Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tomi Valkeinen | 2719 | 91.77% | 9 | 56.25% |
Venkateswara Rao Mandela | 157 | 5.30% | 1 | 6.25% |
Laurent Pinchart | 78 | 2.63% | 2 | 12.50% |
Dan Carpenter | 6 | 0.20% | 1 | 6.25% |
Peter Ujfalusi | 1 | 0.03% | 1 | 6.25% |
Alexander A. Klimov | 1 | 0.03% | 1 | 6.25% |
Thomas Gleixner | 1 | 0.03% | 1 | 6.25% |
Total | 2963 | 16 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 Texas Instruments Incorporated - https://www.ti.com/ */ #define DSS_SUBSYS_NAME "PLL" #include <linux/delay.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/regulator/consumer.h> #include <linux/sched.h> #include "omapdss.h" #include "dss.h" #define PLL_CONTROL 0x0000 #define PLL_STATUS 0x0004 #define PLL_GO 0x0008 #define PLL_CONFIGURATION1 0x000C #define PLL_CONFIGURATION2 0x0010 #define PLL_CONFIGURATION3 0x0014 #define PLL_SSC_CONFIGURATION1 0x0018 #define PLL_SSC_CONFIGURATION2 0x001C #define PLL_CONFIGURATION4 0x0020 int dss_pll_register(struct dss_device *dss, struct dss_pll *pll) { int i; for (i = 0; i < ARRAY_SIZE(dss->plls); ++i) { if (!dss->plls[i]) { dss->plls[i] = pll; pll->dss = dss; return 0; } } return -EBUSY; } void dss_pll_unregister(struct dss_pll *pll) { struct dss_device *dss = pll->dss; int i; for (i = 0; i < ARRAY_SIZE(dss->plls); ++i) { if (dss->plls[i] == pll) { dss->plls[i] = NULL; pll->dss = NULL; return; } } } struct dss_pll *dss_pll_find(struct dss_device *dss, const char *name) { int i; for (i = 0; i < ARRAY_SIZE(dss->plls); ++i) { if (dss->plls[i] && strcmp(dss->plls[i]->name, name) == 0) return dss->plls[i]; } return NULL; } struct dss_pll *dss_pll_find_by_src(struct dss_device *dss, enum dss_clk_source src) { struct dss_pll *pll; switch (src) { default: case DSS_CLK_SRC_FCK: return NULL; case DSS_CLK_SRC_HDMI_PLL: return dss_pll_find(dss, "hdmi"); case DSS_CLK_SRC_PLL1_1: case DSS_CLK_SRC_PLL1_2: case DSS_CLK_SRC_PLL1_3: pll = dss_pll_find(dss, "dsi0"); if (!pll) pll = dss_pll_find(dss, "video0"); return pll; case DSS_CLK_SRC_PLL2_1: case DSS_CLK_SRC_PLL2_2: case DSS_CLK_SRC_PLL2_3: pll = dss_pll_find(dss, "dsi1"); if (!pll) pll = dss_pll_find(dss, "video1"); return pll; } } unsigned int dss_pll_get_clkout_idx_for_src(enum dss_clk_source src) { switch (src) { case DSS_CLK_SRC_HDMI_PLL: return 0; case DSS_CLK_SRC_PLL1_1: case DSS_CLK_SRC_PLL2_1: return 0; case DSS_CLK_SRC_PLL1_2: case DSS_CLK_SRC_PLL2_2: return 1; case DSS_CLK_SRC_PLL1_3: case DSS_CLK_SRC_PLL2_3: return 2; default: return 0; } } int dss_pll_enable(struct dss_pll *pll) { int r; r = clk_prepare_enable(pll->clkin); if (r) return r; if (pll->regulator) { r = regulator_enable(pll->regulator); if (r) goto err_reg; } r = pll->ops->enable(pll); if (r) goto err_enable; return 0; err_enable: if (pll->regulator) regulator_disable(pll->regulator); err_reg: clk_disable_unprepare(pll->clkin); return r; } void dss_pll_disable(struct dss_pll *pll) { pll->ops->disable(pll); if (pll->regulator) regulator_disable(pll->regulator); clk_disable_unprepare(pll->clkin); memset(&pll->cinfo, 0, sizeof(pll->cinfo)); } int dss_pll_set_config(struct dss_pll *pll, const struct dss_pll_clock_info *cinfo) { int r; r = pll->ops->set_config(pll, cinfo); if (r) return r; pll->cinfo = *cinfo; return 0; } bool dss_pll_hsdiv_calc_a(const struct dss_pll *pll, unsigned long clkdco, unsigned long out_min, unsigned long out_max, dss_hsdiv_calc_func func, void *data) { const struct dss_pll_hw *hw = pll->hw; int m, m_start, m_stop; unsigned long out; out_min = out_min ? out_min : 1; out_max = out_max ? out_max : ULONG_MAX; m_start = max(DIV_ROUND_UP(clkdco, out_max), 1ul); m_stop = min((unsigned)(clkdco / out_min), hw->mX_max); for (m = m_start; m <= m_stop; ++m) { out = clkdco / m; if (func(m, out, data)) return true; } return false; } /* * clkdco = clkin / n * m * 2 * clkoutX = clkdco / mX */ bool dss_pll_calc_a(const struct dss_pll *pll, unsigned long clkin, unsigned long pll_min, unsigned long pll_max, dss_pll_calc_func func, void *data) { const struct dss_pll_hw *hw = pll->hw; int n, n_start, n_stop, n_inc; int m, m_start, m_stop, m_inc; unsigned long fint, clkdco; unsigned long pll_hw_max; unsigned long fint_hw_min, fint_hw_max; pll_hw_max = hw->clkdco_max; fint_hw_min = hw->fint_min; fint_hw_max = hw->fint_max; n_start = max(DIV_ROUND_UP(clkin, fint_hw_max), 1ul); n_stop = min((unsigned)(clkin / fint_hw_min), hw->n_max); n_inc = 1; if (n_start > n_stop) return false; if (hw->errata_i886) { swap(n_start, n_stop); n_inc = -1; } pll_max = pll_max ? pll_max : ULONG_MAX; for (n = n_start; n != n_stop; n += n_inc) { fint = clkin / n; m_start = max(DIV_ROUND_UP(DIV_ROUND_UP(pll_min, fint), 2), 1ul); m_stop = min3((unsigned)(pll_max / fint / 2), (unsigned)(pll_hw_max / fint / 2), hw->m_max); m_inc = 1; if (m_start > m_stop) continue; if (hw->errata_i886) { swap(m_start, m_stop); m_inc = -1; } for (m = m_start; m != m_stop; m += m_inc) { clkdco = 2 * m * fint; if (func(n, m, fint, clkdco, data)) return true; } } return false; } /* * This calculates a PLL config that will provide the target_clkout rate * for clkout. Additionally clkdco rate will be the same as clkout rate * when clkout rate is >= min_clkdco. * * clkdco = clkin / n * m + clkin / n * mf / 262144 * clkout = clkdco / m2 */ bool dss_pll_calc_b(const struct dss_pll *pll, unsigned long clkin, unsigned long target_clkout, struct dss_pll_clock_info *cinfo) { unsigned long fint, clkdco, clkout; unsigned long target_clkdco; unsigned long min_dco; unsigned int n, m, mf, m2, sd; const struct dss_pll_hw *hw = pll->hw; DSSDBG("clkin %lu, target clkout %lu\n", clkin, target_clkout); /* Fint */ n = DIV_ROUND_UP(clkin, hw->fint_max); fint = clkin / n; /* adjust m2 so that the clkdco will be high enough */ min_dco = roundup(hw->clkdco_min, fint); m2 = DIV_ROUND_UP(min_dco, target_clkout); if (m2 == 0) m2 = 1; target_clkdco = target_clkout * m2; m = target_clkdco / fint; clkdco = fint * m; /* adjust clkdco with fractional mf */ if (WARN_ON(target_clkdco - clkdco > fint)) mf = 0; else mf = (u32)div_u64(262144ull * (target_clkdco - clkdco), fint); if (mf > 0) clkdco += (u32)div_u64((u64)mf * fint, 262144); clkout = clkdco / m2; /* sigma-delta */ sd = DIV_ROUND_UP(fint * m, 250000000); DSSDBG("N = %u, M = %u, M.f = %u, M2 = %u, SD = %u\n", n, m, mf, m2, sd); DSSDBG("Fint %lu, clkdco %lu, clkout %lu\n", fint, clkdco, clkout); cinfo->n = n; cinfo->m = m; cinfo->mf = mf; cinfo->mX[0] = m2; cinfo->sd = sd; cinfo->fint = fint; cinfo->clkdco = clkdco; cinfo->clkout[0] = clkout; return true; } static int wait_for_bit_change(void __iomem *reg, int bitnum, int value) { unsigned long timeout; ktime_t wait; int t; /* first busyloop to see if the bit changes right away */ t = 100; while (t-- > 0) { if (FLD_GET(readl_relaxed(reg), bitnum, bitnum) == value) return value; } /* then loop for 500ms, sleeping for 1ms in between */ timeout = jiffies + msecs_to_jiffies(500); while (time_before(jiffies, timeout)) { if (FLD_GET(readl_relaxed(reg), bitnum, bitnum) == value) return value; wait = ns_to_ktime(1000 * 1000); set_current_state(TASK_UNINTERRUPTIBLE); schedule_hrtimeout(&wait, HRTIMER_MODE_REL); } return !value; } int dss_pll_wait_reset_done(struct dss_pll *pll) { void __iomem *base = pll->base; if (wait_for_bit_change(base + PLL_STATUS, 0, 1) != 1) return -ETIMEDOUT; else return 0; } static int dss_wait_hsdiv_ack(struct dss_pll *pll, u32 hsdiv_ack_mask) { int t = 100; while (t-- > 0) { u32 v = readl_relaxed(pll->base + PLL_STATUS); v &= hsdiv_ack_mask; if (v == hsdiv_ack_mask) return 0; } return -ETIMEDOUT; } static bool pll_is_locked(u32 stat) { /* * Required value for each bitfield listed below * * PLL_STATUS[6] = 0 PLL_BYPASS * PLL_STATUS[5] = 0 PLL_HIGHJITTER * * PLL_STATUS[3] = 0 PLL_LOSSREF * PLL_STATUS[2] = 0 PLL_RECAL * PLL_STATUS[1] = 1 PLL_LOCK * PLL_STATUS[0] = 1 PLL_CTRL_RESET_DONE */ return ((stat & 0x6f) == 0x3); } int dss_pll_write_config_type_a(struct dss_pll *pll, const struct dss_pll_clock_info *cinfo) { const struct dss_pll_hw *hw = pll->hw; void __iomem *base = pll->base; int r = 0; u32 l; l = 0; if (hw->has_stopmode) l = FLD_MOD(l, 1, 0, 0); /* PLL_STOPMODE */ l = FLD_MOD(l, cinfo->n - 1, hw->n_msb, hw->n_lsb); /* PLL_REGN */ l = FLD_MOD(l, cinfo->m, hw->m_msb, hw->m_lsb); /* PLL_REGM */ /* M4 */ l = FLD_MOD(l, cinfo->mX[0] ? cinfo->mX[0] - 1 : 0, hw->mX_msb[0], hw->mX_lsb[0]); /* M5 */ l = FLD_MOD(l, cinfo->mX[1] ? cinfo->mX[1] - 1 : 0, hw->mX_msb[1], hw->mX_lsb[1]); writel_relaxed(l, base + PLL_CONFIGURATION1); l = 0; /* M6 */ l = FLD_MOD(l, cinfo->mX[2] ? cinfo->mX[2] - 1 : 0, hw->mX_msb[2], hw->mX_lsb[2]); /* M7 */ l = FLD_MOD(l, cinfo->mX[3] ? cinfo->mX[3] - 1 : 0, hw->mX_msb[3], hw->mX_lsb[3]); writel_relaxed(l, base + PLL_CONFIGURATION3); l = readl_relaxed(base + PLL_CONFIGURATION2); if (hw->has_freqsel) { u32 f = cinfo->fint < 1000000 ? 0x3 : cinfo->fint < 1250000 ? 0x4 : cinfo->fint < 1500000 ? 0x5 : cinfo->fint < 1750000 ? 0x6 : 0x7; l = FLD_MOD(l, f, 4, 1); /* PLL_FREQSEL */ } else if (hw->has_selfreqdco) { u32 f = cinfo->clkdco < hw->clkdco_low ? 0x2 : 0x4; l = FLD_MOD(l, f, 3, 1); /* PLL_SELFREQDCO */ } l = FLD_MOD(l, 1, 13, 13); /* PLL_REFEN */ l = FLD_MOD(l, 0, 14, 14); /* PHY_CLKINEN */ l = FLD_MOD(l, 0, 16, 16); /* M4_CLOCK_EN */ l = FLD_MOD(l, 0, 18, 18); /* M5_CLOCK_EN */ l = FLD_MOD(l, 1, 20, 20); /* HSDIVBYPASS */ if (hw->has_refsel) l = FLD_MOD(l, 3, 22, 21); /* REFSEL = sysclk */ l = FLD_MOD(l, 0, 23, 23); /* M6_CLOCK_EN */ l = FLD_MOD(l, 0, 25, 25); /* M7_CLOCK_EN */ writel_relaxed(l, base + PLL_CONFIGURATION2); if (hw->errata_i932) { int cnt = 0; u32 sleep_time; const u32 max_lock_retries = 20; /* * Calculate wait time for PLL LOCK * 1000 REFCLK cycles in us. */ sleep_time = DIV_ROUND_UP(1000*1000*1000, cinfo->fint); for (cnt = 0; cnt < max_lock_retries; cnt++) { writel_relaxed(1, base + PLL_GO); /* PLL_GO */ /** * read the register back to ensure the write is * flushed */ readl_relaxed(base + PLL_GO); usleep_range(sleep_time, sleep_time + 5); l = readl_relaxed(base + PLL_STATUS); if (pll_is_locked(l) && !(readl_relaxed(base + PLL_GO) & 0x1)) break; } if (cnt == max_lock_retries) { DSSERR("cannot lock PLL\n"); r = -EIO; goto err; } } else { writel_relaxed(1, base + PLL_GO); /* PLL_GO */ if (wait_for_bit_change(base + PLL_GO, 0, 0) != 0) { DSSERR("DSS DPLL GO bit not going down.\n"); r = -EIO; goto err; } if (wait_for_bit_change(base + PLL_STATUS, 1, 1) != 1) { DSSERR("cannot lock DSS DPLL\n"); r = -EIO; goto err; } } l = readl_relaxed(base + PLL_CONFIGURATION2); l = FLD_MOD(l, 1, 14, 14); /* PHY_CLKINEN */ l = FLD_MOD(l, cinfo->mX[0] ? 1 : 0, 16, 16); /* M4_CLOCK_EN */ l = FLD_MOD(l, cinfo->mX[1] ? 1 : 0, 18, 18); /* M5_CLOCK_EN */ l = FLD_MOD(l, 0, 20, 20); /* HSDIVBYPASS */ l = FLD_MOD(l, cinfo->mX[2] ? 1 : 0, 23, 23); /* M6_CLOCK_EN */ l = FLD_MOD(l, cinfo->mX[3] ? 1 : 0, 25, 25); /* M7_CLOCK_EN */ writel_relaxed(l, base + PLL_CONFIGURATION2); r = dss_wait_hsdiv_ack(pll, (cinfo->mX[0] ? BIT(7) : 0) | (cinfo->mX[1] ? BIT(8) : 0) | (cinfo->mX[2] ? BIT(10) : 0) | (cinfo->mX[3] ? BIT(11) : 0)); if (r) { DSSERR("failed to enable HSDIV clocks\n"); goto err; } err: return r; } int dss_pll_write_config_type_b(struct dss_pll *pll, const struct dss_pll_clock_info *cinfo) { const struct dss_pll_hw *hw = pll->hw; void __iomem *base = pll->base; u32 l; l = 0; l = FLD_MOD(l, cinfo->m, 20, 9); /* PLL_REGM */ l = FLD_MOD(l, cinfo->n - 1, 8, 1); /* PLL_REGN */ writel_relaxed(l, base + PLL_CONFIGURATION1); l = readl_relaxed(base + PLL_CONFIGURATION2); l = FLD_MOD(l, 0x0, 12, 12); /* PLL_HIGHFREQ divide by 2 */ l = FLD_MOD(l, 0x1, 13, 13); /* PLL_REFEN */ l = FLD_MOD(l, 0x0, 14, 14); /* PHY_CLKINEN */ if (hw->has_refsel) l = FLD_MOD(l, 0x3, 22, 21); /* REFSEL = SYSCLK */ /* PLL_SELFREQDCO */ if (cinfo->clkdco > hw->clkdco_low) l = FLD_MOD(l, 0x4, 3, 1); else l = FLD_MOD(l, 0x2, 3, 1); writel_relaxed(l, base + PLL_CONFIGURATION2); l = readl_relaxed(base + PLL_CONFIGURATION3); l = FLD_MOD(l, cinfo->sd, 17, 10); /* PLL_REGSD */ writel_relaxed(l, base + PLL_CONFIGURATION3); l = readl_relaxed(base + PLL_CONFIGURATION4); l = FLD_MOD(l, cinfo->mX[0], 24, 18); /* PLL_REGM2 */ l = FLD_MOD(l, cinfo->mf, 17, 0); /* PLL_REGM_F */ writel_relaxed(l, base + PLL_CONFIGURATION4); writel_relaxed(1, base + PLL_GO); /* PLL_GO */ if (wait_for_bit_change(base + PLL_GO, 0, 0) != 0) { DSSERR("DSS DPLL GO bit not going down.\n"); return -EIO; } if (wait_for_bit_change(base + PLL_STATUS, 1, 1) != 1) { DSSERR("cannot lock DSS DPLL\n"); return -ETIMEDOUT; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1