay(9); udelay(500); loadval = nvkm_mask(device, 0x61a00c + doff, 0xffffffff, 0x00000000); dac->func->power(dac, false, false, false, false, false); if (!(loadval & 0x80000000)) return -ETIMEDOUT; return (loadval & 0x38000000) >> 27; } static void nv50_dac_power_wait(struct nvkm_device *device, const u32 doff) { nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x61a004 + doff) & 0x80000000)) break; ); } void nv50_dac_power(struct nvkm_ior *dac, bool normal, bool pu, bool data, bool vsync, bool hsync) { struct nvkm_device *device = dac->disp->engine.subdev.device; const u32 doff = nv50_ior_base(dac); const u32 shift = normal ? 0 : 16; const u32 state = 0x80000000 | (0x00000040 * ! pu | 0x00000010 * ! data | 0x00000004 * ! vsync | 0x00000001 * ! hsync) << shift; const u32 field = 0xc0000000 | (0x00000055 << shift); nv50_dac_power_wait(device, doff); nvkm_mask(device, 0x61a004 + doff, field, state); nv50_dac_power_wait(device, doff); } static void nv50_dac_state(struct nvkm_ior *dac, struct nvkm_ior_state *state) { struct nvkm_device *device = dac->disp->engine.subdev.device; const u32 coff = dac->id * 8 + (state == &dac->arm) * 4; u32 ctrl = nvkm_rd32(device, 0x610b58 + coff); state->proto_evo = (ctrl & 0x00000f00) >> 8; switch (state->proto_evo) { case 0: state->proto = CRT; break; default: state->proto = UNKNOWN; break; } state->head = ctrl & 0x00000003; } static const struct nvkm_ior_func nv50_dac = { .state = nv50_dac_state, .power = nv50_dac_power, .sense = nv50_dac_sense, .clock = nv50_dac_clock, }; int nv50_dac_new(struct nvkm_disp *disp, int id) { return nvkm_ior_new_(&nv50_dac, disp, DAC, id, false); } int nv50_dac_cnt(struct nvkm_disp *disp, unsigned long *pmask) { struct nvkm_device *device = disp->engine.subdev.device; *pmask = (nvkm_rd32(device, 0x610184) & 0x00700000) >> 20; return 3; } static void nv50_head_vblank_put(struct nvkm_head *head) { struct nvkm_device *device = head->disp->engine.subdev.device; nvkm_mask(device, 0x61002c, (4 << head->id), 0); } static void nv50_head_vblank_get(struct nvkm_head *head) { struct nvkm_device *device = head->disp->engine.subdev.device; nvkm_mask(device, 0x61002c, (4 << head->id), (4 << head->id)); } static void nv50_head_rgclk(struct nvkm_head *head, int div) { struct nvkm_device *device = head->disp->engine.subdev.device; nvkm_mask(device, 0x614200 + (head->id * 0x800), 0x0000000f, div); } void nv50_head_rgpos(struct nvkm_head *head, u16 *hline, u16 *vline) { struct nvkm_device *device = head->disp->engine.subdev.device; const u32 hoff = head->id * 0x800; /* vline read locks hline. */ *vline = nvkm_rd32(device, 0x616340 + hoff) & 0x0000ffff; *hline = nvkm_rd32(device, 0x616344 + hoff) & 0x0000ffff; } static void nv50_head_state(struct nvkm_head *head, struct nvkm_head_state *state) { struct nvkm_device *device = head->disp->engine.subdev.device; const u32 hoff = head->id * 0x540 + (state == &head->arm) * 4; u32 data; data = nvkm_rd32(device, 0x610ae8 + hoff); state->vblanke = (data & 0xffff0000) >> 16; state->hblanke = (data & 0x0000ffff); data = nvkm_rd32(device, 0x610af0 + hoff); state->vblanks = (data & 0xffff0000) >> 16; state->hblanks = (data & 0x0000ffff); data = nvkm_rd32(device, 0x610af8 + hoff); state->vtotal = (data & 0xffff0000) >> 16; state->htotal = (data & 0x0000ffff); data = nvkm_rd32(device, 0x610b00 + hoff); state->vsynce = (data & 0xffff0000) >> 16; state->hsynce = (data & 0x0000ffff); state->hz = (nvkm_rd32(device, 0x610ad0 + hoff) & 0x003fffff) * 1000; } static const struct nvkm_head_func nv50_head = { .state = nv50_head_state, .rgpos = nv50_head_rgpos, .rgclk = nv50_head_rgclk, .vblank_get = nv50_head_vblank_get, .vblank_put = nv50_head_vblank_put, }; int nv50_head_new(struct nvkm_disp *disp, int id) { return nvkm_head_new_(&nv50_head, disp, id); } int nv50_head_cnt(struct nvkm_disp *disp, unsigned long *pmask) { *pmask = 3; return 2; } static void nv50_disp_mthd_list(struct nvkm_disp *disp, int debug, u32 base, int c, const struct nvkm_disp_mthd_list *list, int inst) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; int i; for (i = 0; list->data[i].mthd; i++) { if (list->data[i].addr) { u32 next = nvkm_rd32(device, list->data[i].addr + base + 0); u32 prev = nvkm_rd32(device, list->data[i].addr + base + c); u32 mthd = list->data[i].mthd + (list->mthd * inst); const char *name = list->data[i].name; char mods[16]; if (prev != next) snprintf(mods, sizeof(mods), "-> %08x", next); else snprintf(mods, sizeof(mods), "%13c", ' '); nvkm_printk_(subdev, debug, info, "\t%04x: %08x %s%s%s\n", mthd, prev, mods, name ? " // " : "", name ? name : ""); } } } void nv50_disp_chan_mthd(struct nvkm_disp_chan *chan, int debug) { struct nvkm_disp *disp = chan->disp; struct nvkm_subdev *subdev = &disp->engine.subdev; const struct nvkm_disp_chan_mthd *mthd = chan->mthd; const struct nvkm_disp_mthd_list *list; int i, j; if (debug > subdev->debug) return; if (!mthd) return; for (i = 0; (list = mthd->data[i].mthd) != NULL; i++) { u32 base = chan->head * mthd->addr; for (j = 0; j < mthd->data[i].nr; j++, base += list->addr) { const char *cname = mthd->name; const char *sname = ""; char cname_[16], sname_[16]; if (mthd->addr) { snprintf(cname_, sizeof(cname_), "%s %d", mthd->name, chan->chid.user); cname = cname_; } if (mthd->data[i].nr > 1) { snprintf(sname_, sizeof(sname_), " - %s %d", mthd->data[i].name, j); sname = sname_; } nvkm_printk_(subdev, debug, info, "%s%s:\n", cname, sname); nv50_disp_mthd_list(disp, debug, base, mthd->prev, list, j); } } } static void nv50_disp_chan_uevent_fini(struct nvkm_event *event, int type, int index) { struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent); struct nvkm_device *device = disp->engine.subdev.device; nvkm_mask(device, 0x610028, 0x00000001 << index, 0x00000000 << index); nvkm_wr32(device, 0x610020, 0x00000001 << index); } static void nv50_disp_chan_uevent_init(struct nvkm_event *event, int types, int index) { struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent); struct nvkm_device *device = disp->engine.subdev.device; nvkm_wr32(device, 0x610020, 0x00000001 << index); nvkm_mask(device, 0x610028, 0x00000001 << index, 0x00000001 << index); } void nv50_disp_chan_uevent_send(struct nvkm_disp *disp, int chid) { nvkm_event_send(&disp->uevent, NVKM_DISP_EVENT_CHAN_AWAKEN, chid, NULL, 0); } const struct nvkm_event_func nv50_disp_chan_uevent = { .init = nv50_disp_chan_uevent_init, .fini = nv50_disp_chan_uevent_fini, }; u64 nv50_disp_chan_user(struct nvkm_disp_chan *chan, u64 *psize) { *psize = 0x1000; return 0x640000 + (chan->chid.user * 0x1000); } void nv50_disp_chan_intr(struct nvkm_disp_chan *chan, bool en) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 mask = 0x00010001 << chan->chid.user; const u32 data = en ? 0x00010000 << chan->chid.user : 0x00000000; nvkm_mask(device, 0x610028, mask, data); } static void nv50_disp_pioc_fini(struct nvkm_disp_chan *chan) { struct nvkm_disp *disp = chan->disp; struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; int ctrl = chan->chid.ctrl; int user = chan->chid.user; nvkm_mask(device, 0x610200 + (ctrl * 0x10), 0x00000001, 0x00000000); if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x00030000)) break; ) < 0) { nvkm_error(subdev, "ch %d timeout: %08x\n", user, nvkm_rd32(device, 0x610200 + (ctrl * 0x10))); } } static int nv50_disp_pioc_init(struct nvkm_disp_chan *chan) { struct nvkm_disp *disp = chan->disp; struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; int ctrl = chan->chid.ctrl; int user = chan->chid.user; nvkm_wr32(device, 0x610200 + (ctrl * 0x10), 0x00002000); if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x00030000)) break; ) < 0) { nvkm_error(subdev, "ch %d timeout0: %08x\n", user, nvkm_rd32(device, 0x610200 + (ctrl * 0x10))); return -EBUSY; } nvkm_wr32(device, 0x610200 + (ctrl * 0x10), 0x00000001); if (nvkm_msec(device, 2000, u32 tmp = nvkm_rd32(device, 0x610200 + (ctrl * 0x10)); if ((tmp & 0x00030000) == 0x00010000) break; ) < 0) { nvkm_error(subdev, "ch %d timeout1: %08x\n", user, nvkm_rd32(device, 0x610200 + (ctrl * 0x10))); return -EBUSY; } return 0; } const struct nvkm_disp_chan_func nv50_disp_pioc_func = { .init = nv50_disp_pioc_init, .fini = nv50_disp_pioc_fini, .intr = nv50_disp_chan_intr, .user = nv50_disp_chan_user, }; int nv50_disp_dmac_bind(struct nvkm_disp_chan *chan, struct nvkm_object *object, u32 handle) { return nvkm_ramht_insert(chan->disp->ramht, object, chan->chid.user, -10, handle, chan->chid.user << 28 | chan->chid.user); } static void nv50_disp_dmac_fini(struct nvkm_disp_chan *chan) { struct nvkm_subdev *subdev = &chan->disp->engine.subdev; struct nvkm_device *device = subdev->device; int ctrl = chan->chid.ctrl; int user = chan->chid.user; /* deactivate channel */ nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00001010, 0x00001000); nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00000003, 0x00000000); if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x001e0000)) break; ) < 0) { nvkm_error(subdev, "ch %d fini timeout, %08x\n", user, nvkm_rd32(device, 0x610200 + (ctrl * 0x10))); } chan->suspend_put = nvkm_rd32(device, 0x640000 + (ctrl * 0x1000)); } static int nv50_disp_dmac_init(struct nvkm_disp_chan *chan) { struct nvkm_subdev *subdev = &chan->disp->engine.subdev; struct nvkm_device *device = subdev->device; int ctrl = chan->chid.ctrl; int user = chan->chid.user; /* initialise channel for dma command submission */ nvkm_wr32(device, 0x610204 + (ctrl * 0x0010), chan->push); nvkm_wr32(device, 0x610208 + (ctrl * 0x0010), 0x00010000); nvkm_wr32(device, 0x61020c + (ctrl * 0x0010), ctrl); nvkm_mask(device, 0x610200 + (ctrl * 0x0010), 0x00000010, 0x00000010); nvkm_wr32(device, 0x640000 + (ctrl * 0x1000), chan->suspend_put); nvkm_wr32(device, 0x610200 + (ctrl * 0x0010), 0x00000013); /* wait for it to go inactive */ if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x610200 + (ctrl * 0x10)) & 0x80000000)) break; ) < 0) { nvkm_error(subdev, "ch %d init timeout, %08x\n", user, nvkm_rd32(device, 0x610200 + (ctrl * 0x10))); return -EBUSY; } return 0; } int nv50_disp_dmac_push(struct nvkm_disp_chan *chan, u64 object) { chan->memory = nvkm_umem_search(chan->object.client, object); if (IS_ERR(chan->memory)) return PTR_ERR(chan->memory); if (nvkm_memory_size(chan->memory) < 0x1000) return -EINVAL; switch (nvkm_memory_target(chan->memory)) { case NVKM_MEM_TARGET_VRAM: chan->push = 0x00000001; break; case NVKM_MEM_TARGET_NCOH: chan->push = 0x00000002; break; case NVKM_MEM_TARGET_HOST: chan->push = 0x00000003; break; default: return -EINVAL; } chan->push |= nvkm_memory_addr(chan->memory) >> 8; return 0; } const struct nvkm_disp_chan_func nv50_disp_dmac_func = { .push = nv50_disp_dmac_push, .init = nv50_disp_dmac_init, .fini = nv50_disp_dmac_fini, .intr = nv50_disp_chan_intr, .user = nv50_disp_chan_user, .bind = nv50_disp_dmac_bind, }; const struct nvkm_disp_chan_user nv50_disp_curs = { .func = &nv50_disp_pioc_func, .ctrl = 7, .user = 7, }; const struct nvkm_disp_chan_user nv50_disp_oimm = { .func = &nv50_disp_pioc_func, .ctrl = 5, .user = 5, }; static const struct nvkm_disp_mthd_list nv50_disp_ovly_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0080, 0x000000 }, { 0x0084, 0x0009a0 }, { 0x0088, 0x0009c0 }, { 0x008c, 0x0009c8 }, { 0x0090, 0x6109b4 }, { 0x0094, 0x610970 }, { 0x00a0, 0x610998 }, { 0x00a4, 0x610964 }, { 0x00c0, 0x610958 }, { 0x00e0, 0x6109a8 }, { 0x00e4, 0x6109d0 }, { 0x00e8, 0x6109d8 }, { 0x0100, 0x61094c }, { 0x0104, 0x610984 }, { 0x0108, 0x61098c }, { 0x0800, 0x6109f8 }, { 0x0808, 0x610a08 }, { 0x080c, 0x610a10 }, { 0x0810, 0x610a00 }, {} } }; static const struct nvkm_disp_chan_mthd nv50_disp_ovly_mthd = { .name = "Overlay", .addr = 0x000540, .prev = 0x000004, .data = { { "Global", 1, &nv50_disp_ovly_mthd_base }, {} } }; static const struct nvkm_disp_chan_user nv50_disp_ovly = { .func = &nv50_disp_dmac_func, .ctrl = 3, .user = 3, .mthd = &nv50_disp_ovly_mthd, }; static const struct nvkm_disp_mthd_list nv50_disp_base_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0080, 0x000000 }, { 0x0084, 0x0008c4 }, { 0x0088, 0x0008d0 }, { 0x008c, 0x0008dc }, { 0x0090, 0x0008e4 }, { 0x0094, 0x610884 }, { 0x00a0, 0x6108a0 }, { 0x00a4, 0x610878 }, { 0x00c0, 0x61086c }, { 0x00e0, 0x610858 }, { 0x00e4, 0x610860 }, { 0x00e8, 0x6108ac }, { 0x00ec, 0x6108b4 }, { 0x0100, 0x610894 }, { 0x0110, 0x6108bc }, { 0x0114, 0x61088c }, {} } }; const struct nvkm_disp_mthd_list nv50_disp_base_mthd_image = { .mthd = 0x0400, .addr = 0x000000, .data = { { 0x0800, 0x6108f0 }, { 0x0804, 0x6108fc }, { 0x0808, 0x61090c }, { 0x080c, 0x610914 }, { 0x0810, 0x610904 }, {} } }; static const struct nvkm_disp_chan_mthd nv50_disp_base_mthd = { .name = "Base", .addr = 0x000540, .prev = 0x000004, .data = { { "Global", 1, &nv50_disp_base_mthd_base }, { "Image", 2, &nv50_disp_base_mthd_image }, {} } }; static const struct nvkm_disp_chan_user nv50_disp_base = { .func = &nv50_disp_dmac_func, .ctrl = 1, .user = 1, .mthd = &nv50_disp_base_mthd, }; const struct nvkm_disp_mthd_list nv50_disp_core_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0080, 0x000000 }, { 0x0084, 0x610bb8 }, { 0x0088, 0x610b9c }, { 0x008c, 0x000000 }, {} } }; static const struct nvkm_disp_mthd_list nv50_disp_core_mthd_dac = { .mthd = 0x0080, .addr = 0x000008, .data = { { 0x0400, 0x610b58 }, { 0x0404, 0x610bdc }, { 0x0420, 0x610828 }, {} } }; const struct nvkm_disp_mthd_list nv50_disp_core_mthd_sor = { .mthd = 0x0040, .addr = 0x000008, .data = { { 0x0600, 0x610b70 }, {} } }; const struct nvkm_disp_mthd_list nv50_disp_core_mthd_pior = { .mthd = 0x0040, .addr = 0x000008, .data = { { 0x0700, 0x610b80 }, {} } }; static const struct nvkm_disp_mthd_list nv50_disp_core_mthd_head = { .mthd = 0x0400, .addr = 0x000540, .data = { { 0x0800, 0x610ad8 }, { 0x0804, 0x610ad0 }, { 0x0808, 0x610a48 }, { 0x080c, 0x610a78 }, { 0x0810, 0x610ac0 }, { 0x0814, 0x610af8 }, { 0x0818, 0x610b00 }, { 0x081c, 0x610ae8 }, { 0x0820, 0x610af0 }, { 0x0824, 0x610b08 }, { 0x0828, 0x610b10 }, { 0x082c, 0x610a68 }, { 0x0830, 0x610a60 }, { 0x0834, 0x000000 }, { 0x0838, 0x610a40 }, { 0x0840, 0x610a24 }, { 0x0844, 0x610a2c }, { 0x0848, 0x610aa8 }, { 0x084c, 0x610ab0 }, { 0x0860, 0x610a84 }, { 0x0864, 0x610a90 }, { 0x0868, 0x610b18 }, { 0x086c, 0x610b20 }, { 0x0870, 0x610ac8 }, { 0x0874, 0x610a38 }, { 0x0880, 0x610a58 }, { 0x0884, 0x610a9c }, { 0x08a0, 0x610a70 }, { 0x08a4, 0x610a50 }, { 0x08a8, 0x610ae0 }, { 0x08c0, 0x610b28 }, { 0x08c4, 0x610b30 }, { 0x08c8, 0x610b40 }, { 0x08d4, 0x610b38 }, { 0x08d8, 0x610b48 }, { 0x08dc, 0x610b50 }, { 0x0900, 0x610a18 }, { 0x0904, 0x610ab8 }, {} } }; static const struct nvkm_disp_chan_mthd nv50_disp_core_mthd = { .name = "Core", .addr = 0x000000, .prev = 0x000004, .data = { { "Global", 1, &nv50_disp_core_mthd_base }, { "DAC", 3, &nv50_disp_core_mthd_dac }, { "SOR", 2, &nv50_disp_core_mthd_sor }, { "PIOR", 3, &nv50_disp_core_mthd_pior }, { "HEAD", 2, &nv50_disp_core_mthd_head }, {} } }; static void nv50_disp_core_fini(struct nvkm_disp_chan *chan) { struct nvkm_subdev *subdev = &chan->disp->engine.subdev; struct nvkm_device *device = subdev->device; /* deactivate channel */ nvkm_mask(device, 0x610200, 0x00000010, 0x00000000); nvkm_mask(device, 0x610200, 0x00000003, 0x00000000); if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x610200) & 0x001e0000)) break; ) < 0) { nvkm_error(subdev, "core fini: %08x\n", nvkm_rd32(device, 0x610200)); } chan->suspend_put = nvkm_rd32(device, 0x640000); } static int nv50_disp_core_init(struct nvkm_disp_chan *chan) { struct nvkm_subdev *subdev = &chan->disp->engine.subdev; struct nvkm_device *device = subdev->device; /* attempt to unstick channel from some unknown state */ if ((nvkm_rd32(device, 0x610200) & 0x009f0000) == 0x00020000) nvkm_mask(device, 0x610200, 0x00800000, 0x00800000); if ((nvkm_rd32(device, 0x610200) & 0x003f0000) == 0x00030000) nvkm_mask(device, 0x610200, 0x00600000, 0x00600000); /* initialise channel for dma command submission */ nvkm_wr32(device, 0x610204, chan->push); nvkm_wr32(device, 0x610208, 0x00010000); nvkm_wr32(device, 0x61020c, 0x00000000); nvkm_mask(device, 0x610200, 0x00000010, 0x00000010); nvkm_wr32(device, 0x640000, chan->suspend_put); nvkm_wr32(device, 0x610200, 0x01000013); /* wait for it to go inactive */ if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x610200) & 0x80000000)) break; ) < 0) { nvkm_error(subdev, "core init: %08x\n", nvkm_rd32(device, 0x610200)); return -EBUSY; } return 0; } const struct nvkm_disp_chan_func nv50_disp_core_func = { .push = nv50_disp_dmac_push, .init = nv50_disp_core_init, .fini = nv50_disp_core_fini, .intr = nv50_disp_chan_intr, .user = nv50_disp_chan_user, .bind = nv50_disp_dmac_bind, }; static const struct nvkm_disp_chan_user nv50_disp_core = { .func = &nv50_disp_core_func, .ctrl = 0, .user = 0, .mthd = &nv50_disp_core_mthd, }; static u32 nv50_disp_super_iedt(struct nvkm_head *head, struct nvkm_outp *outp, u8 *ver, u8 *hdr, u8 *cnt, u8 *len, struct nvbios_outp *iedt) { struct nvkm_bios *bios = head->disp->engine.subdev.device->bios; const u8 l = ffs(outp->info.link); const u16 t = outp->info.hasht; const u16 m = (0x0100 << head->id) | (l << 6) | outp->info.or; u32 data = nvbios_outp_match(bios, t, m, ver, hdr, cnt, len, iedt); if (!data) OUTP_DBG(outp, "missing IEDT for %04x:%04x", t, m); return data; } static void nv50_disp_super_ied_on(struct nvkm_head *head, struct nvkm_ior *ior, int id, u32 khz) { struct nvkm_subdev *subdev = &head->disp->engine.subdev; struct nvkm_bios *bios = subdev->device->bios; struct nvkm_outp *outp = ior->asy.outp; struct nvbios_ocfg iedtrs; struct nvbios_outp iedt; u8 ver, hdr, cnt, len, flags = 0x00; u32 data; if (!outp) { IOR_DBG(ior, "nothing to attach"); return; } /* Lookup IED table for the device. */ data = nv50_disp_super_iedt(head, outp, &ver, &hdr, &cnt, &len, &iedt); if (!data) return; /* Lookup IEDT runtime settings for the current configuration. */ if (ior->type == SOR) { if (ior->asy.proto == LVDS) { if (head->asy.or.depth == 24) flags |= 0x02; } if (ior->asy.link == 3) flags |= 0x01; } data = nvbios_ocfg_match(bios, data, ior->asy.proto_evo, flags, &ver, &hdr, &cnt, &len, &iedtrs); if (!data) { OUTP_DBG(outp, "missing IEDT RS for %02x:%02x", ior->asy.proto_evo, flags); return; } /* Execute the OnInt[23] script for the current frequency. */ data = nvbios_oclk_match(bios, iedtrs.clkcmp[id], khz); if (!data) { OUTP_DBG(outp, "missing IEDT RSS %d for %02x:%02x %d khz", id, ior->asy.proto_evo, flags, khz); return; } nvbios_init(subdev, data, init.outp = &outp->info; init.or = ior->id; init.link = ior->asy.link; init.head = head->id; ); } static void nv50_disp_super_ied_off(struct nvkm_head *head, struct nvkm_ior *ior, int id) { struct nvkm_outp *outp = ior->arm.outp; struct nvbios_outp iedt; u8 ver, hdr, cnt, len; u32 data; if (!outp) { IOR_DBG(ior, "nothing attached"); return; } data = nv50_disp_super_iedt(head, outp, &ver, &hdr, &cnt, &len, &iedt); if (!data) return; nvbios_init(&head->disp->engine.subdev, iedt.script[id], init.outp = &outp->info; init.or = ior->id; init.link = ior->arm.link; init.head = head->id; ); } static struct nvkm_ior * nv50_disp_super_ior_asy(struct nvkm_head *head) { struct nvkm_ior *ior; list_for_each_entry(ior, &head->disp->iors, head) { if (ior->asy.head & (1 << head->id)) { HEAD_DBG(head, "to %s", ior->name); return ior; } } HEAD_DBG(head, "nothing to attach"); return NULL; } static struct nvkm_ior * nv50_disp_super_ior_arm(struct nvkm_head *head) { struct nvkm_ior *ior; list_for_each_entry(ior, &head->disp->iors, head) { if (ior->arm.head & (1 << head->id)) { HEAD_DBG(head, "on %s", ior->name); return ior; } } HEAD_DBG(head, "nothing attached"); return NULL; } void nv50_disp_super_3_0(struct nvkm_disp *disp, struct nvkm_head *head) { struct nvkm_ior *ior; /* Determine which OR, if any, we're attaching to the head. */ HEAD_DBG(head, "supervisor 3.0"); ior = nv50_disp_super_ior_asy(head); if (!ior) return; /* Execute OnInt3 IED script. */ nv50_disp_super_ied_on(head, ior, 1, head->asy.hz / 1000); /* OR-specific handling. */ if (ior->func->war_3) ior->func->war_3(ior); } static void nv50_disp_super_2_2_dp(struct nvkm_head *head, struct nvkm_ior *ior) { struct nvkm_subdev *subdev = &head->disp->engine.subdev; const u32 khz = head->asy.hz / 1000; const u32 linkKBps = ior->dp.bw * 27000; const u32 symbol = 100000; int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0; int TU, VTUi, VTUf, VTUa; u64 link_data_rate, link_ratio, unk; u32 best_diff = 64 * symbol; u64 h, v; /* symbols/hblank - algorithm taken from comments in tegra driver */ h = head->asy.hblanke + head->asy.htotal - head->asy.hblanks - 7; h = h * linkKBps; do_div(h, khz); h = h - (3 * ior->dp.ef) - (12 / ior->dp.nr); /* symbols/vblank - algorithm taken from comments in tegra driver */ v = head->asy.vblanks - head->asy.vblanke - 25; v = v * linkKBps; do_div(v, khz); v = v - ((36 / ior->dp.nr) + 3) - 1; ior->func->dp->audio_sym(ior, head->id, h, v); /* watermark / activesym */ link_data_rate = (khz * head->asy.or.depth / 8) / ior->dp.nr; /* calculate ratio of packed data rate to link symbol rate */ link_ratio = link_data_rate * symbol; do_div(link_ratio, linkKBps); for (TU = 64; ior->func->dp->activesym && TU >= 32; TU--) { /* calculate average number of valid symbols in each TU */ u32 tu_valid = link_ratio * TU; u32 calc, diff; /* find a hw representation for the fraction.. */ VTUi = tu_valid / symbol; calc = VTUi * symbol; diff = tu_valid - calc; if (diff) { if (diff >= (symbol / 2)) { VTUf = symbol / (symbol - diff); if (symbol - (VTUf * diff)) VTUf++; if (VTUf <= 15) { VTUa = 1; calc += symbol - (symbol / VTUf); } else { VTUa = 0; VTUf = 1; calc += symbol; } } else { VTUa = 0; VTUf = min((int)(symbol / diff), 15); calc += symbol / VTUf; } diff = calc - tu_valid; } else { /* no remainder, but the hw doesn't like the fractional * part to be zero. decrement the integer part and * have the fraction add a whole symbol back */ VTUa = 0; VTUf = 1; VTUi--; } if (diff < best_diff) { best_diff = diff; bestTU = TU; bestVTUa = VTUa; bestVTUf = VTUf; bestVTUi = VTUi; if (diff == 0) break; } } if (ior->func->dp->activesym) { if (!bestTU) { nvkm_error(subdev, "unable to determine dp config\n"); return; } ior->func->dp->activesym(ior, head->id, bestTU, bestVTUa, bestVTUf, bestVTUi); } else { bestTU = 64; } /* XXX close to vbios numbers, but not right */ unk = (symbol - link_ratio) * bestTU; unk *= link_ratio; do_div(unk, symbol); do_div(unk, symbol); unk += 6; ior->func->dp->watermark(ior, head->id, unk); } void nv50_disp_super_2_2(struct nvkm_disp *disp, struct nvkm_head *head) { const u32 khz = head->asy.hz / 1000; struct nvkm_outp *outp; struct nvkm_ior *ior; /* Determine which OR, if any, we're attaching from the head. */ HEAD_DBG(head, "supervisor 2.2"); ior = nv50_disp_super_ior_asy(head); if (!ior) return; /* For some reason, NVIDIA decided not to: * * A) Give dual-link LVDS a separate EVO protocol, like for TMDS. * and * B) Use SetControlOutputResource.PixelDepth on LVDS. * * Override the values we usually read from HW with the same * data we pass though an ioctl instead. */ if (ior->type == SOR && ior->asy.proto == LVDS) { head->asy.or.depth = (disp->sor.lvdsconf & 0x0200) ? 24 : 18; ior->asy.link = (disp->sor.lvdsconf & 0x0100) ? 3 : 1; } /* Handle any link training, etc. */ if ((outp = ior->asy.outp) && outp->func->acquire) outp->func->acquire(outp); /* Execute OnInt2 IED script. */ nv50_disp_super_ied_on(head, ior, 0, khz); /* Program RG clock divider. */ head->func->rgclk(head, ior->asy.rgdiv); /* Mode-specific internal DP configuration. */ if (ior->type == SOR && ior->asy.proto == DP) nv50_disp_super_2_2_dp(head, ior); /* OR-specific handling. */ ior->func->clock(ior); if (ior->func->war_2) ior->func->war_2(ior); } void nv50_disp_super_2_1(struct nvkm_disp *disp, struct nvkm_head *head) { struct nvkm_devinit *devinit = disp->engine.subdev.device->devinit; const u32 khz = head->asy.hz / 1000; HEAD_DBG(head, "supervisor 2.1 - %d khz", khz); if (khz) nvkm_devinit_pll_set(devinit, PLL_VPLL0 + head->id, khz); } void nv50_disp_super_2_0(struct nvkm_disp *disp, struct nvkm_head *head) { struct nvkm_outp *outp; struct nvkm_ior *ior; /* Determine which OR, if any, we're detaching from the head. */ HEAD_DBG(head, "supervisor 2.0"); ior = nv50_disp_super_ior_arm(head); if (!ior) return; /* Execute OffInt2 IED script. */ nv50_disp_super_ied_off(head, ior, 2); /* If we're shutting down the OR's only active head, execute * the output path's disable function. */ if (ior->arm.head == (1 << head->id)) { if ((outp = ior->arm.outp) && outp->func->disable) outp->func->disable(outp, ior); } } void nv50_disp_super_1_0(struct nvkm_disp *disp, struct nvkm_head *head) { struct nvkm_ior *ior; /* Determine which OR, if any, we're detaching from the head. */ HEAD_DBG(head, "supervisor 1.0"); ior = nv50_disp_super_ior_arm(head); if (!ior) return; /* Execute OffInt1 IED script. */ nv50_disp_super_ied_off(head, ior, 1); } void nv50_disp_super_1(struct nvkm_disp *disp) { struct nvkm_head *head; struct nvkm_ior *ior; list_for_each_entry(head, &disp->heads, head) { head->func->state(head, &head->arm); head->func->state(head, &head->asy); } list_for_each_entry(ior, &disp->iors, head) { ior->func->state(ior, &ior->arm); ior->func->state(ior, &ior->asy); } } void nv50_disp_super(struct work_struct *work) { struct nvkm_disp *disp = container_of(work, struct nvkm_disp, super.work); struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_head *head; u32 super; mutex_lock(&disp->super.mutex); super = nvkm_rd32(device, 0x610030); nvkm_debug(subdev, "supervisor %08x %08x\n", disp->super.pending, super); if (disp->super.pending & 0x00000010) { nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG); nv50_disp_super_1(disp); list_for_each_entry(head, &disp->heads, head) { if (!(super & (0x00000020 << head->id))) continue; if (!(super & (0x00000080 << head->id))) continue; nv50_disp_super_1_0(disp, head); } } else if (disp->super.pending & 0x00000020) { list_for_each_entry(head, &disp->heads, head) { if (!(super & (0x00000080 << head->id))) continue; nv50_disp_super_2_0(disp, head); } nvkm_outp_route(disp); list_for_each_entry(head, &disp->heads, head) { if (!(super & (0x00000200 << head->id))) continue; nv50_disp_super_2_1(disp, head); } list_for_each_entry(head, &disp->heads, head) { if (!(super & (0x00000080 << head->id))) continue; nv50_disp_super_2_2(disp, head); } } else if (disp->super.pending & 0x00000040) { list_for_each_entry(head, &disp->heads, head) { if (!(super & (0x00000080 << head->id))) continue; nv50_disp_super_3_0(disp, head); } } nvkm_wr32(device, 0x610030, 0x80000000); mutex_unlock(&disp->super.mutex); } const struct nvkm_enum nv50_disp_intr_error_type[] = { { 0, "NONE" }, { 1, "PUSHBUFFER_ERR" }, { 2, "TRAP" }, { 3, "RESERVED_METHOD" }, { 4, "INVALID_ARG" }, { 5, "INVALID_STATE" }, { 7, "UNRESOLVABLE_HANDLE" }, {} }; static const struct nvkm_enum nv50_disp_intr_error_code[] = { { 0x00, "" }, {} }; static void nv50_disp_intr_error(struct nvkm_disp *disp, int chid) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; u32 data = nvkm_rd32(device, 0x610084 + (chid * 0x08)); u32 addr = nvkm_rd32(device, 0x610080 + (chid * 0x08)); u32 code = (addr & 0x00ff0000) >> 16; u32 type = (addr & 0x00007000) >> 12; u32 mthd = (addr & 0x00000ffc); const struct nvkm_enum *ec, *et; et = nvkm_enum_find(nv50_disp_intr_error_type, type); ec = nvkm_enum_find(nv50_disp_intr_error_code, code); nvkm_error(subdev, "ERROR %d [%s] %02x [%s] chid %d mthd %04x data %08x\n", type, et ? et->name : "", code, ec ? ec->name : "", chid, mthd, data); if (chid < ARRAY_SIZE(disp->chan)) { switch (mthd) { case 0x0080: nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR); break; default: break; } } nvkm_wr32(device, 0x610020, 0x00010000 << chid); nvkm_wr32(device, 0x610080 + (chid * 0x08), 0x90000000); } void nv50_disp_intr(struct nvkm_disp *disp) { struct nvkm_device *device = disp->engine.subdev.device; u32 intr0 = nvkm_rd32(device, 0x610020); u32 intr1 = nvkm_rd32(device, 0x610024); while (intr0 & 0x001f0000) { u32 chid = __ffs(intr0 & 0x001f0000) - 16; nv50_disp_intr_error(disp, chid); intr0 &= ~(0x00010000 << chid); } while (intr0 & 0x0000001f) { u32 chid = __ffs(intr0 & 0x0000001f); nv50_disp_chan_uevent_send(disp, chid); intr0 &= ~(0x00000001 << chid); } if (intr1 & 0x00000004) { nvkm_disp_vblank(disp, 0); nvkm_wr32(device, 0x610024, 0x00000004); } if (intr1 & 0x00000008) { nvkm_disp_vblank(disp, 1); nvkm_wr32(device, 0x610024, 0x00000008); } if (intr1 & 0x00000070) { disp->super.pending = (intr1 & 0x00000070); queue_work(disp->super.wq, &disp->super.work); nvkm_wr32(device, 0x610024, disp->super.pending); } } void nv50_disp_fini(struct nvkm_disp *disp) { struct nvkm_device *device = disp->engine.subdev.device; /* disable all interrupts */ nvkm_wr32(device, 0x610024, 0x00000000); nvkm_wr32(device, 0x610020, 0x00000000); } int nv50_disp_init(struct nvkm_disp *disp) { struct nvkm_device *device = disp->engine.subdev.device; struct nvkm_head *head; u32 tmp; int i; /* The below segments of code copying values from one register to * another appear to inform EVO of the display capabilities or * something similar. NFI what the 0x614004 caps are for.. */ tmp = nvkm_rd32(device, 0x614004); nvkm_wr32(device, 0x610184, tmp); /* ... CRTC caps */ list_for_each_entry(head, &disp->heads, head) { tmp = nvkm_rd32(device, 0x616100 + (head->id * 0x800)); nvkm_wr32(device, 0x610190 + (head->id * 0x10), tmp); tmp = nvkm_rd32(device, 0x616104 + (head->id * 0x800)); nvkm_wr32(device, 0x610194 + (head->id * 0x10), tmp); tmp = nvkm_rd32(device, 0x616108 + (head->id * 0x800)); nvkm_wr32(device, 0x610198 + (head->id * 0x10), tmp); tmp = nvkm_rd32(device, 0x61610c + (head->id * 0x800)); nvkm_wr32(device, 0x61019c + (head->id * 0x10), tmp); } /* ... DAC caps */ for (i = 0; i < disp->dac.nr; i++) { tmp = nvkm_rd32(device, 0x61a000 + (i * 0x800)); nvkm_wr32(device, 0x6101d0 + (i * 0x04), tmp); } /* ... SOR caps */ for (i = 0; i < disp->sor.nr; i++) { tmp = nvkm_rd32(device, 0x61c000 + (i * 0x800)); nvkm_wr32(device, 0x6101e0 + (i * 0x04), tmp); } /* ... PIOR caps */ for (i = 0; i < disp->pior.nr; i++) { tmp = nvkm_rd32(device, 0x61e000 + (i * 0x800)); nvkm_wr32(device, 0x6101f0 + (i * 0x04), tmp); } /* steal display away from vbios, or something like that */ if (nvkm_rd32(device, 0x610024) & 0x00000100) { nvkm_wr32(device, 0x610024, 0x00000100); nvkm_mask(device, 0x6194e8, 0x00000001, 0x00000000); if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x6194e8) & 0x00000002)) break; ) < 0) return -EBUSY; } /* point at display engine memory area (hash table, objects) */ nvkm_wr32(device, 0x610010, (disp->inst->addr >> 8) | 9); /* enable supervisor interrupts, disable everything else */ nvkm_wr32(device, 0x61002c, 0x00000370); nvkm_wr32(device, 0x610028, 0x00000000); return 0; } int nv50_disp_oneinit(struct nvkm_disp *disp) { const struct nvkm_disp_func *func = disp->func; struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; int ret, i; if (func->wndw.cnt) { disp->wndw.nr = func->wndw.cnt(disp, &disp->wndw.mask); nvkm_debug(subdev, "Window(s): %d (%08lx)\n", disp->wndw.nr, disp->wndw.mask); } disp->head.nr = func->head.cnt(disp, &disp->head.mask); nvkm_debug(subdev, " Head(s): %d (%02lx)\n", disp->head.nr, disp->head.mask); for_each_set_bit(i, &disp->head.mask, disp->head.nr) { ret = func->head.new(disp, i); if (ret) return ret; } if (func->dac.cnt) { disp->dac.nr = func->dac.cnt(disp, &disp->dac.mask); nvkm_debug(subdev, " DAC(s): %d (%02lx)\n", disp->dac.nr, disp->dac.mask); for_each_set_bit(i, &disp->dac.mask, disp->dac.nr) { ret = func->dac.new(disp, i); if (ret) return ret; } } if (func->pior.cnt) { disp->pior.nr = func->pior.cnt(disp, &disp->pior.mask); nvkm_debug(subdev, " PIOR(s): %d (%02lx)\n", disp->pior.nr, disp->pior.mask); for_each_set_bit(i, &disp->pior.mask, disp->pior.nr) { ret = func->pior.new(disp, i); if (ret) return ret; } } disp->sor.nr = func->sor.cnt(disp, &disp->sor.mask); nvkm_debug(subdev, " SOR(s): %d (%02lx)\n", disp->sor.nr, disp->sor.mask); for_each_set_bit(i, &disp->sor.mask, disp->sor.nr) { ret = func->sor.new(disp, i); if (ret) return ret; } ret = nvkm_gpuobj_new(device, 0x10000, 0x10000, false, NULL, &disp->inst); if (ret) return ret; return nvkm_ramht_new(device, func->ramht_size ? func->ramht_size : 0x1000, 0, disp->inst, &disp->ramht); } static const struct nvkm_disp_func nv50_disp = { .oneinit = nv50_disp_oneinit, .init = nv50_disp_init, .fini = nv50_disp_fini, .intr = nv50_disp_intr, .super = nv50_disp_super, .uevent = &nv50_disp_chan_uevent, .head = { .cnt = nv50_head_cnt, .new = nv50_head_new }, .dac = { .cnt = nv50_dac_cnt, .new = nv50_dac_new }, .sor = { .cnt = nv50_sor_cnt, .new = nv50_sor_new }, .pior = { .cnt = nv50_pior_cnt, .new = nv50_pior_new }, .root = { 0, 0, NV50_DISP }, .user = { {{0,0,NV50_DISP_CURSOR }, nvkm_disp_chan_new, &nv50_disp_curs }, {{0,0,NV50_DISP_OVERLAY }, nvkm_disp_chan_new, &nv50_disp_oimm }, {{0,0,NV50_DISP_BASE_CHANNEL_DMA }, nvkm_disp_chan_new, &nv50_disp_base }, {{0,0,NV50_DISP_CORE_CHANNEL_DMA }, nvkm_disp_core_new, &nv50_disp_core }, {{0,0,NV50_DISP_OVERLAY_CHANNEL_DMA}, nvkm_disp_chan_new, &nv50_disp_ovly }, {} } }; int nv50_disp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_disp **pdisp) { return nvkm_disp_new_(&nv50_disp, device, type, inst, pdisp); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1