Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Doug Anderson | 1441 | 99.86% | 2 | 66.67% |
Thomas Zimmermann | 2 | 0.14% | 1 | 33.33% |
Total | 1443 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2021 Google Inc. * * Panel driver for the Samsung ATNA33XC20 panel. This panel can't be handled * by the DRM_PANEL_SIMPLE driver because its power sequencing is non-standard. */ #include <linux/backlight.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <drm/display/drm_dp_aux_bus.h> #include <drm/display/drm_dp_helper.h> #include <drm/drm_edid.h> #include <drm/drm_panel.h> /* T3 VCC to HPD high is max 200 ms */ #define HPD_MAX_MS 200 #define HPD_MAX_US (HPD_MAX_MS * 1000) struct atana33xc20_panel { struct drm_panel base; bool prepared; bool enabled; bool el3_was_on; bool no_hpd; struct gpio_desc *hpd_gpio; struct regulator *supply; struct gpio_desc *el_on3_gpio; struct drm_dp_aux *aux; struct edid *edid; ktime_t powered_off_time; ktime_t powered_on_time; ktime_t el_on3_off_time; }; static inline struct atana33xc20_panel *to_atana33xc20(struct drm_panel *panel) { return container_of(panel, struct atana33xc20_panel, base); } static void atana33xc20_wait(ktime_t start_ktime, unsigned int min_ms) { ktime_t now_ktime, min_ktime; min_ktime = ktime_add(start_ktime, ms_to_ktime(min_ms)); now_ktime = ktime_get(); if (ktime_before(now_ktime, min_ktime)) msleep(ktime_to_ms(ktime_sub(min_ktime, now_ktime)) + 1); } static int atana33xc20_suspend(struct device *dev) { struct atana33xc20_panel *p = dev_get_drvdata(dev); int ret; /* * Note 3 (Example of power off sequence in detail) in spec * specifies to wait 150 ms after deasserting EL3_ON before * powering off. */ if (p->el3_was_on) atana33xc20_wait(p->el_on3_off_time, 150); ret = regulator_disable(p->supply); if (ret) return ret; p->powered_off_time = ktime_get(); p->el3_was_on = false; return 0; } static int atana33xc20_resume(struct device *dev) { struct atana33xc20_panel *p = dev_get_drvdata(dev); int hpd_asserted; int ret; /* T12 (Power off time) is min 500 ms */ atana33xc20_wait(p->powered_off_time, 500); ret = regulator_enable(p->supply); if (ret) return ret; p->powered_on_time = ktime_get(); if (p->no_hpd) { msleep(HPD_MAX_MS); return 0; } if (p->hpd_gpio) { ret = readx_poll_timeout(gpiod_get_value_cansleep, p->hpd_gpio, hpd_asserted, hpd_asserted, 1000, HPD_MAX_US); if (hpd_asserted < 0) ret = hpd_asserted; if (ret) dev_warn(dev, "Error waiting for HPD GPIO: %d\n", ret); return ret; } if (p->aux->wait_hpd_asserted) { ret = p->aux->wait_hpd_asserted(p->aux, HPD_MAX_US); if (ret) dev_warn(dev, "Controller error waiting for HPD: %d\n", ret); return ret; } /* * Note that it's possible that no_hpd is false, hpd_gpio is * NULL, and wait_hpd_asserted is NULL. This is because * wait_hpd_asserted() is optional even if HPD is hooked up to * a dedicated pin on the eDP controller. In this case we just * assume that the controller driver will wait for HPD at the * right times. */ return 0; } static int atana33xc20_disable(struct drm_panel *panel) { struct atana33xc20_panel *p = to_atana33xc20(panel); /* Disabling when already disabled is a no-op */ if (!p->enabled) return 0; gpiod_set_value_cansleep(p->el_on3_gpio, 0); p->el_on3_off_time = ktime_get(); p->enabled = false; /* * Keep track of the fact that EL_ON3 was on but we haven't power * cycled yet. This lets us know that "el_on3_off_time" is recent (we * don't need to worry about ktime wraparounds) and also makes it * obvious if we try to enable again without a power cycle (see the * warning in atana33xc20_enable()). */ p->el3_was_on = true; /* * Sleeping 20 ms here (after setting the GPIO) avoids a glitch when * powering off. */ msleep(20); return 0; } static int atana33xc20_enable(struct drm_panel *panel) { struct atana33xc20_panel *p = to_atana33xc20(panel); /* Enabling when already enabled is a no-op */ if (p->enabled) return 0; /* * Once EL_ON3 drops we absolutely need a power cycle before the next * enable or the backlight will never come on again. The code ensures * this because disable() is _always_ followed by unprepare() and * unprepare() forces a suspend with pm_runtime_put_sync_suspend(), * but let's track just to make sure since the requirement is so * non-obvious. */ if (WARN_ON(p->el3_was_on)) return -EIO; /* * Note 2 (Example of power on sequence in detail) in spec specifies * to wait 400 ms after powering on before asserting EL3_on. */ atana33xc20_wait(p->powered_on_time, 400); gpiod_set_value_cansleep(p->el_on3_gpio, 1); p->enabled = true; return 0; } static int atana33xc20_unprepare(struct drm_panel *panel) { struct atana33xc20_panel *p = to_atana33xc20(panel); int ret; /* Unpreparing when already unprepared is a no-op */ if (!p->prepared) return 0; /* * Purposely do a put_sync, don't use autosuspend. The panel's tcon * seems to sometimes crash when you stop giving it data and this is * the best way to ensure it will come back. * * NOTE: we still want autosuspend for cases where we only turn on * to get the EDID or otherwise send DP AUX commands to the panel. */ ret = pm_runtime_put_sync_suspend(panel->dev); if (ret < 0) return ret; p->prepared = false; return 0; } static int atana33xc20_prepare(struct drm_panel *panel) { struct atana33xc20_panel *p = to_atana33xc20(panel); int ret; /* Preparing when already prepared is a no-op */ if (p->prepared) return 0; ret = pm_runtime_get_sync(panel->dev); if (ret < 0) { pm_runtime_put_autosuspend(panel->dev); return ret; } p->prepared = true; return 0; } static int atana33xc20_get_modes(struct drm_panel *panel, struct drm_connector *connector) { struct atana33xc20_panel *p = to_atana33xc20(panel); struct dp_aux_ep_device *aux_ep = to_dp_aux_ep_dev(panel->dev); int num = 0; pm_runtime_get_sync(panel->dev); if (!p->edid) p->edid = drm_get_edid(connector, &aux_ep->aux->ddc); num = drm_add_edid_modes(connector, p->edid); pm_runtime_mark_last_busy(panel->dev); pm_runtime_put_autosuspend(panel->dev); return num; } static const struct drm_panel_funcs atana33xc20_funcs = { .disable = atana33xc20_disable, .enable = atana33xc20_enable, .unprepare = atana33xc20_unprepare, .prepare = atana33xc20_prepare, .get_modes = atana33xc20_get_modes, }; static void atana33xc20_runtime_disable(void *data) { pm_runtime_disable(data); } static void atana33xc20_dont_use_autosuspend(void *data) { pm_runtime_dont_use_autosuspend(data); } static int atana33xc20_probe(struct dp_aux_ep_device *aux_ep) { struct atana33xc20_panel *panel; struct device *dev = &aux_ep->dev; int ret; panel = devm_kzalloc(dev, sizeof(*panel), GFP_KERNEL); if (!panel) return -ENOMEM; dev_set_drvdata(dev, panel); panel->aux = aux_ep->aux; panel->supply = devm_regulator_get(dev, "power"); if (IS_ERR(panel->supply)) return dev_err_probe(dev, PTR_ERR(panel->supply), "Failed to get power supply\n"); panel->el_on3_gpio = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(panel->el_on3_gpio)) return dev_err_probe(dev, PTR_ERR(panel->el_on3_gpio), "Failed to get enable GPIO\n"); panel->no_hpd = of_property_read_bool(dev->of_node, "no-hpd"); if (!panel->no_hpd) { panel->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN); if (IS_ERR(panel->hpd_gpio)) return dev_err_probe(dev, PTR_ERR(panel->hpd_gpio), "Failed to get HPD GPIO\n"); } pm_runtime_enable(dev); ret = devm_add_action_or_reset(dev, atana33xc20_runtime_disable, dev); if (ret) return ret; pm_runtime_set_autosuspend_delay(dev, 1000); pm_runtime_use_autosuspend(dev); ret = devm_add_action_or_reset(dev, atana33xc20_dont_use_autosuspend, dev); if (ret) return ret; drm_panel_init(&panel->base, dev, &atana33xc20_funcs, DRM_MODE_CONNECTOR_eDP); pm_runtime_get_sync(dev); ret = drm_panel_dp_aux_backlight(&panel->base, aux_ep->aux); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (ret) return dev_err_probe(dev, ret, "failed to register dp aux backlight\n"); drm_panel_add(&panel->base); return 0; } static void atana33xc20_remove(struct dp_aux_ep_device *aux_ep) { struct device *dev = &aux_ep->dev; struct atana33xc20_panel *panel = dev_get_drvdata(dev); drm_panel_remove(&panel->base); drm_panel_disable(&panel->base); drm_panel_unprepare(&panel->base); kfree(panel->edid); } static void atana33xc20_shutdown(struct dp_aux_ep_device *aux_ep) { struct device *dev = &aux_ep->dev; struct atana33xc20_panel *panel = dev_get_drvdata(dev); drm_panel_disable(&panel->base); drm_panel_unprepare(&panel->base); } static const struct of_device_id atana33xc20_dt_match[] = { { .compatible = "samsung,atna33xc20", }, { /* sentinal */ } }; MODULE_DEVICE_TABLE(of, atana33xc20_dt_match); static const struct dev_pm_ops atana33xc20_pm_ops = { SET_RUNTIME_PM_OPS(atana33xc20_suspend, atana33xc20_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct dp_aux_ep_driver atana33xc20_driver = { .driver = { .name = "samsung_atana33xc20", .of_match_table = atana33xc20_dt_match, .pm = &atana33xc20_pm_ops, }, .probe = atana33xc20_probe, .remove = atana33xc20_remove, .shutdown = atana33xc20_shutdown, }; static int __init atana33xc20_init(void) { return dp_aux_dp_driver_register(&atana33xc20_driver); } module_init(atana33xc20_init); static void __exit atana33xc20_exit(void) { dp_aux_dp_driver_unregister(&atana33xc20_driver); } module_exit(atana33xc20_exit); MODULE_DESCRIPTION("Samsung ATANA33XC20 Panel Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1