Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Herring | 2181 | 58.90% | 12 | 29.27% |
Boris Brezillon | 1231 | 33.24% | 10 | 24.39% |
Robin Murphy | 108 | 2.92% | 2 | 4.88% |
Steven Price | 72 | 1.94% | 2 | 4.88% |
Alyssa Rosenzweig | 28 | 0.76% | 3 | 7.32% |
Linus Torvalds | 22 | 0.59% | 1 | 2.44% |
Wei Yongjun | 21 | 0.57% | 1 | 2.44% |
Tomeu Vizoso | 13 | 0.35% | 1 | 2.44% |
Thomas Zimmermann | 12 | 0.32% | 1 | 2.44% |
Will Deacon | 4 | 0.11% | 2 | 4.88% |
Marek Szyprowski | 3 | 0.08% | 1 | 2.44% |
Dmitry Osipenko | 2 | 0.05% | 1 | 2.44% |
Ezequiel García | 2 | 0.05% | 1 | 2.44% |
Baolin Wang | 2 | 0.05% | 1 | 2.44% |
Yi Wang | 1 | 0.03% | 1 | 2.44% |
Tom Rix | 1 | 0.03% | 1 | 2.44% |
Total | 3703 | 41 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ #include <drm/panfrost_drm.h> #include <linux/atomic.h> #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/io-pgtable.h> #include <linux/iommu.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/shmem_fs.h> #include <linux/sizes.h> #include "panfrost_device.h" #include "panfrost_mmu.h" #include "panfrost_gem.h" #include "panfrost_features.h" #include "panfrost_regs.h" #define mmu_write(dev, reg, data) writel(data, dev->iomem + reg) #define mmu_read(dev, reg) readl(dev->iomem + reg) static int wait_ready(struct panfrost_device *pfdev, u32 as_nr) { int ret; u32 val; /* Wait for the MMU status to indicate there is no active command, in * case one is pending. */ ret = readl_relaxed_poll_timeout_atomic(pfdev->iomem + AS_STATUS(as_nr), val, !(val & AS_STATUS_AS_ACTIVE), 10, 100000); if (ret) { /* The GPU hung, let's trigger a reset */ panfrost_device_schedule_reset(pfdev); dev_err(pfdev->dev, "AS_ACTIVE bit stuck\n"); } return ret; } static int write_cmd(struct panfrost_device *pfdev, u32 as_nr, u32 cmd) { int status; /* write AS_COMMAND when MMU is ready to accept another command */ status = wait_ready(pfdev, as_nr); if (!status) mmu_write(pfdev, AS_COMMAND(as_nr), cmd); return status; } static void lock_region(struct panfrost_device *pfdev, u32 as_nr, u64 region_start, u64 size) { u8 region_width; u64 region; u64 region_end = region_start + size; if (!size) return; /* * The locked region is a naturally aligned power of 2 block encoded as * log2 minus(1). * Calculate the desired start/end and look for the highest bit which * differs. The smallest naturally aligned block must include this bit * change, the desired region starts with this bit (and subsequent bits) * zeroed and ends with the bit (and subsequent bits) set to one. */ region_width = max(fls64(region_start ^ (region_end - 1)), const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; /* * Mask off the low bits of region_start (which would be ignored by * the hardware anyway) */ region_start &= GENMASK_ULL(63, region_width); region = region_width | region_start; /* Lock the region that needs to be updated */ mmu_write(pfdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); mmu_write(pfdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); write_cmd(pfdev, as_nr, AS_COMMAND_LOCK); } static int mmu_hw_do_operation_locked(struct panfrost_device *pfdev, int as_nr, u64 iova, u64 size, u32 op) { if (as_nr < 0) return 0; if (op != AS_COMMAND_UNLOCK) lock_region(pfdev, as_nr, iova, size); /* Run the MMU operation */ write_cmd(pfdev, as_nr, op); /* Wait for the flush to complete */ return wait_ready(pfdev, as_nr); } static int mmu_hw_do_operation(struct panfrost_device *pfdev, struct panfrost_mmu *mmu, u64 iova, u64 size, u32 op) { int ret; spin_lock(&pfdev->as_lock); ret = mmu_hw_do_operation_locked(pfdev, mmu->as, iova, size, op); spin_unlock(&pfdev->as_lock); return ret; } static void panfrost_mmu_enable(struct panfrost_device *pfdev, struct panfrost_mmu *mmu) { int as_nr = mmu->as; struct io_pgtable_cfg *cfg = &mmu->pgtbl_cfg; u64 transtab = cfg->arm_mali_lpae_cfg.transtab; u64 memattr = cfg->arm_mali_lpae_cfg.memattr; mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); /* Need to revisit mem attrs. * NC is the default, Mali driver is inner WT. */ mmu_write(pfdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); mmu_write(pfdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE); } static void panfrost_mmu_disable(struct panfrost_device *pfdev, u32 as_nr) { mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), 0); mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), 0); mmu_write(pfdev, AS_MEMATTR_LO(as_nr), 0); mmu_write(pfdev, AS_MEMATTR_HI(as_nr), 0); write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE); } u32 panfrost_mmu_as_get(struct panfrost_device *pfdev, struct panfrost_mmu *mmu) { int as; spin_lock(&pfdev->as_lock); as = mmu->as; if (as >= 0) { int en = atomic_inc_return(&mmu->as_count); u32 mask = BIT(as) | BIT(16 + as); /* * AS can be retained by active jobs or a perfcnt context, * hence the '+ 1' here. */ WARN_ON(en >= (NUM_JOB_SLOTS + 1)); list_move(&mmu->list, &pfdev->as_lru_list); if (pfdev->as_faulty_mask & mask) { /* Unhandled pagefault on this AS, the MMU was * disabled. We need to re-enable the MMU after * clearing+unmasking the AS interrupts. */ mmu_write(pfdev, MMU_INT_CLEAR, mask); mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask); pfdev->as_faulty_mask &= ~mask; panfrost_mmu_enable(pfdev, mmu); } goto out; } /* Check for a free AS */ as = ffz(pfdev->as_alloc_mask); if (!(BIT(as) & pfdev->features.as_present)) { struct panfrost_mmu *lru_mmu; list_for_each_entry_reverse(lru_mmu, &pfdev->as_lru_list, list) { if (!atomic_read(&lru_mmu->as_count)) break; } WARN_ON(&lru_mmu->list == &pfdev->as_lru_list); list_del_init(&lru_mmu->list); as = lru_mmu->as; WARN_ON(as < 0); lru_mmu->as = -1; } /* Assign the free or reclaimed AS to the FD */ mmu->as = as; set_bit(as, &pfdev->as_alloc_mask); atomic_set(&mmu->as_count, 1); list_add(&mmu->list, &pfdev->as_lru_list); dev_dbg(pfdev->dev, "Assigned AS%d to mmu %p, alloc_mask=%lx", as, mmu, pfdev->as_alloc_mask); panfrost_mmu_enable(pfdev, mmu); out: spin_unlock(&pfdev->as_lock); return as; } void panfrost_mmu_as_put(struct panfrost_device *pfdev, struct panfrost_mmu *mmu) { atomic_dec(&mmu->as_count); WARN_ON(atomic_read(&mmu->as_count) < 0); } void panfrost_mmu_reset(struct panfrost_device *pfdev) { struct panfrost_mmu *mmu, *mmu_tmp; spin_lock(&pfdev->as_lock); pfdev->as_alloc_mask = 0; pfdev->as_faulty_mask = 0; list_for_each_entry_safe(mmu, mmu_tmp, &pfdev->as_lru_list, list) { mmu->as = -1; atomic_set(&mmu->as_count, 0); list_del_init(&mmu->list); } spin_unlock(&pfdev->as_lock); mmu_write(pfdev, MMU_INT_CLEAR, ~0); mmu_write(pfdev, MMU_INT_MASK, ~0); } static size_t get_pgsize(u64 addr, size_t size, size_t *count) { /* * io-pgtable only operates on multiple pages within a single table * entry, so we need to split at boundaries of the table size, i.e. * the next block size up. The distance from address A to the next * boundary of block size B is logically B - A % B, but in unsigned * two's complement where B is a power of two we get the equivalence * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) */ size_t blk_offset = -addr % SZ_2M; if (blk_offset || size < SZ_2M) { *count = min_not_zero(blk_offset, size) / SZ_4K; return SZ_4K; } blk_offset = -addr % SZ_1G ?: SZ_1G; *count = min(blk_offset, size) / SZ_2M; return SZ_2M; } static void panfrost_mmu_flush_range(struct panfrost_device *pfdev, struct panfrost_mmu *mmu, u64 iova, u64 size) { if (mmu->as < 0) return; pm_runtime_get_noresume(pfdev->dev); /* Flush the PTs only if we're already awake */ if (pm_runtime_active(pfdev->dev)) mmu_hw_do_operation(pfdev, mmu, iova, size, AS_COMMAND_FLUSH_PT); pm_runtime_put_sync_autosuspend(pfdev->dev); } static int mmu_map_sg(struct panfrost_device *pfdev, struct panfrost_mmu *mmu, u64 iova, int prot, struct sg_table *sgt) { unsigned int count; struct scatterlist *sgl; struct io_pgtable_ops *ops = mmu->pgtbl_ops; u64 start_iova = iova; for_each_sgtable_dma_sg(sgt, sgl, count) { unsigned long paddr = sg_dma_address(sgl); size_t len = sg_dma_len(sgl); dev_dbg(pfdev->dev, "map: as=%d, iova=%llx, paddr=%lx, len=%zx", mmu->as, iova, paddr, len); while (len) { size_t pgcount, mapped = 0; size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, GFP_KERNEL, &mapped); /* Don't get stuck if things have gone wrong */ mapped = max(mapped, pgsize); iova += mapped; paddr += mapped; len -= mapped; } } panfrost_mmu_flush_range(pfdev, mmu, start_iova, iova - start_iova); return 0; } int panfrost_mmu_map(struct panfrost_gem_mapping *mapping) { struct panfrost_gem_object *bo = mapping->obj; struct drm_gem_shmem_object *shmem = &bo->base; struct drm_gem_object *obj = &shmem->base; struct panfrost_device *pfdev = to_panfrost_device(obj->dev); struct sg_table *sgt; int prot = IOMMU_READ | IOMMU_WRITE; if (WARN_ON(mapping->active)) return 0; if (bo->noexec) prot |= IOMMU_NOEXEC; sgt = drm_gem_shmem_get_pages_sgt(shmem); if (WARN_ON(IS_ERR(sgt))) return PTR_ERR(sgt); mmu_map_sg(pfdev, mapping->mmu, mapping->mmnode.start << PAGE_SHIFT, prot, sgt); mapping->active = true; return 0; } void panfrost_mmu_unmap(struct panfrost_gem_mapping *mapping) { struct panfrost_gem_object *bo = mapping->obj; struct drm_gem_object *obj = &bo->base.base; struct panfrost_device *pfdev = to_panfrost_device(obj->dev); struct io_pgtable_ops *ops = mapping->mmu->pgtbl_ops; u64 iova = mapping->mmnode.start << PAGE_SHIFT; size_t len = mapping->mmnode.size << PAGE_SHIFT; size_t unmapped_len = 0; if (WARN_ON(!mapping->active)) return; dev_dbg(pfdev->dev, "unmap: as=%d, iova=%llx, len=%zx", mapping->mmu->as, iova, len); while (unmapped_len < len) { size_t unmapped_page, pgcount; size_t pgsize = get_pgsize(iova, len - unmapped_len, &pgcount); if (bo->is_heap) pgcount = 1; if (!bo->is_heap || ops->iova_to_phys(ops, iova)) { unmapped_page = ops->unmap_pages(ops, iova, pgsize, pgcount, NULL); WARN_ON(unmapped_page != pgsize * pgcount); } iova += pgsize * pgcount; unmapped_len += pgsize * pgcount; } panfrost_mmu_flush_range(pfdev, mapping->mmu, mapping->mmnode.start << PAGE_SHIFT, len); mapping->active = false; } static void mmu_tlb_inv_context_s1(void *cookie) {} static void mmu_tlb_sync_context(void *cookie) { //struct panfrost_mmu *mmu = cookie; // TODO: Wait 1000 GPU cycles for HW_ISSUE_6367/T60X } static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) { mmu_tlb_sync_context(cookie); } static const struct iommu_flush_ops mmu_tlb_ops = { .tlb_flush_all = mmu_tlb_inv_context_s1, .tlb_flush_walk = mmu_tlb_flush_walk, }; static struct panfrost_gem_mapping * addr_to_mapping(struct panfrost_device *pfdev, int as, u64 addr) { struct panfrost_gem_mapping *mapping = NULL; struct drm_mm_node *node; u64 offset = addr >> PAGE_SHIFT; struct panfrost_mmu *mmu; spin_lock(&pfdev->as_lock); list_for_each_entry(mmu, &pfdev->as_lru_list, list) { if (as == mmu->as) goto found_mmu; } goto out; found_mmu: spin_lock(&mmu->mm_lock); drm_mm_for_each_node(node, &mmu->mm) { if (offset >= node->start && offset < (node->start + node->size)) { mapping = drm_mm_node_to_panfrost_mapping(node); kref_get(&mapping->refcount); break; } } spin_unlock(&mmu->mm_lock); out: spin_unlock(&pfdev->as_lock); return mapping; } #define NUM_FAULT_PAGES (SZ_2M / PAGE_SIZE) static int panfrost_mmu_map_fault_addr(struct panfrost_device *pfdev, int as, u64 addr) { int ret, i; struct panfrost_gem_mapping *bomapping; struct panfrost_gem_object *bo; struct address_space *mapping; pgoff_t page_offset; struct sg_table *sgt; struct page **pages; bomapping = addr_to_mapping(pfdev, as, addr); if (!bomapping) return -ENOENT; bo = bomapping->obj; if (!bo->is_heap) { dev_WARN(pfdev->dev, "matching BO is not heap type (GPU VA = %llx)", bomapping->mmnode.start << PAGE_SHIFT); ret = -EINVAL; goto err_bo; } WARN_ON(bomapping->mmu->as != as); /* Assume 2MB alignment and size multiple */ addr &= ~((u64)SZ_2M - 1); page_offset = addr >> PAGE_SHIFT; page_offset -= bomapping->mmnode.start; mutex_lock(&bo->base.pages_lock); if (!bo->base.pages) { bo->sgts = kvmalloc_array(bo->base.base.size / SZ_2M, sizeof(struct sg_table), GFP_KERNEL | __GFP_ZERO); if (!bo->sgts) { mutex_unlock(&bo->base.pages_lock); ret = -ENOMEM; goto err_bo; } pages = kvmalloc_array(bo->base.base.size >> PAGE_SHIFT, sizeof(struct page *), GFP_KERNEL | __GFP_ZERO); if (!pages) { kvfree(bo->sgts); bo->sgts = NULL; mutex_unlock(&bo->base.pages_lock); ret = -ENOMEM; goto err_bo; } bo->base.pages = pages; bo->base.pages_use_count = 1; } else { pages = bo->base.pages; if (pages[page_offset]) { /* Pages are already mapped, bail out. */ mutex_unlock(&bo->base.pages_lock); goto out; } } mapping = bo->base.base.filp->f_mapping; mapping_set_unevictable(mapping); for (i = page_offset; i < page_offset + NUM_FAULT_PAGES; i++) { pages[i] = shmem_read_mapping_page(mapping, i); if (IS_ERR(pages[i])) { mutex_unlock(&bo->base.pages_lock); ret = PTR_ERR(pages[i]); goto err_pages; } } mutex_unlock(&bo->base.pages_lock); sgt = &bo->sgts[page_offset / (SZ_2M / PAGE_SIZE)]; ret = sg_alloc_table_from_pages(sgt, pages + page_offset, NUM_FAULT_PAGES, 0, SZ_2M, GFP_KERNEL); if (ret) goto err_pages; ret = dma_map_sgtable(pfdev->dev, sgt, DMA_BIDIRECTIONAL, 0); if (ret) goto err_map; mmu_map_sg(pfdev, bomapping->mmu, addr, IOMMU_WRITE | IOMMU_READ | IOMMU_NOEXEC, sgt); bomapping->active = true; dev_dbg(pfdev->dev, "mapped page fault @ AS%d %llx", as, addr); out: panfrost_gem_mapping_put(bomapping); return 0; err_map: sg_free_table(sgt); err_pages: drm_gem_shmem_put_pages(&bo->base); err_bo: panfrost_gem_mapping_put(bomapping); return ret; } static void panfrost_mmu_release_ctx(struct kref *kref) { struct panfrost_mmu *mmu = container_of(kref, struct panfrost_mmu, refcount); struct panfrost_device *pfdev = mmu->pfdev; spin_lock(&pfdev->as_lock); if (mmu->as >= 0) { pm_runtime_get_noresume(pfdev->dev); if (pm_runtime_active(pfdev->dev)) panfrost_mmu_disable(pfdev, mmu->as); pm_runtime_put_autosuspend(pfdev->dev); clear_bit(mmu->as, &pfdev->as_alloc_mask); clear_bit(mmu->as, &pfdev->as_in_use_mask); list_del(&mmu->list); } spin_unlock(&pfdev->as_lock); free_io_pgtable_ops(mmu->pgtbl_ops); drm_mm_takedown(&mmu->mm); kfree(mmu); } void panfrost_mmu_ctx_put(struct panfrost_mmu *mmu) { kref_put(&mmu->refcount, panfrost_mmu_release_ctx); } struct panfrost_mmu *panfrost_mmu_ctx_get(struct panfrost_mmu *mmu) { kref_get(&mmu->refcount); return mmu; } #define PFN_4G (SZ_4G >> PAGE_SHIFT) #define PFN_4G_MASK (PFN_4G - 1) #define PFN_16M (SZ_16M >> PAGE_SHIFT) static void panfrost_drm_mm_color_adjust(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { /* Executable buffers can't start or end on a 4GB boundary */ if (!(color & PANFROST_BO_NOEXEC)) { u64 next_seg; if ((*start & PFN_4G_MASK) == 0) (*start)++; if ((*end & PFN_4G_MASK) == 0) (*end)--; next_seg = ALIGN(*start, PFN_4G); if (next_seg - *start <= PFN_16M) *start = next_seg + 1; *end = min(*end, ALIGN(*start, PFN_4G) - 1); } } struct panfrost_mmu *panfrost_mmu_ctx_create(struct panfrost_device *pfdev) { struct panfrost_mmu *mmu; mmu = kzalloc(sizeof(*mmu), GFP_KERNEL); if (!mmu) return ERR_PTR(-ENOMEM); mmu->pfdev = pfdev; spin_lock_init(&mmu->mm_lock); /* 4G enough for now. can be 48-bit */ drm_mm_init(&mmu->mm, SZ_32M >> PAGE_SHIFT, (SZ_4G - SZ_32M) >> PAGE_SHIFT); mmu->mm.color_adjust = panfrost_drm_mm_color_adjust; INIT_LIST_HEAD(&mmu->list); mmu->as = -1; mmu->pgtbl_cfg = (struct io_pgtable_cfg) { .pgsize_bitmap = SZ_4K | SZ_2M, .ias = FIELD_GET(0xff, pfdev->features.mmu_features), .oas = FIELD_GET(0xff00, pfdev->features.mmu_features), .coherent_walk = pfdev->coherent, .tlb = &mmu_tlb_ops, .iommu_dev = pfdev->dev, }; mmu->pgtbl_ops = alloc_io_pgtable_ops(ARM_MALI_LPAE, &mmu->pgtbl_cfg, mmu); if (!mmu->pgtbl_ops) { kfree(mmu); return ERR_PTR(-EINVAL); } kref_init(&mmu->refcount); return mmu; } static const char *access_type_name(struct panfrost_device *pfdev, u32 fault_status) { switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: if (panfrost_has_hw_feature(pfdev, HW_FEATURE_AARCH64_MMU)) return "ATOMIC"; else return "UNKNOWN"; case AS_FAULTSTATUS_ACCESS_TYPE_READ: return "READ"; case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: return "WRITE"; case AS_FAULTSTATUS_ACCESS_TYPE_EX: return "EXECUTE"; default: WARN_ON(1); return NULL; } } static irqreturn_t panfrost_mmu_irq_handler(int irq, void *data) { struct panfrost_device *pfdev = data; if (!mmu_read(pfdev, MMU_INT_STAT)) return IRQ_NONE; mmu_write(pfdev, MMU_INT_MASK, 0); return IRQ_WAKE_THREAD; } static irqreturn_t panfrost_mmu_irq_handler_thread(int irq, void *data) { struct panfrost_device *pfdev = data; u32 status = mmu_read(pfdev, MMU_INT_RAWSTAT); int ret; while (status) { u32 as = ffs(status | (status >> 16)) - 1; u32 mask = BIT(as) | BIT(as + 16); u64 addr; u32 fault_status; u32 exception_type; u32 access_type; u32 source_id; fault_status = mmu_read(pfdev, AS_FAULTSTATUS(as)); addr = mmu_read(pfdev, AS_FAULTADDRESS_LO(as)); addr |= (u64)mmu_read(pfdev, AS_FAULTADDRESS_HI(as)) << 32; /* decode the fault status */ exception_type = fault_status & 0xFF; access_type = (fault_status >> 8) & 0x3; source_id = (fault_status >> 16); mmu_write(pfdev, MMU_INT_CLEAR, mask); /* Page fault only */ ret = -1; if ((status & mask) == BIT(as) && (exception_type & 0xF8) == 0xC0) ret = panfrost_mmu_map_fault_addr(pfdev, as, addr); if (ret) { /* terminal fault, print info about the fault */ dev_err(pfdev->dev, "Unhandled Page fault in AS%d at VA 0x%016llX\n" "Reason: %s\n" "raw fault status: 0x%X\n" "decoded fault status: %s\n" "exception type 0x%X: %s\n" "access type 0x%X: %s\n" "source id 0x%X\n", as, addr, "TODO", fault_status, (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), exception_type, panfrost_exception_name(exception_type), access_type, access_type_name(pfdev, fault_status), source_id); spin_lock(&pfdev->as_lock); /* Ignore MMU interrupts on this AS until it's been * re-enabled. */ pfdev->as_faulty_mask |= mask; /* Disable the MMU to kill jobs on this AS. */ panfrost_mmu_disable(pfdev, as); spin_unlock(&pfdev->as_lock); } status &= ~mask; /* If we received new MMU interrupts, process them before returning. */ if (!status) status = mmu_read(pfdev, MMU_INT_RAWSTAT) & ~pfdev->as_faulty_mask; } spin_lock(&pfdev->as_lock); mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask); spin_unlock(&pfdev->as_lock); return IRQ_HANDLED; }; int panfrost_mmu_init(struct panfrost_device *pfdev) { int err, irq; irq = platform_get_irq_byname(to_platform_device(pfdev->dev), "mmu"); if (irq <= 0) return -ENODEV; err = devm_request_threaded_irq(pfdev->dev, irq, panfrost_mmu_irq_handler, panfrost_mmu_irq_handler_thread, IRQF_SHARED, KBUILD_MODNAME "-mmu", pfdev); if (err) { dev_err(pfdev->dev, "failed to request mmu irq"); return err; } return 0; } void panfrost_mmu_fini(struct panfrost_device *pfdev) { mmu_write(pfdev, MMU_INT_MASK, 0); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1