Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Skeggs | 3904 | 99.26% | 10 | 90.91% |
Marcin Ślusarz | 29 | 0.74% | 1 | 9.09% |
Total | 3933 | 11 |
/* * Copyright 2009 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ /* NVIDIA context programs handle a number of other conditions which are * not implemented in our versions. It's not clear why NVIDIA context * programs have this code, nor whether it's strictly necessary for * correct operation. We'll implement additional handling if/when we * discover it's necessary. * * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state" * flag is set, this gets saved into the context. * - On context save, the context program for all cards load nsource * into a flag register and check for ILLEGAL_MTHD. If it's set, * opcode 0x60000d is called before resuming normal operation. * - Some context programs check more conditions than the above. NV44 * checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001)) * and calls 0x60000d before resuming normal operation. * - At the very beginning of NVIDIA's context programs, flag 9 is checked * and if true 0x800001 is called with count=0, pos=0, the flag is cleared * and then the ctxprog is aborted. It looks like a complicated NOP, * its purpose is unknown. * - In the section of code that loads the per-vs state, NVIDIA check * flag 10. If it's set, they only transfer the small 0x300 byte block * of state + the state for a single vs as opposed to the state for * all vs units. It doesn't seem likely that it'll occur in normal * operation, especially seeing as it appears NVIDIA may have screwed * up the ctxprogs for some cards and have an invalid instruction * rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction. * - There's a number of places where context offset 0 (where we place * the PRAMIN offset of the context) is loaded into either 0x408000, * 0x408004 or 0x408008. Not sure what's up there either. * - The ctxprogs for some cards save 0x400a00 again during the cleanup * path for auto-loadctx. */ #define CP_FLAG_CLEAR 0 #define CP_FLAG_SET 1 #define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0) #define CP_FLAG_SWAP_DIRECTION_LOAD 0 #define CP_FLAG_SWAP_DIRECTION_SAVE 1 #define CP_FLAG_USER_SAVE ((0 * 32) + 5) #define CP_FLAG_USER_SAVE_NOT_PENDING 0 #define CP_FLAG_USER_SAVE_PENDING 1 #define CP_FLAG_USER_LOAD ((0 * 32) + 6) #define CP_FLAG_USER_LOAD_NOT_PENDING 0 #define CP_FLAG_USER_LOAD_PENDING 1 #define CP_FLAG_STATUS ((3 * 32) + 0) #define CP_FLAG_STATUS_IDLE 0 #define CP_FLAG_STATUS_BUSY 1 #define CP_FLAG_AUTO_SAVE ((3 * 32) + 4) #define CP_FLAG_AUTO_SAVE_NOT_PENDING 0 #define CP_FLAG_AUTO_SAVE_PENDING 1 #define CP_FLAG_AUTO_LOAD ((3 * 32) + 5) #define CP_FLAG_AUTO_LOAD_NOT_PENDING 0 #define CP_FLAG_AUTO_LOAD_PENDING 1 #define CP_FLAG_UNK54 ((3 * 32) + 6) #define CP_FLAG_UNK54_CLEAR 0 #define CP_FLAG_UNK54_SET 1 #define CP_FLAG_ALWAYS ((3 * 32) + 8) #define CP_FLAG_ALWAYS_FALSE 0 #define CP_FLAG_ALWAYS_TRUE 1 #define CP_FLAG_UNK57 ((3 * 32) + 9) #define CP_FLAG_UNK57_CLEAR 0 #define CP_FLAG_UNK57_SET 1 #define CP_CTX 0x00100000 #define CP_CTX_COUNT 0x000fc000 #define CP_CTX_COUNT_SHIFT 14 #define CP_CTX_REG 0x00003fff #define CP_LOAD_SR 0x00200000 #define CP_LOAD_SR_VALUE 0x000fffff #define CP_BRA 0x00400000 #define CP_BRA_IP 0x0000ff00 #define CP_BRA_IP_SHIFT 8 #define CP_BRA_IF_CLEAR 0x00000080 #define CP_BRA_FLAG 0x0000007f #define CP_WAIT 0x00500000 #define CP_WAIT_SET 0x00000080 #define CP_WAIT_FLAG 0x0000007f #define CP_SET 0x00700000 #define CP_SET_1 0x00000080 #define CP_SET_FLAG 0x0000007f #define CP_NEXT_TO_SWAP 0x00600007 #define CP_NEXT_TO_CURRENT 0x00600009 #define CP_SET_CONTEXT_POINTER 0x0060000a #define CP_END 0x0060000e #define CP_LOAD_MAGIC_UNK01 0x00800001 /* unknown */ #define CP_LOAD_MAGIC_NV44TCL 0x00800029 /* per-vs state (0x4497) */ #define CP_LOAD_MAGIC_NV40TCL 0x00800041 /* per-vs state (0x4097) */ #include "ctxnv40.h" #include "nv40.h" /* TODO: * - get vs count from 0x1540 */ static int nv40_gr_vs_count(struct nvkm_device *device) { switch (device->chipset) { case 0x47: case 0x49: case 0x4b: return 8; case 0x40: return 6; case 0x41: case 0x42: return 5; case 0x43: case 0x44: case 0x46: case 0x4a: return 3; case 0x4c: case 0x4e: case 0x67: default: return 1; } } enum cp_label { cp_check_load = 1, cp_setup_auto_load, cp_setup_load, cp_setup_save, cp_swap_state, cp_swap_state3d_3_is_save, cp_prepare_exit, cp_exit, }; static void nv40_gr_construct_general(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; int i; cp_ctx(ctx, 0x4000a4, 1); gr_def(ctx, 0x4000a4, 0x00000008); cp_ctx(ctx, 0x400144, 58); gr_def(ctx, 0x400144, 0x00000001); cp_ctx(ctx, 0x400314, 1); gr_def(ctx, 0x400314, 0x00000000); cp_ctx(ctx, 0x400400, 10); cp_ctx(ctx, 0x400480, 10); cp_ctx(ctx, 0x400500, 19); gr_def(ctx, 0x400514, 0x00040000); gr_def(ctx, 0x400524, 0x55555555); gr_def(ctx, 0x400528, 0x55555555); gr_def(ctx, 0x40052c, 0x55555555); gr_def(ctx, 0x400530, 0x55555555); cp_ctx(ctx, 0x400560, 6); gr_def(ctx, 0x400568, 0x0000ffff); gr_def(ctx, 0x40056c, 0x0000ffff); cp_ctx(ctx, 0x40057c, 5); cp_ctx(ctx, 0x400710, 3); gr_def(ctx, 0x400710, 0x20010001); gr_def(ctx, 0x400714, 0x0f73ef00); cp_ctx(ctx, 0x400724, 1); gr_def(ctx, 0x400724, 0x02008821); cp_ctx(ctx, 0x400770, 3); if (device->chipset == 0x40) { cp_ctx(ctx, 0x400814, 4); cp_ctx(ctx, 0x400828, 5); cp_ctx(ctx, 0x400840, 5); gr_def(ctx, 0x400850, 0x00000040); cp_ctx(ctx, 0x400858, 4); gr_def(ctx, 0x400858, 0x00000040); gr_def(ctx, 0x40085c, 0x00000040); gr_def(ctx, 0x400864, 0x80000000); cp_ctx(ctx, 0x40086c, 9); gr_def(ctx, 0x40086c, 0x80000000); gr_def(ctx, 0x400870, 0x80000000); gr_def(ctx, 0x400874, 0x80000000); gr_def(ctx, 0x400878, 0x80000000); gr_def(ctx, 0x400888, 0x00000040); gr_def(ctx, 0x40088c, 0x80000000); cp_ctx(ctx, 0x4009c0, 8); gr_def(ctx, 0x4009cc, 0x80000000); gr_def(ctx, 0x4009dc, 0x80000000); } else { cp_ctx(ctx, 0x400840, 20); if (nv44_gr_class(ctx->device)) { for (i = 0; i < 8; i++) gr_def(ctx, 0x400860 + (i * 4), 0x00000001); } gr_def(ctx, 0x400880, 0x00000040); gr_def(ctx, 0x400884, 0x00000040); gr_def(ctx, 0x400888, 0x00000040); cp_ctx(ctx, 0x400894, 11); gr_def(ctx, 0x400894, 0x00000040); if (!nv44_gr_class(ctx->device)) { for (i = 0; i < 8; i++) gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000); } cp_ctx(ctx, 0x4008e0, 2); cp_ctx(ctx, 0x4008f8, 2); if (device->chipset == 0x4c || (device->chipset & 0xf0) == 0x60) cp_ctx(ctx, 0x4009f8, 1); } cp_ctx(ctx, 0x400a00, 73); gr_def(ctx, 0x400b0c, 0x0b0b0b0c); cp_ctx(ctx, 0x401000, 4); cp_ctx(ctx, 0x405004, 1); switch (device->chipset) { case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x403448, 1); gr_def(ctx, 0x403448, 0x00001010); break; default: cp_ctx(ctx, 0x403440, 1); switch (device->chipset) { case 0x40: gr_def(ctx, 0x403440, 0x00000010); break; case 0x44: case 0x46: case 0x4a: gr_def(ctx, 0x403440, 0x00003010); break; case 0x41: case 0x42: case 0x43: case 0x4c: case 0x4e: case 0x67: default: gr_def(ctx, 0x403440, 0x00001010); break; } break; } } static void nv40_gr_construct_state3d(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; int i; if (device->chipset == 0x40) { cp_ctx(ctx, 0x401880, 51); gr_def(ctx, 0x401940, 0x00000100); } else if (device->chipset == 0x46 || device->chipset == 0x47 || device->chipset == 0x49 || device->chipset == 0x4b) { cp_ctx(ctx, 0x401880, 32); for (i = 0; i < 16; i++) gr_def(ctx, 0x401880 + (i * 4), 0x00000111); if (device->chipset == 0x46) cp_ctx(ctx, 0x401900, 16); cp_ctx(ctx, 0x401940, 3); } cp_ctx(ctx, 0x40194c, 18); gr_def(ctx, 0x401954, 0x00000111); gr_def(ctx, 0x401958, 0x00080060); gr_def(ctx, 0x401974, 0x00000080); gr_def(ctx, 0x401978, 0xffff0000); gr_def(ctx, 0x40197c, 0x00000001); gr_def(ctx, 0x401990, 0x46400000); if (device->chipset == 0x40) { cp_ctx(ctx, 0x4019a0, 2); cp_ctx(ctx, 0x4019ac, 5); } else { cp_ctx(ctx, 0x4019a0, 1); cp_ctx(ctx, 0x4019b4, 3); } gr_def(ctx, 0x4019bc, 0xffff0000); switch (device->chipset) { case 0x46: case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x4019c0, 18); for (i = 0; i < 16; i++) gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888); break; } cp_ctx(ctx, 0x401a08, 8); gr_def(ctx, 0x401a10, 0x0fff0000); gr_def(ctx, 0x401a14, 0x0fff0000); gr_def(ctx, 0x401a1c, 0x00011100); cp_ctx(ctx, 0x401a2c, 4); cp_ctx(ctx, 0x401a44, 26); for (i = 0; i < 16; i++) gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000); gr_def(ctx, 0x401a8c, 0x4b7fffff); if (device->chipset == 0x40) { cp_ctx(ctx, 0x401ab8, 3); } else { cp_ctx(ctx, 0x401ab8, 1); cp_ctx(ctx, 0x401ac0, 1); } cp_ctx(ctx, 0x401ad0, 8); gr_def(ctx, 0x401ad0, 0x30201000); gr_def(ctx, 0x401ad4, 0x70605040); gr_def(ctx, 0x401ad8, 0xb8a89888); gr_def(ctx, 0x401adc, 0xf8e8d8c8); cp_ctx(ctx, 0x401b10, device->chipset == 0x40 ? 2 : 1); gr_def(ctx, 0x401b10, 0x40100000); cp_ctx(ctx, 0x401b18, device->chipset == 0x40 ? 6 : 5); gr_def(ctx, 0x401b28, device->chipset == 0x40 ? 0x00000004 : 0x00000000); cp_ctx(ctx, 0x401b30, 25); gr_def(ctx, 0x401b34, 0x0000ffff); gr_def(ctx, 0x401b68, 0x435185d6); gr_def(ctx, 0x401b6c, 0x2155b699); gr_def(ctx, 0x401b70, 0xfedcba98); gr_def(ctx, 0x401b74, 0x00000098); gr_def(ctx, 0x401b84, 0xffffffff); gr_def(ctx, 0x401b88, 0x00ff7000); gr_def(ctx, 0x401b8c, 0x0000ffff); if (device->chipset != 0x44 && device->chipset != 0x4a && device->chipset != 0x4e) cp_ctx(ctx, 0x401b94, 1); cp_ctx(ctx, 0x401b98, 8); gr_def(ctx, 0x401b9c, 0x00ff0000); cp_ctx(ctx, 0x401bc0, 9); gr_def(ctx, 0x401be0, 0x00ffff00); cp_ctx(ctx, 0x401c00, 192); for (i = 0; i < 16; i++) { /* fragment texture units */ gr_def(ctx, 0x401c40 + (i * 4), 0x00018488); gr_def(ctx, 0x401c80 + (i * 4), 0x00028202); gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4); gr_def(ctx, 0x401d40 + (i * 4), 0x01012000); gr_def(ctx, 0x401d80 + (i * 4), 0x00080008); gr_def(ctx, 0x401e00 + (i * 4), 0x00100008); } for (i = 0; i < 4; i++) { /* vertex texture units */ gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80); gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202); gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008); gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008); } cp_ctx(ctx, 0x400f5c, 3); gr_def(ctx, 0x400f5c, 0x00000002); cp_ctx(ctx, 0x400f84, 1); } static void nv40_gr_construct_state3d_2(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; int i; cp_ctx(ctx, 0x402000, 1); cp_ctx(ctx, 0x402404, device->chipset == 0x40 ? 1 : 2); switch (device->chipset) { case 0x40: gr_def(ctx, 0x402404, 0x00000001); break; case 0x4c: case 0x4e: case 0x67: gr_def(ctx, 0x402404, 0x00000020); break; case 0x46: case 0x49: case 0x4b: gr_def(ctx, 0x402404, 0x00000421); break; default: gr_def(ctx, 0x402404, 0x00000021); } if (device->chipset != 0x40) gr_def(ctx, 0x402408, 0x030c30c3); switch (device->chipset) { case 0x44: case 0x46: case 0x4a: case 0x4c: case 0x4e: case 0x67: cp_ctx(ctx, 0x402440, 1); gr_def(ctx, 0x402440, 0x00011001); break; default: break; } cp_ctx(ctx, 0x402480, device->chipset == 0x40 ? 8 : 9); gr_def(ctx, 0x402488, 0x3e020200); gr_def(ctx, 0x40248c, 0x00ffffff); switch (device->chipset) { case 0x40: gr_def(ctx, 0x402490, 0x60103f00); break; case 0x47: gr_def(ctx, 0x402490, 0x40103f00); break; case 0x41: case 0x42: case 0x49: case 0x4b: gr_def(ctx, 0x402490, 0x20103f00); break; default: gr_def(ctx, 0x402490, 0x0c103f00); break; } gr_def(ctx, 0x40249c, device->chipset <= 0x43 ? 0x00020000 : 0x00040000); cp_ctx(ctx, 0x402500, 31); gr_def(ctx, 0x402530, 0x00008100); if (device->chipset == 0x40) cp_ctx(ctx, 0x40257c, 6); cp_ctx(ctx, 0x402594, 16); cp_ctx(ctx, 0x402800, 17); gr_def(ctx, 0x402800, 0x00000001); switch (device->chipset) { case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x402864, 1); gr_def(ctx, 0x402864, 0x00001001); cp_ctx(ctx, 0x402870, 3); gr_def(ctx, 0x402878, 0x00000003); if (device->chipset != 0x47) { /* belong at end!! */ cp_ctx(ctx, 0x402900, 1); cp_ctx(ctx, 0x402940, 1); cp_ctx(ctx, 0x402980, 1); cp_ctx(ctx, 0x4029c0, 1); cp_ctx(ctx, 0x402a00, 1); cp_ctx(ctx, 0x402a40, 1); cp_ctx(ctx, 0x402a80, 1); cp_ctx(ctx, 0x402ac0, 1); } break; case 0x40: cp_ctx(ctx, 0x402844, 1); gr_def(ctx, 0x402844, 0x00000001); cp_ctx(ctx, 0x402850, 1); break; default: cp_ctx(ctx, 0x402844, 1); gr_def(ctx, 0x402844, 0x00001001); cp_ctx(ctx, 0x402850, 2); gr_def(ctx, 0x402854, 0x00000003); break; } cp_ctx(ctx, 0x402c00, 4); gr_def(ctx, 0x402c00, device->chipset == 0x40 ? 0x80800001 : 0x00888001); switch (device->chipset) { case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x402c20, 40); for (i = 0; i < 32; i++) gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff); cp_ctx(ctx, 0x4030b8, 13); gr_def(ctx, 0x4030dc, 0x00000005); gr_def(ctx, 0x4030e8, 0x0000ffff); break; default: cp_ctx(ctx, 0x402c10, 4); if (device->chipset == 0x40) cp_ctx(ctx, 0x402c20, 36); else if (device->chipset <= 0x42) cp_ctx(ctx, 0x402c20, 24); else if (device->chipset <= 0x4a) cp_ctx(ctx, 0x402c20, 16); else cp_ctx(ctx, 0x402c20, 8); cp_ctx(ctx, 0x402cb0, device->chipset == 0x40 ? 12 : 13); gr_def(ctx, 0x402cd4, 0x00000005); if (device->chipset != 0x40) gr_def(ctx, 0x402ce0, 0x0000ffff); break; } cp_ctx(ctx, 0x403400, device->chipset == 0x40 ? 4 : 3); cp_ctx(ctx, 0x403410, device->chipset == 0x40 ? 4 : 3); cp_ctx(ctx, 0x403420, nv40_gr_vs_count(ctx->device)); for (i = 0; i < nv40_gr_vs_count(ctx->device); i++) gr_def(ctx, 0x403420 + (i * 4), 0x00005555); if (device->chipset != 0x40) { cp_ctx(ctx, 0x403600, 1); gr_def(ctx, 0x403600, 0x00000001); } cp_ctx(ctx, 0x403800, 1); cp_ctx(ctx, 0x403c18, 1); gr_def(ctx, 0x403c18, 0x00000001); switch (device->chipset) { case 0x46: case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x405018, 1); gr_def(ctx, 0x405018, 0x08e00001); cp_ctx(ctx, 0x405c24, 1); gr_def(ctx, 0x405c24, 0x000e3000); break; } if (device->chipset != 0x4e) cp_ctx(ctx, 0x405800, 11); cp_ctx(ctx, 0x407000, 1); } static void nv40_gr_construct_state3d_3(struct nvkm_grctx *ctx) { int len = nv44_gr_class(ctx->device) ? 0x0084 : 0x0684; cp_out (ctx, 0x300000); cp_lsr (ctx, len - 4); cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save); cp_lsr (ctx, len); cp_name(ctx, cp_swap_state3d_3_is_save); cp_out (ctx, 0x800001); ctx->ctxvals_pos += len; } static void nv40_gr_construct_shader(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; struct nvkm_gpuobj *obj = ctx->data; int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset; int offset, i; vs_nr = nv40_gr_vs_count(ctx->device); vs_nr_b0 = 363; vs_nr_b1 = device->chipset == 0x40 ? 128 : 64; if (device->chipset == 0x40) { b0_offset = 0x2200/4; /* 33a0 */ b1_offset = 0x55a0/4; /* 1500 */ vs_len = 0x6aa0/4; } else if (device->chipset == 0x41 || device->chipset == 0x42) { b0_offset = 0x2200/4; /* 2200 */ b1_offset = 0x4400/4; /* 0b00 */ vs_len = 0x4f00/4; } else { b0_offset = 0x1d40/4; /* 2200 */ b1_offset = 0x3f40/4; /* 0b00 : 0a40 */ vs_len = nv44_gr_class(device) ? 0x4980/4 : 0x4a40/4; } cp_lsr(ctx, vs_len * vs_nr + 0x300/4); cp_out(ctx, nv44_gr_class(device) ? 0x800029 : 0x800041); offset = ctx->ctxvals_pos; ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len)); if (ctx->mode != NVKM_GRCTX_VALS) return; offset += 0x0280/4; for (i = 0; i < 16; i++, offset += 2) nvkm_wo32(obj, offset * 4, 0x3f800000); for (vs = 0; vs < vs_nr; vs++, offset += vs_len) { for (i = 0; i < vs_nr_b0 * 6; i += 6) nvkm_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001); for (i = 0; i < vs_nr_b1 * 4; i += 4) nvkm_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000); } } static void nv40_grctx_generate(struct nvkm_grctx *ctx) { /* decide whether we're loading/unloading the context */ cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save); cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save); cp_name(ctx, cp_check_load); cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load); cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load); cp_bra (ctx, ALWAYS, TRUE, cp_exit); /* setup for context load */ cp_name(ctx, cp_setup_auto_load); cp_wait(ctx, STATUS, IDLE); cp_out (ctx, CP_NEXT_TO_SWAP); cp_name(ctx, cp_setup_load); cp_wait(ctx, STATUS, IDLE); cp_set (ctx, SWAP_DIRECTION, LOAD); cp_out (ctx, 0x00910880); /* ?? */ cp_out (ctx, 0x00901ffe); /* ?? */ cp_out (ctx, 0x01940000); /* ?? */ cp_lsr (ctx, 0x20); cp_out (ctx, 0x0060000b); /* ?? */ cp_wait(ctx, UNK57, CLEAR); cp_out (ctx, 0x0060000c); /* ?? */ cp_bra (ctx, ALWAYS, TRUE, cp_swap_state); /* setup for context save */ cp_name(ctx, cp_setup_save); cp_set (ctx, SWAP_DIRECTION, SAVE); /* general PGRAPH state */ cp_name(ctx, cp_swap_state); cp_pos (ctx, 0x00020/4); nv40_gr_construct_general(ctx); cp_wait(ctx, STATUS, IDLE); /* 3D state, block 1 */ cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit); nv40_gr_construct_state3d(ctx); cp_wait(ctx, STATUS, IDLE); /* 3D state, block 2 */ nv40_gr_construct_state3d_2(ctx); /* Some other block of "random" state */ nv40_gr_construct_state3d_3(ctx); /* Per-vertex shader state */ cp_pos (ctx, ctx->ctxvals_pos); nv40_gr_construct_shader(ctx); /* pre-exit state updates */ cp_name(ctx, cp_prepare_exit); cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load); cp_bra (ctx, USER_SAVE, PENDING, cp_exit); cp_out (ctx, CP_NEXT_TO_CURRENT); cp_name(ctx, cp_exit); cp_set (ctx, USER_SAVE, NOT_PENDING); cp_set (ctx, USER_LOAD, NOT_PENDING); cp_out (ctx, CP_END); } void nv40_grctx_fill(struct nvkm_device *device, struct nvkm_gpuobj *mem) { nv40_grctx_generate(&(struct nvkm_grctx) { .device = device, .mode = NVKM_GRCTX_VALS, .data = mem, }); } int nv40_grctx_init(struct nvkm_device *device, u32 *size) { u32 *ctxprog = kmalloc(256 * 4, GFP_KERNEL), i; struct nvkm_grctx ctx = { .device = device, .mode = NVKM_GRCTX_PROG, .ucode = ctxprog, .ctxprog_max = 256, }; if (!ctxprog) return -ENOMEM; nv40_grctx_generate(&ctx); nvkm_wr32(device, 0x400324, 0); for (i = 0; i < ctx.ctxprog_len; i++) nvkm_wr32(device, 0x400328, ctxprog[i]); *size = ctx.ctxvals_pos * 4; kfree(ctxprog); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1