Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 13024 | 99.85% | 31 | 86.11% |
Kees Cook | 7 | 0.05% | 1 | 2.78% |
Lee Jones | 6 | 0.05% | 2 | 5.56% |
Michele Curti | 3 | 0.02% | 1 | 2.78% |
Mike Lothian | 3 | 0.02% | 1 | 2.78% |
Total | 13043 | 36 |
/* * Copyright 2011 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include "radeon.h" #include "radeon_asic.h" #include "rv770.h" #include "rv770d.h" #include "r600_dpm.h" #include "rv770_dpm.h" #include "cypress_dpm.h" #include "atom.h" #include "evergreen.h" #include <linux/seq_file.h> #define MC_CG_ARB_FREQ_F0 0x0a #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d #define MC_CG_SEQ_DRAMCONF_S0 0x05 #define MC_CG_SEQ_DRAMCONF_S1 0x06 #define PCIE_BUS_CLK 10000 #define TCLK (PCIE_BUS_CLK / 10) #define SMC_RAM_END 0xC000 struct rv7xx_ps *rv770_get_ps(struct radeon_ps *rps) { struct rv7xx_ps *ps = rps->ps_priv; return ps; } struct rv7xx_power_info *rv770_get_pi(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rdev->pm.dpm.priv; return pi; } struct evergreen_power_info *evergreen_get_pi(struct radeon_device *rdev) { struct evergreen_power_info *pi = rdev->pm.dpm.priv; return pi; } static void rv770_enable_bif_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if (enable) { tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK; tmp |= LC_HW_VOLTAGE_IF_CONTROL(1); tmp |= LC_GEN2_EN_STRAP; } else { if (!pi->boot_in_gen2) { tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK; tmp &= ~LC_GEN2_EN_STRAP; } } if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) || (tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); } static void rv770_enable_l0s(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L0S_INACTIVITY_MASK; tmp |= LC_L0S_INACTIVITY(3); WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp); } static void rv770_enable_l1(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL); tmp &= ~LC_L1_INACTIVITY_MASK; tmp |= LC_L1_INACTIVITY(4); tmp &= ~LC_PMI_TO_L1_DIS; tmp &= ~LC_ASPM_TO_L1_DIS; WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp); } static void rv770_enable_pll_sleep_in_l1(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L1_INACTIVITY_MASK; tmp |= LC_L1_INACTIVITY(8); WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp); /* NOTE, this is a PCIE indirect reg, not PCIE PORT */ tmp = RREG32_PCIE(PCIE_P_CNTL); tmp |= P_PLL_PWRDN_IN_L1L23; tmp &= ~P_PLL_BUF_PDNB; tmp &= ~P_PLL_PDNB; tmp |= P_ALLOW_PRX_FRONTEND_SHUTOFF; WREG32_PCIE(PCIE_P_CNTL, tmp); } static void rv770_gfx_clock_gating_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); else { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON); WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON); RREG32(GB_TILING_CONFIG); } } static void rv770_mg_clock_gating_enable(struct radeon_device *rdev, bool enable) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (enable) { u32 mgcg_cgtt_local0; if (rdev->family == CHIP_RV770) mgcg_cgtt_local0 = RV770_MGCGTTLOCAL0_DFLT; else mgcg_cgtt_local0 = RV7XX_MGCGTTLOCAL0_DFLT; WREG32(CG_CGTT_LOCAL_0, mgcg_cgtt_local0); WREG32(CG_CGTT_LOCAL_1, (RV770_MGCGTTLOCAL1_DFLT & 0xFFFFCFFF)); if (pi->mgcgtssm) WREG32(CGTS_SM_CTRL_REG, RV770_MGCGCGTSSMCTRL_DFLT); } else { WREG32(CG_CGTT_LOCAL_0, 0xFFFFFFFF); WREG32(CG_CGTT_LOCAL_1, 0xFFFFCFFF); } } void rv770_restore_cgcg(struct radeon_device *rdev) { bool dpm_en = false, cg_en = false; if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN) dpm_en = true; if (RREG32(SCLK_PWRMGT_CNTL) & DYN_GFX_CLK_OFF_EN) cg_en = true; if (dpm_en && !cg_en) WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); } static void rv770_start_dpm(struct radeon_device *rdev) { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~SCLK_PWRMGT_OFF); WREG32_P(MCLK_PWRMGT_CNTL, 0, ~MPLL_PWRMGT_OFF); WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN); } void rv770_stop_dpm(struct radeon_device *rdev) { PPSMC_Result result; result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_TwoLevelsDisabled); if (result != PPSMC_Result_OK) DRM_DEBUG("Could not force DPM to low.\n"); WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN); WREG32_P(SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF); WREG32_P(MCLK_PWRMGT_CNTL, MPLL_PWRMGT_OFF, ~MPLL_PWRMGT_OFF); } bool rv770_dpm_enabled(struct radeon_device *rdev) { if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN) return true; else return false; } void rv770_enable_thermal_protection(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS); else WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS); } void rv770_enable_acpi_pm(struct radeon_device *rdev) { WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN); } u8 rv770_get_seq_value(struct radeon_device *rdev, struct rv7xx_pl *pl) { return (pl->flags & ATOM_PPLIB_R600_FLAGS_LOWPOWER) ? MC_CG_SEQ_DRAMCONF_S0 : MC_CG_SEQ_DRAMCONF_S1; } #if 0 int rv770_read_smc_soft_register(struct radeon_device *rdev, u16 reg_offset, u32 *value) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); return rv770_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset, value, pi->sram_end); } #endif int rv770_write_smc_soft_register(struct radeon_device *rdev, u16 reg_offset, u32 value) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); return rv770_write_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset, value, pi->sram_end); } int rv770_populate_smc_t(struct radeon_device *rdev, struct radeon_ps *radeon_state, RV770_SMC_SWSTATE *smc_state) { struct rv7xx_ps *state = rv770_get_ps(radeon_state); struct rv7xx_power_info *pi = rv770_get_pi(rdev); int i; int a_n; int a_d; u8 l[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE]; u8 r[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE]; u32 a_t; l[0] = 0; r[2] = 100; a_n = (int)state->medium.sclk * pi->lmp + (int)state->low.sclk * (R600_AH_DFLT - pi->rlp); a_d = (int)state->low.sclk * (100 - (int)pi->rlp) + (int)state->medium.sclk * pi->lmp; l[1] = (u8)(pi->lmp - (int)pi->lmp * a_n / a_d); r[0] = (u8)(pi->rlp + (100 - (int)pi->rlp) * a_n / a_d); a_n = (int)state->high.sclk * pi->lhp + (int)state->medium.sclk * (R600_AH_DFLT - pi->rmp); a_d = (int)state->medium.sclk * (100 - (int)pi->rmp) + (int)state->high.sclk * pi->lhp; l[2] = (u8)(pi->lhp - (int)pi->lhp * a_n / a_d); r[1] = (u8)(pi->rmp + (100 - (int)pi->rmp) * a_n / a_d); for (i = 0; i < (RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1); i++) { a_t = CG_R(r[i] * pi->bsp / 200) | CG_L(l[i] * pi->bsp / 200); smc_state->levels[i].aT = cpu_to_be32(a_t); } a_t = CG_R(r[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1] * pi->pbsp / 200) | CG_L(l[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1] * pi->pbsp / 200); smc_state->levels[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1].aT = cpu_to_be32(a_t); return 0; } int rv770_populate_smc_sp(struct radeon_device *rdev, struct radeon_ps *radeon_state, RV770_SMC_SWSTATE *smc_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); int i; for (i = 0; i < (RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1); i++) smc_state->levels[i].bSP = cpu_to_be32(pi->dsp); smc_state->levels[RV770_SMC_PERFORMANCE_LEVELS_PER_SWSTATE - 1].bSP = cpu_to_be32(pi->psp); return 0; } static void rv770_calculate_fractional_mpll_feedback_divider(u32 memory_clock, u32 reference_clock, bool gddr5, struct atom_clock_dividers *dividers, u32 *clkf, u32 *clkfrac) { u32 post_divider, reference_divider, feedback_divider8; u32 fyclk; if (gddr5) fyclk = (memory_clock * 8) / 2; else fyclk = (memory_clock * 4) / 2; post_divider = dividers->post_div; reference_divider = dividers->ref_div; feedback_divider8 = (8 * fyclk * reference_divider * post_divider) / reference_clock; *clkf = feedback_divider8 / 8; *clkfrac = feedback_divider8 % 8; } static int rv770_encode_yclk_post_div(u32 postdiv, u32 *encoded_postdiv) { int ret = 0; switch (postdiv) { case 1: *encoded_postdiv = 0; break; case 2: *encoded_postdiv = 1; break; case 4: *encoded_postdiv = 2; break; case 8: *encoded_postdiv = 3; break; case 16: *encoded_postdiv = 4; break; default: ret = -EINVAL; break; } return ret; } u32 rv770_map_clkf_to_ibias(struct radeon_device *rdev, u32 clkf) { if (clkf <= 0x10) return 0x4B; if (clkf <= 0x19) return 0x5B; if (clkf <= 0x21) return 0x2B; if (clkf <= 0x27) return 0x6C; if (clkf <= 0x31) return 0x9D; return 0xC6; } static int rv770_populate_mclk_value(struct radeon_device *rdev, u32 engine_clock, u32 memory_clock, RV7XX_SMC_MCLK_VALUE *mclk) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u8 encoded_reference_dividers[] = { 0, 16, 17, 20, 21 }; u32 mpll_ad_func_cntl = pi->clk_regs.rv770.mpll_ad_func_cntl; u32 mpll_ad_func_cntl_2 = pi->clk_regs.rv770.mpll_ad_func_cntl_2; u32 mpll_dq_func_cntl = pi->clk_regs.rv770.mpll_dq_func_cntl; u32 mpll_dq_func_cntl_2 = pi->clk_regs.rv770.mpll_dq_func_cntl_2; u32 mclk_pwrmgt_cntl = pi->clk_regs.rv770.mclk_pwrmgt_cntl; u32 dll_cntl = pi->clk_regs.rv770.dll_cntl; struct atom_clock_dividers dividers; u32 reference_clock = rdev->clock.mpll.reference_freq; u32 clkf, clkfrac; u32 postdiv_yclk; u32 ibias; int ret; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM, memory_clock, false, ÷rs); if (ret) return ret; if ((dividers.ref_div < 1) || (dividers.ref_div > 5)) return -EINVAL; rv770_calculate_fractional_mpll_feedback_divider(memory_clock, reference_clock, pi->mem_gddr5, ÷rs, &clkf, &clkfrac); ret = rv770_encode_yclk_post_div(dividers.post_div, &postdiv_yclk); if (ret) return ret; ibias = rv770_map_clkf_to_ibias(rdev, clkf); mpll_ad_func_cntl &= ~(CLKR_MASK | YCLK_POST_DIV_MASK | CLKF_MASK | CLKFRAC_MASK | IBIAS_MASK); mpll_ad_func_cntl |= CLKR(encoded_reference_dividers[dividers.ref_div - 1]); mpll_ad_func_cntl |= YCLK_POST_DIV(postdiv_yclk); mpll_ad_func_cntl |= CLKF(clkf); mpll_ad_func_cntl |= CLKFRAC(clkfrac); mpll_ad_func_cntl |= IBIAS(ibias); if (dividers.vco_mode) mpll_ad_func_cntl_2 |= VCO_MODE; else mpll_ad_func_cntl_2 &= ~VCO_MODE; if (pi->mem_gddr5) { rv770_calculate_fractional_mpll_feedback_divider(memory_clock, reference_clock, pi->mem_gddr5, ÷rs, &clkf, &clkfrac); ibias = rv770_map_clkf_to_ibias(rdev, clkf); ret = rv770_encode_yclk_post_div(dividers.post_div, &postdiv_yclk); if (ret) return ret; mpll_dq_func_cntl &= ~(CLKR_MASK | YCLK_POST_DIV_MASK | CLKF_MASK | CLKFRAC_MASK | IBIAS_MASK); mpll_dq_func_cntl |= CLKR(encoded_reference_dividers[dividers.ref_div - 1]); mpll_dq_func_cntl |= YCLK_POST_DIV(postdiv_yclk); mpll_dq_func_cntl |= CLKF(clkf); mpll_dq_func_cntl |= CLKFRAC(clkfrac); mpll_dq_func_cntl |= IBIAS(ibias); if (dividers.vco_mode) mpll_dq_func_cntl_2 |= VCO_MODE; else mpll_dq_func_cntl_2 &= ~VCO_MODE; } mclk->mclk770.mclk_value = cpu_to_be32(memory_clock); mclk->mclk770.vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl); mclk->mclk770.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2); mclk->mclk770.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl); mclk->mclk770.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2); mclk->mclk770.vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl); mclk->mclk770.vDLL_CNTL = cpu_to_be32(dll_cntl); return 0; } static int rv770_populate_sclk_value(struct radeon_device *rdev, u32 engine_clock, RV770_SMC_SCLK_VALUE *sclk) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct atom_clock_dividers dividers; u32 spll_func_cntl = pi->clk_regs.rv770.cg_spll_func_cntl; u32 spll_func_cntl_2 = pi->clk_regs.rv770.cg_spll_func_cntl_2; u32 spll_func_cntl_3 = pi->clk_regs.rv770.cg_spll_func_cntl_3; u32 cg_spll_spread_spectrum = pi->clk_regs.rv770.cg_spll_spread_spectrum; u32 cg_spll_spread_spectrum_2 = pi->clk_regs.rv770.cg_spll_spread_spectrum_2; u64 tmp; u32 reference_clock = rdev->clock.spll.reference_freq; u32 reference_divider, post_divider; u32 fbdiv; int ret; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, engine_clock, false, ÷rs); if (ret) return ret; reference_divider = 1 + dividers.ref_div; if (dividers.enable_post_div) post_divider = (0x0f & (dividers.post_div >> 4)) + (0x0f & dividers.post_div) + 2; else post_divider = 1; tmp = (u64) engine_clock * reference_divider * post_divider * 16384; do_div(tmp, reference_clock); fbdiv = (u32) tmp; if (dividers.enable_post_div) spll_func_cntl |= SPLL_DIVEN; else spll_func_cntl &= ~SPLL_DIVEN; spll_func_cntl &= ~(SPLL_HILEN_MASK | SPLL_LOLEN_MASK | SPLL_REF_DIV_MASK); spll_func_cntl |= SPLL_REF_DIV(dividers.ref_div); spll_func_cntl |= SPLL_HILEN((dividers.post_div >> 4) & 0xf); spll_func_cntl |= SPLL_LOLEN(dividers.post_div & 0xf); spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK; spll_func_cntl_2 |= SCLK_MUX_SEL(2); spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK; spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv); spll_func_cntl_3 |= SPLL_DITHEN; if (pi->sclk_ss) { struct radeon_atom_ss ss; u32 vco_freq = engine_clock * post_divider; if (radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_ENGINE_SS, vco_freq)) { u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate); u32 clk_v = ss.percentage * fbdiv / (clk_s * 10000); cg_spll_spread_spectrum &= ~CLKS_MASK; cg_spll_spread_spectrum |= CLKS(clk_s); cg_spll_spread_spectrum |= SSEN; cg_spll_spread_spectrum_2 &= ~CLKV_MASK; cg_spll_spread_spectrum_2 |= CLKV(clk_v); } } sclk->sclk_value = cpu_to_be32(engine_clock); sclk->vCG_SPLL_FUNC_CNTL = cpu_to_be32(spll_func_cntl); sclk->vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(spll_func_cntl_2); sclk->vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(spll_func_cntl_3); sclk->vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(cg_spll_spread_spectrum); sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(cg_spll_spread_spectrum_2); return 0; } int rv770_populate_vddc_value(struct radeon_device *rdev, u16 vddc, RV770_SMC_VOLTAGE_VALUE *voltage) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); int i; if (!pi->voltage_control) { voltage->index = 0; voltage->value = 0; return 0; } for (i = 0; i < pi->valid_vddc_entries; i++) { if (vddc <= pi->vddc_table[i].vddc) { voltage->index = pi->vddc_table[i].vddc_index; voltage->value = cpu_to_be16(vddc); break; } } if (i == pi->valid_vddc_entries) return -EINVAL; return 0; } int rv770_populate_mvdd_value(struct radeon_device *rdev, u32 mclk, RV770_SMC_VOLTAGE_VALUE *voltage) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (!pi->mvdd_control) { voltage->index = MVDD_HIGH_INDEX; voltage->value = cpu_to_be16(MVDD_HIGH_VALUE); return 0; } if (mclk <= pi->mvdd_split_frequency) { voltage->index = MVDD_LOW_INDEX; voltage->value = cpu_to_be16(MVDD_LOW_VALUE); } else { voltage->index = MVDD_HIGH_INDEX; voltage->value = cpu_to_be16(MVDD_HIGH_VALUE); } return 0; } static int rv770_convert_power_level_to_smc(struct radeon_device *rdev, struct rv7xx_pl *pl, RV770_SMC_HW_PERFORMANCE_LEVEL *level, u8 watermark_level) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); int ret; level->gen2PCIE = pi->pcie_gen2 ? ((pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? 1 : 0) : 0; level->gen2XSP = (pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? 1 : 0; level->backbias = (pl->flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? 1 : 0; level->displayWatermark = watermark_level; if (rdev->family == CHIP_RV740) ret = rv740_populate_sclk_value(rdev, pl->sclk, &level->sclk); else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) ret = rv730_populate_sclk_value(rdev, pl->sclk, &level->sclk); else ret = rv770_populate_sclk_value(rdev, pl->sclk, &level->sclk); if (ret) return ret; if (rdev->family == CHIP_RV740) { if (pi->mem_gddr5) { if (pl->mclk <= pi->mclk_strobe_mode_threshold) level->strobeMode = rv740_get_mclk_frequency_ratio(pl->mclk) | 0x10; else level->strobeMode = 0; if (pl->mclk > pi->mclk_edc_enable_threshold) level->mcFlags = SMC_MC_EDC_RD_FLAG | SMC_MC_EDC_WR_FLAG; else level->mcFlags = 0; } ret = rv740_populate_mclk_value(rdev, pl->sclk, pl->mclk, &level->mclk); } else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) ret = rv730_populate_mclk_value(rdev, pl->sclk, pl->mclk, &level->mclk); else ret = rv770_populate_mclk_value(rdev, pl->sclk, pl->mclk, &level->mclk); if (ret) return ret; ret = rv770_populate_vddc_value(rdev, pl->vddc, &level->vddc); if (ret) return ret; ret = rv770_populate_mvdd_value(rdev, pl->mclk, &level->mvdd); return ret; } static int rv770_convert_power_state_to_smc(struct radeon_device *rdev, struct radeon_ps *radeon_state, RV770_SMC_SWSTATE *smc_state) { struct rv7xx_ps *state = rv770_get_ps(radeon_state); int ret; if (!(radeon_state->caps & ATOM_PPLIB_DISALLOW_ON_DC)) smc_state->flags |= PPSMC_SWSTATE_FLAG_DC; ret = rv770_convert_power_level_to_smc(rdev, &state->low, &smc_state->levels[0], PPSMC_DISPLAY_WATERMARK_LOW); if (ret) return ret; ret = rv770_convert_power_level_to_smc(rdev, &state->medium, &smc_state->levels[1], PPSMC_DISPLAY_WATERMARK_LOW); if (ret) return ret; ret = rv770_convert_power_level_to_smc(rdev, &state->high, &smc_state->levels[2], PPSMC_DISPLAY_WATERMARK_HIGH); if (ret) return ret; smc_state->levels[0].arbValue = MC_CG_ARB_FREQ_F1; smc_state->levels[1].arbValue = MC_CG_ARB_FREQ_F2; smc_state->levels[2].arbValue = MC_CG_ARB_FREQ_F3; smc_state->levels[0].seqValue = rv770_get_seq_value(rdev, &state->low); smc_state->levels[1].seqValue = rv770_get_seq_value(rdev, &state->medium); smc_state->levels[2].seqValue = rv770_get_seq_value(rdev, &state->high); rv770_populate_smc_sp(rdev, radeon_state, smc_state); return rv770_populate_smc_t(rdev, radeon_state, smc_state); } u32 rv770_calculate_memory_refresh_rate(struct radeon_device *rdev, u32 engine_clock) { u32 dram_rows; u32 dram_refresh_rate; u32 mc_arb_rfsh_rate; u32 tmp; tmp = (RREG32(MC_ARB_RAMCFG) & NOOFROWS_MASK) >> NOOFROWS_SHIFT; dram_rows = 1 << (tmp + 10); tmp = RREG32(MC_SEQ_MISC0) & 3; dram_refresh_rate = 1 << (tmp + 3); mc_arb_rfsh_rate = ((engine_clock * 10) * dram_refresh_rate / dram_rows - 32) / 64; return mc_arb_rfsh_rate; } static void rv770_program_memory_timing_parameters(struct radeon_device *rdev, struct radeon_ps *radeon_state) { struct rv7xx_ps *state = rv770_get_ps(radeon_state); struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 sqm_ratio; u32 arb_refresh_rate; u32 high_clock; if (state->high.sclk < (state->low.sclk * 0xFF / 0x40)) high_clock = state->high.sclk; else high_clock = (state->low.sclk * 0xFF / 0x40); radeon_atom_set_engine_dram_timings(rdev, high_clock, state->high.mclk); sqm_ratio = STATE0(64 * high_clock / pi->boot_sclk) | STATE1(64 * high_clock / state->low.sclk) | STATE2(64 * high_clock / state->medium.sclk) | STATE3(64 * high_clock / state->high.sclk); WREG32(MC_ARB_SQM_RATIO, sqm_ratio); arb_refresh_rate = POWERMODE0(rv770_calculate_memory_refresh_rate(rdev, pi->boot_sclk)) | POWERMODE1(rv770_calculate_memory_refresh_rate(rdev, state->low.sclk)) | POWERMODE2(rv770_calculate_memory_refresh_rate(rdev, state->medium.sclk)) | POWERMODE3(rv770_calculate_memory_refresh_rate(rdev, state->high.sclk)); WREG32(MC_ARB_RFSH_RATE, arb_refresh_rate); } void rv770_enable_backbias(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, BACKBIAS_PAD_EN, ~BACKBIAS_PAD_EN); else WREG32_P(GENERAL_PWRMGT, 0, ~(BACKBIAS_VALUE | BACKBIAS_PAD_EN)); } static void rv770_enable_spread_spectrum(struct radeon_device *rdev, bool enable) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (enable) { if (pi->sclk_ss) WREG32_P(GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, ~DYN_SPREAD_SPECTRUM_EN); if (pi->mclk_ss) { if (rdev->family == CHIP_RV740) rv740_enable_mclk_spread_spectrum(rdev, true); } } else { WREG32_P(CG_SPLL_SPREAD_SPECTRUM, 0, ~SSEN); WREG32_P(GENERAL_PWRMGT, 0, ~DYN_SPREAD_SPECTRUM_EN); WREG32_P(CG_MPLL_SPREAD_SPECTRUM, 0, ~SSEN); if (rdev->family == CHIP_RV740) rv740_enable_mclk_spread_spectrum(rdev, false); } } static void rv770_program_mpll_timing_parameters(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if ((rdev->family == CHIP_RV770) && !pi->mem_gddr5) { WREG32(MPLL_TIME, (MPLL_LOCK_TIME(R600_MPLLLOCKTIME_DFLT * pi->ref_div) | MPLL_RESET_TIME(R600_MPLLRESETTIME_DFLT))); } } void rv770_setup_bsp(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 xclk = radeon_get_xclk(rdev); r600_calculate_u_and_p(pi->asi, xclk, 16, &pi->bsp, &pi->bsu); r600_calculate_u_and_p(pi->pasi, xclk, 16, &pi->pbsp, &pi->pbsu); pi->dsp = BSP(pi->bsp) | BSU(pi->bsu); pi->psp = BSP(pi->pbsp) | BSU(pi->pbsu); WREG32(CG_BSP, pi->dsp); } void rv770_program_git(struct radeon_device *rdev) { WREG32_P(CG_GIT, CG_GICST(R600_GICST_DFLT), ~CG_GICST_MASK); } void rv770_program_tp(struct radeon_device *rdev) { int i; enum r600_td td = R600_TD_DFLT; for (i = 0; i < R600_PM_NUMBER_OF_TC; i++) WREG32(CG_FFCT_0 + (i * 4), (UTC_0(r600_utc[i]) | DTC_0(r600_dtc[i]))); if (td == R600_TD_AUTO) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL); else WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL); if (td == R600_TD_UP) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE); if (td == R600_TD_DOWN) WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE); } void rv770_program_tpp(struct radeon_device *rdev) { WREG32(CG_TPC, R600_TPC_DFLT); } void rv770_program_sstp(struct radeon_device *rdev) { WREG32(CG_SSP, (SSTU(R600_SSTU_DFLT) | SST(R600_SST_DFLT))); } void rv770_program_engine_speed_parameters(struct radeon_device *rdev) { WREG32_P(SPLL_CNTL_MODE, SPLL_DIV_SYNC, ~SPLL_DIV_SYNC); } static void rv770_enable_display_gap(struct radeon_device *rdev) { u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL); tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK); tmp |= (DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) | DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE)); WREG32(CG_DISPLAY_GAP_CNTL, tmp); } void rv770_program_vc(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); WREG32(CG_FTV, pi->vrc); } void rv770_clear_vc(struct radeon_device *rdev) { WREG32(CG_FTV, 0); } int rv770_upload_firmware(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); int ret; rv770_reset_smc(rdev); rv770_stop_smc_clock(rdev); ret = rv770_load_smc_ucode(rdev, pi->sram_end); if (ret) return ret; return 0; } static int rv770_populate_smc_acpi_state(struct radeon_device *rdev, RV770_SMC_STATETABLE *table) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 mpll_ad_func_cntl = pi->clk_regs.rv770.mpll_ad_func_cntl; u32 mpll_ad_func_cntl_2 = pi->clk_regs.rv770.mpll_ad_func_cntl_2; u32 mpll_dq_func_cntl = pi->clk_regs.rv770.mpll_dq_func_cntl; u32 mpll_dq_func_cntl_2 = pi->clk_regs.rv770.mpll_dq_func_cntl_2; u32 spll_func_cntl = pi->clk_regs.rv770.cg_spll_func_cntl; u32 spll_func_cntl_2 = pi->clk_regs.rv770.cg_spll_func_cntl_2; u32 spll_func_cntl_3 = pi->clk_regs.rv770.cg_spll_func_cntl_3; u32 mclk_pwrmgt_cntl; u32 dll_cntl; table->ACPIState = table->initialState; table->ACPIState.flags &= ~PPSMC_SWSTATE_FLAG_DC; if (pi->acpi_vddc) { rv770_populate_vddc_value(rdev, pi->acpi_vddc, &table->ACPIState.levels[0].vddc); if (pi->pcie_gen2) { if (pi->acpi_pcie_gen2) table->ACPIState.levels[0].gen2PCIE = 1; else table->ACPIState.levels[0].gen2PCIE = 0; } else table->ACPIState.levels[0].gen2PCIE = 0; if (pi->acpi_pcie_gen2) table->ACPIState.levels[0].gen2XSP = 1; else table->ACPIState.levels[0].gen2XSP = 0; } else { rv770_populate_vddc_value(rdev, pi->min_vddc_in_table, &table->ACPIState.levels[0].vddc); table->ACPIState.levels[0].gen2PCIE = 0; } mpll_ad_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN; mpll_dq_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN; mclk_pwrmgt_cntl = (MRDCKA0_RESET | MRDCKA1_RESET | MRDCKB0_RESET | MRDCKB1_RESET | MRDCKC0_RESET | MRDCKC1_RESET | MRDCKD0_RESET | MRDCKD1_RESET); dll_cntl = 0xff000000; spll_func_cntl |= SPLL_RESET | SPLL_SLEEP | SPLL_BYPASS_EN; spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK; spll_func_cntl_2 |= SCLK_MUX_SEL(4); table->ACPIState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl); table->ACPIState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2); table->ACPIState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl); table->ACPIState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2); table->ACPIState.levels[0].mclk.mclk770.vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl); table->ACPIState.levels[0].mclk.mclk770.vDLL_CNTL = cpu_to_be32(dll_cntl); table->ACPIState.levels[0].mclk.mclk770.mclk_value = 0; table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(spll_func_cntl); table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(spll_func_cntl_2); table->ACPIState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(spll_func_cntl_3); table->ACPIState.levels[0].sclk.sclk_value = 0; rv770_populate_mvdd_value(rdev, 0, &table->ACPIState.levels[0].mvdd); table->ACPIState.levels[1] = table->ACPIState.levels[0]; table->ACPIState.levels[2] = table->ACPIState.levels[0]; return 0; } int rv770_populate_initial_mvdd_value(struct radeon_device *rdev, RV770_SMC_VOLTAGE_VALUE *voltage) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if ((pi->s0_vid_lower_smio_cntl & pi->mvdd_mask_low) == (pi->mvdd_low_smio[MVDD_LOW_INDEX] & pi->mvdd_mask_low) ) { voltage->index = MVDD_LOW_INDEX; voltage->value = cpu_to_be16(MVDD_LOW_VALUE); } else { voltage->index = MVDD_HIGH_INDEX; voltage->value = cpu_to_be16(MVDD_HIGH_VALUE); } return 0; } static int rv770_populate_smc_initial_state(struct radeon_device *rdev, struct radeon_ps *radeon_state, RV770_SMC_STATETABLE *table) { struct rv7xx_ps *initial_state = rv770_get_ps(radeon_state); struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 a_t; table->initialState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL = cpu_to_be32(pi->clk_regs.rv770.mpll_ad_func_cntl); table->initialState.levels[0].mclk.mclk770.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(pi->clk_regs.rv770.mpll_ad_func_cntl_2); table->initialState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(pi->clk_regs.rv770.mpll_dq_func_cntl); table->initialState.levels[0].mclk.mclk770.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(pi->clk_regs.rv770.mpll_dq_func_cntl_2); table->initialState.levels[0].mclk.mclk770.vMCLK_PWRMGT_CNTL = cpu_to_be32(pi->clk_regs.rv770.mclk_pwrmgt_cntl); table->initialState.levels[0].mclk.mclk770.vDLL_CNTL = cpu_to_be32(pi->clk_regs.rv770.dll_cntl); table->initialState.levels[0].mclk.mclk770.vMPLL_SS = cpu_to_be32(pi->clk_regs.rv770.mpll_ss1); table->initialState.levels[0].mclk.mclk770.vMPLL_SS2 = cpu_to_be32(pi->clk_regs.rv770.mpll_ss2); table->initialState.levels[0].mclk.mclk770.mclk_value = cpu_to_be32(initial_state->low.mclk); table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(pi->clk_regs.rv770.cg_spll_func_cntl); table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(pi->clk_regs.rv770.cg_spll_func_cntl_2); table->initialState.levels[0].sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(pi->clk_regs.rv770.cg_spll_func_cntl_3); table->initialState.levels[0].sclk.vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(pi->clk_regs.rv770.cg_spll_spread_spectrum); table->initialState.levels[0].sclk.vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(pi->clk_regs.rv770.cg_spll_spread_spectrum_2); table->initialState.levels[0].sclk.sclk_value = cpu_to_be32(initial_state->low.sclk); table->initialState.levels[0].arbValue = MC_CG_ARB_FREQ_F0; table->initialState.levels[0].seqValue = rv770_get_seq_value(rdev, &initial_state->low); rv770_populate_vddc_value(rdev, initial_state->low.vddc, &table->initialState.levels[0].vddc); rv770_populate_initial_mvdd_value(rdev, &table->initialState.levels[0].mvdd); a_t = CG_R(0xffff) | CG_L(0); table->initialState.levels[0].aT = cpu_to_be32(a_t); table->initialState.levels[0].bSP = cpu_to_be32(pi->dsp); if (pi->boot_in_gen2) table->initialState.levels[0].gen2PCIE = 1; else table->initialState.levels[0].gen2PCIE = 0; if (initial_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) table->initialState.levels[0].gen2XSP = 1; else table->initialState.levels[0].gen2XSP = 0; if (rdev->family == CHIP_RV740) { if (pi->mem_gddr5) { if (initial_state->low.mclk <= pi->mclk_strobe_mode_threshold) table->initialState.levels[0].strobeMode = rv740_get_mclk_frequency_ratio(initial_state->low.mclk) | 0x10; else table->initialState.levels[0].strobeMode = 0; if (initial_state->low.mclk >= pi->mclk_edc_enable_threshold) table->initialState.levels[0].mcFlags = SMC_MC_EDC_RD_FLAG | SMC_MC_EDC_WR_FLAG; else table->initialState.levels[0].mcFlags = 0; } } table->initialState.levels[1] = table->initialState.levels[0]; table->initialState.levels[2] = table->initialState.levels[0]; table->initialState.flags |= PPSMC_SWSTATE_FLAG_DC; return 0; } static int rv770_populate_smc_vddc_table(struct radeon_device *rdev, RV770_SMC_STATETABLE *table) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); int i; for (i = 0; i < pi->valid_vddc_entries; i++) { table->highSMIO[pi->vddc_table[i].vddc_index] = pi->vddc_table[i].high_smio; table->lowSMIO[pi->vddc_table[i].vddc_index] = cpu_to_be32(pi->vddc_table[i].low_smio); } table->voltageMaskTable.highMask[RV770_SMC_VOLTAGEMASK_VDDC] = 0; table->voltageMaskTable.lowMask[RV770_SMC_VOLTAGEMASK_VDDC] = cpu_to_be32(pi->vddc_mask_low); for (i = 0; ((i < pi->valid_vddc_entries) && (pi->max_vddc_in_table > pi->vddc_table[i].vddc)); i++); table->maxVDDCIndexInPPTable = pi->vddc_table[i].vddc_index; return 0; } static int rv770_populate_smc_mvdd_table(struct radeon_device *rdev, RV770_SMC_STATETABLE *table) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (pi->mvdd_control) { table->lowSMIO[MVDD_HIGH_INDEX] |= cpu_to_be32(pi->mvdd_low_smio[MVDD_HIGH_INDEX]); table->lowSMIO[MVDD_LOW_INDEX] |= cpu_to_be32(pi->mvdd_low_smio[MVDD_LOW_INDEX]); table->voltageMaskTable.highMask[RV770_SMC_VOLTAGEMASK_MVDD] = 0; table->voltageMaskTable.lowMask[RV770_SMC_VOLTAGEMASK_MVDD] = cpu_to_be32(pi->mvdd_mask_low); } return 0; } static int rv770_init_smc_table(struct radeon_device *rdev, struct radeon_ps *radeon_boot_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct rv7xx_ps *boot_state = rv770_get_ps(radeon_boot_state); RV770_SMC_STATETABLE *table = &pi->smc_statetable; int ret; memset(table, 0, sizeof(RV770_SMC_STATETABLE)); pi->boot_sclk = boot_state->low.sclk; rv770_populate_smc_vddc_table(rdev, table); rv770_populate_smc_mvdd_table(rdev, table); switch (rdev->pm.int_thermal_type) { case THERMAL_TYPE_RV770: case THERMAL_TYPE_ADT7473_WITH_INTERNAL: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_INTERNAL; break; case THERMAL_TYPE_NONE: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_NONE; break; case THERMAL_TYPE_EXTERNAL_GPIO: default: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_EXTERNAL; break; } if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC) { table->systemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT) table->extraFlags |= PPSMC_EXTRAFLAGS_AC2DC_DONT_WAIT_FOR_VBLANK; if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT) table->extraFlags |= PPSMC_EXTRAFLAGS_AC2DC_ACTION_GOTOINITIALSTATE; } if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) table->systemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (pi->mem_gddr5) table->systemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) ret = rv730_populate_smc_initial_state(rdev, radeon_boot_state, table); else ret = rv770_populate_smc_initial_state(rdev, radeon_boot_state, table); if (ret) return ret; if (rdev->family == CHIP_RV740) ret = rv740_populate_smc_acpi_state(rdev, table); else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) ret = rv730_populate_smc_acpi_state(rdev, table); else ret = rv770_populate_smc_acpi_state(rdev, table); if (ret) return ret; table->driverState = table->initialState; return rv770_copy_bytes_to_smc(rdev, pi->state_table_start, (const u8 *)table, sizeof(RV770_SMC_STATETABLE), pi->sram_end); } static int rv770_construct_vddc_table(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u16 min, max, step; u32 steps = 0; u8 vddc_index = 0; u32 i; radeon_atom_get_min_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, &min); radeon_atom_get_max_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, &max); radeon_atom_get_voltage_step(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, &step); steps = (max - min) / step + 1; if (steps > MAX_NO_VREG_STEPS) return -EINVAL; for (i = 0; i < steps; i++) { u32 gpio_pins, gpio_mask; pi->vddc_table[i].vddc = (u16)(min + i * step); radeon_atom_get_voltage_gpio_settings(rdev, pi->vddc_table[i].vddc, SET_VOLTAGE_TYPE_ASIC_VDDC, &gpio_pins, &gpio_mask); pi->vddc_table[i].low_smio = gpio_pins & gpio_mask; pi->vddc_table[i].high_smio = 0; pi->vddc_mask_low = gpio_mask; if (i > 0) { if ((pi->vddc_table[i].low_smio != pi->vddc_table[i - 1].low_smio ) || (pi->vddc_table[i].high_smio != pi->vddc_table[i - 1].high_smio)) vddc_index++; } pi->vddc_table[i].vddc_index = vddc_index; } pi->valid_vddc_entries = (u8)steps; return 0; } static u32 rv770_get_mclk_split_point(struct atom_memory_info *memory_info) { if (memory_info->mem_type == MEM_TYPE_GDDR3) return 30000; return 0; } static int rv770_get_mvdd_pin_configuration(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 gpio_pins, gpio_mask; radeon_atom_get_voltage_gpio_settings(rdev, MVDD_HIGH_VALUE, SET_VOLTAGE_TYPE_ASIC_MVDDC, &gpio_pins, &gpio_mask); pi->mvdd_mask_low = gpio_mask; pi->mvdd_low_smio[MVDD_HIGH_INDEX] = gpio_pins & gpio_mask; radeon_atom_get_voltage_gpio_settings(rdev, MVDD_LOW_VALUE, SET_VOLTAGE_TYPE_ASIC_MVDDC, &gpio_pins, &gpio_mask); pi->mvdd_low_smio[MVDD_LOW_INDEX] = gpio_pins & gpio_mask; return 0; } u8 rv770_get_memory_module_index(struct radeon_device *rdev) { return (u8) ((RREG32(BIOS_SCRATCH_4) >> 16) & 0xff); } static int rv770_get_mvdd_configuration(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u8 memory_module_index; struct atom_memory_info memory_info; memory_module_index = rv770_get_memory_module_index(rdev); if (radeon_atom_get_memory_info(rdev, memory_module_index, &memory_info)) { pi->mvdd_control = false; return 0; } pi->mvdd_split_frequency = rv770_get_mclk_split_point(&memory_info); if (pi->mvdd_split_frequency == 0) { pi->mvdd_control = false; return 0; } return rv770_get_mvdd_pin_configuration(rdev); } void rv770_enable_voltage_control(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, VOLT_PWRMGT_EN, ~VOLT_PWRMGT_EN); else WREG32_P(GENERAL_PWRMGT, 0, ~VOLT_PWRMGT_EN); } static void rv770_program_display_gap(struct radeon_device *rdev) { u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL); tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK); if (rdev->pm.dpm.new_active_crtcs & 1) { tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK); tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); } else if (rdev->pm.dpm.new_active_crtcs & 2) { tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK); } else { tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE); } WREG32(CG_DISPLAY_GAP_CNTL, tmp); } static void rv770_enable_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable) { rv770_enable_bif_dynamic_pcie_gen2(rdev, enable); if (enable) WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE); else WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE); } static void r7xx_program_memory_timing_parameters(struct radeon_device *rdev, struct radeon_ps *radeon_new_state) { if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710) || (rdev->family == CHIP_RV740)) rv730_program_memory_timing_parameters(rdev, radeon_new_state); else rv770_program_memory_timing_parameters(rdev, radeon_new_state); } static int rv770_upload_sw_state(struct radeon_device *rdev, struct radeon_ps *radeon_new_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u16 address = pi->state_table_start + offsetof(RV770_SMC_STATETABLE, driverState); RV770_SMC_SWSTATE state = { 0 }; int ret; ret = rv770_convert_power_state_to_smc(rdev, radeon_new_state, &state); if (ret) return ret; return rv770_copy_bytes_to_smc(rdev, address, (const u8 *)&state, sizeof(RV770_SMC_SWSTATE), pi->sram_end); } int rv770_halt_smc(struct radeon_device *rdev) { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_Halt) != PPSMC_Result_OK) return -EINVAL; if (rv770_wait_for_smc_inactive(rdev) != PPSMC_Result_OK) return -EINVAL; return 0; } int rv770_resume_smc(struct radeon_device *rdev) { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_Resume) != PPSMC_Result_OK) return -EINVAL; return 0; } int rv770_set_sw_state(struct radeon_device *rdev) { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_SwitchToSwState) != PPSMC_Result_OK) DRM_DEBUG("rv770_set_sw_state failed\n"); return 0; } int rv770_set_boot_state(struct radeon_device *rdev) { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_SwitchToInitialState) != PPSMC_Result_OK) return -EINVAL; return 0; } void rv770_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv7xx_ps *new_state = rv770_get_ps(new_ps); struct rv7xx_ps *current_state = rv770_get_ps(old_ps); if ((new_ps->vclk == old_ps->vclk) && (new_ps->dclk == old_ps->dclk)) return; if (new_state->high.sclk >= current_state->high.sclk) return; radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk); } void rv770_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct rv7xx_ps *new_state = rv770_get_ps(new_ps); struct rv7xx_ps *current_state = rv770_get_ps(old_ps); if ((new_ps->vclk == old_ps->vclk) && (new_ps->dclk == old_ps->dclk)) return; if (new_state->high.sclk < current_state->high.sclk) return; radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk); } int rv770_restrict_performance_levels_before_switch(struct radeon_device *rdev) { if (rv770_send_msg_to_smc(rdev, (PPSMC_Msg)(PPSMC_MSG_NoForcedLevel)) != PPSMC_Result_OK) return -EINVAL; if (rv770_send_msg_to_smc(rdev, (PPSMC_Msg)(PPSMC_MSG_TwoLevelsDisabled)) != PPSMC_Result_OK) return -EINVAL; return 0; } int rv770_dpm_force_performance_level(struct radeon_device *rdev, enum radeon_dpm_forced_level level) { PPSMC_Msg msg; if (level == RADEON_DPM_FORCED_LEVEL_HIGH) { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_ZeroLevelsDisabled) != PPSMC_Result_OK) return -EINVAL; msg = PPSMC_MSG_ForceHigh; } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel) != PPSMC_Result_OK) return -EINVAL; msg = (PPSMC_Msg)(PPSMC_MSG_TwoLevelsDisabled); } else { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel) != PPSMC_Result_OK) return -EINVAL; msg = (PPSMC_Msg)(PPSMC_MSG_ZeroLevelsDisabled); } if (rv770_send_msg_to_smc(rdev, msg) != PPSMC_Result_OK) return -EINVAL; rdev->pm.dpm.forced_level = level; return 0; } void r7xx_start_smc(struct radeon_device *rdev) { rv770_start_smc(rdev); rv770_start_smc_clock(rdev); } void r7xx_stop_smc(struct radeon_device *rdev) { rv770_reset_smc(rdev); rv770_stop_smc_clock(rdev); } static void rv770_read_clock_registers(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); pi->clk_regs.rv770.cg_spll_func_cntl = RREG32(CG_SPLL_FUNC_CNTL); pi->clk_regs.rv770.cg_spll_func_cntl_2 = RREG32(CG_SPLL_FUNC_CNTL_2); pi->clk_regs.rv770.cg_spll_func_cntl_3 = RREG32(CG_SPLL_FUNC_CNTL_3); pi->clk_regs.rv770.cg_spll_spread_spectrum = RREG32(CG_SPLL_SPREAD_SPECTRUM); pi->clk_regs.rv770.cg_spll_spread_spectrum_2 = RREG32(CG_SPLL_SPREAD_SPECTRUM_2); pi->clk_regs.rv770.mpll_ad_func_cntl = RREG32(MPLL_AD_FUNC_CNTL); pi->clk_regs.rv770.mpll_ad_func_cntl_2 = RREG32(MPLL_AD_FUNC_CNTL_2); pi->clk_regs.rv770.mpll_dq_func_cntl = RREG32(MPLL_DQ_FUNC_CNTL); pi->clk_regs.rv770.mpll_dq_func_cntl_2 = RREG32(MPLL_DQ_FUNC_CNTL_2); pi->clk_regs.rv770.mclk_pwrmgt_cntl = RREG32(MCLK_PWRMGT_CNTL); pi->clk_regs.rv770.dll_cntl = RREG32(DLL_CNTL); } static void r7xx_read_clock_registers(struct radeon_device *rdev) { if (rdev->family == CHIP_RV740) rv740_read_clock_registers(rdev); else if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) rv730_read_clock_registers(rdev); else rv770_read_clock_registers(rdev); } void rv770_read_voltage_smio_registers(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); pi->s0_vid_lower_smio_cntl = RREG32(S0_VID_LOWER_SMIO_CNTL); } void rv770_reset_smio_status(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 sw_smio_index, vid_smio_cntl; sw_smio_index = (RREG32(GENERAL_PWRMGT) & SW_SMIO_INDEX_MASK) >> SW_SMIO_INDEX_SHIFT; switch (sw_smio_index) { case 3: vid_smio_cntl = RREG32(S3_VID_LOWER_SMIO_CNTL); break; case 2: vid_smio_cntl = RREG32(S2_VID_LOWER_SMIO_CNTL); break; case 1: vid_smio_cntl = RREG32(S1_VID_LOWER_SMIO_CNTL); break; case 0: return; default: vid_smio_cntl = pi->s0_vid_lower_smio_cntl; break; } WREG32(S0_VID_LOWER_SMIO_CNTL, vid_smio_cntl); WREG32_P(GENERAL_PWRMGT, SW_SMIO_INDEX(0), ~SW_SMIO_INDEX_MASK); } void rv770_get_memory_type(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 tmp; tmp = RREG32(MC_SEQ_MISC0); if (((tmp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT) == MC_SEQ_MISC0_GDDR5_VALUE) pi->mem_gddr5 = true; else pi->mem_gddr5 = false; } void rv770_get_pcie_gen2_status(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) && (tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) pi->pcie_gen2 = true; else pi->pcie_gen2 = false; if (pi->pcie_gen2) { if (tmp & LC_CURRENT_DATA_RATE) pi->boot_in_gen2 = true; else pi->boot_in_gen2 = false; } else pi->boot_in_gen2 = false; } #if 0 static int rv770_enter_ulp_state(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (pi->gfx_clock_gating) { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON); WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON); RREG32(GB_TILING_CONFIG); } WREG32_P(SMC_MSG, HOST_SMC_MSG(PPSMC_MSG_SwitchToMinimumPower), ~HOST_SMC_MSG_MASK); udelay(7000); return 0; } static int rv770_exit_ulp_state(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); int i; WREG32_P(SMC_MSG, HOST_SMC_MSG(PPSMC_MSG_ResumeFromMinimumPower), ~HOST_SMC_MSG_MASK); udelay(7000); for (i = 0; i < rdev->usec_timeout; i++) { if (((RREG32(SMC_MSG) & HOST_SMC_RESP_MASK) >> HOST_SMC_RESP_SHIFT) == 1) break; udelay(1000); } if (pi->gfx_clock_gating) WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); return 0; } #endif static void rv770_get_mclk_odt_threshold(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u8 memory_module_index; struct atom_memory_info memory_info; pi->mclk_odt_threshold = 0; if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) { memory_module_index = rv770_get_memory_module_index(rdev); if (radeon_atom_get_memory_info(rdev, memory_module_index, &memory_info)) return; if (memory_info.mem_type == MEM_TYPE_DDR2 || memory_info.mem_type == MEM_TYPE_DDR3) pi->mclk_odt_threshold = 30000; } } void rv770_get_max_vddc(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u16 vddc; if (radeon_atom_get_max_vddc(rdev, 0, 0, &vddc)) pi->max_vddc = 0; else pi->max_vddc = vddc; } void rv770_program_response_times(struct radeon_device *rdev) { u32 voltage_response_time, backbias_response_time; u32 acpi_delay_time, vbi_time_out; u32 vddc_dly, bb_dly, acpi_dly, vbi_dly; u32 reference_clock; voltage_response_time = (u32)rdev->pm.dpm.voltage_response_time; backbias_response_time = (u32)rdev->pm.dpm.backbias_response_time; if (voltage_response_time == 0) voltage_response_time = 1000; if (backbias_response_time == 0) backbias_response_time = 1000; acpi_delay_time = 15000; vbi_time_out = 100000; reference_clock = radeon_get_xclk(rdev); vddc_dly = (voltage_response_time * reference_clock) / 1600; bb_dly = (backbias_response_time * reference_clock) / 1600; acpi_dly = (acpi_delay_time * reference_clock) / 1600; vbi_dly = (vbi_time_out * reference_clock) / 1600; rv770_write_smc_soft_register(rdev, RV770_SMC_SOFT_REGISTER_delay_vreg, vddc_dly); rv770_write_smc_soft_register(rdev, RV770_SMC_SOFT_REGISTER_delay_bbias, bb_dly); rv770_write_smc_soft_register(rdev, RV770_SMC_SOFT_REGISTER_delay_acpi, acpi_dly); rv770_write_smc_soft_register(rdev, RV770_SMC_SOFT_REGISTER_mclk_chg_timeout, vbi_dly); #if 0 /* XXX look up hw revision */ if (WEKIVA_A21) rv770_write_smc_soft_register(rdev, RV770_SMC_SOFT_REGISTER_baby_step_timer, 0x10); #endif } static void rv770_program_dcodt_before_state_switch(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, struct radeon_ps *radeon_current_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct rv7xx_ps *new_state = rv770_get_ps(radeon_new_state); struct rv7xx_ps *current_state = rv770_get_ps(radeon_current_state); bool current_use_dc = false; bool new_use_dc = false; if (pi->mclk_odt_threshold == 0) return; if (current_state->high.mclk <= pi->mclk_odt_threshold) current_use_dc = true; if (new_state->high.mclk <= pi->mclk_odt_threshold) new_use_dc = true; if (current_use_dc == new_use_dc) return; if (!current_use_dc && new_use_dc) return; if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) rv730_program_dcodt(rdev, new_use_dc); } static void rv770_program_dcodt_after_state_switch(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, struct radeon_ps *radeon_current_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct rv7xx_ps *new_state = rv770_get_ps(radeon_new_state); struct rv7xx_ps *current_state = rv770_get_ps(radeon_current_state); bool current_use_dc = false; bool new_use_dc = false; if (pi->mclk_odt_threshold == 0) return; if (current_state->high.mclk <= pi->mclk_odt_threshold) current_use_dc = true; if (new_state->high.mclk <= pi->mclk_odt_threshold) new_use_dc = true; if (current_use_dc == new_use_dc) return; if (current_use_dc && !new_use_dc) return; if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) rv730_program_dcodt(rdev, new_use_dc); } static void rv770_retrieve_odt_values(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (pi->mclk_odt_threshold == 0) return; if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) rv730_get_odt_values(rdev); } static void rv770_set_dpm_event_sources(struct radeon_device *rdev, u32 sources) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); bool want_thermal_protection; enum radeon_dpm_event_src dpm_event_src; switch (sources) { case 0: default: want_thermal_protection = false; break; case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL; break; case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL; break; case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) | (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL; break; } if (want_thermal_protection) { WREG32_P(CG_THERMAL_CTRL, DPM_EVENT_SRC(dpm_event_src), ~DPM_EVENT_SRC_MASK); if (pi->thermal_protection) WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS); } else { WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS); } } void rv770_enable_auto_throttle_source(struct radeon_device *rdev, enum radeon_dpm_auto_throttle_src source, bool enable) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (enable) { if (!(pi->active_auto_throttle_sources & (1 << source))) { pi->active_auto_throttle_sources |= 1 << source; rv770_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources); } } else { if (pi->active_auto_throttle_sources & (1 << source)) { pi->active_auto_throttle_sources &= ~(1 << source); rv770_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources); } } } static int rv770_set_thermal_temperature_range(struct radeon_device *rdev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK); WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK); WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK); rdev->pm.dpm.thermal.min_temp = low_temp; rdev->pm.dpm.thermal.max_temp = high_temp; return 0; } int rv770_dpm_enable(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; int ret; if (pi->gfx_clock_gating) rv770_restore_cgcg(rdev); if (rv770_dpm_enabled(rdev)) return -EINVAL; if (pi->voltage_control) { rv770_enable_voltage_control(rdev, true); ret = rv770_construct_vddc_table(rdev); if (ret) { DRM_ERROR("rv770_construct_vddc_table failed\n"); return ret; } } if (pi->dcodt) rv770_retrieve_odt_values(rdev); if (pi->mvdd_control) { ret = rv770_get_mvdd_configuration(rdev); if (ret) { DRM_ERROR("rv770_get_mvdd_configuration failed\n"); return ret; } } if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS) rv770_enable_backbias(rdev, true); rv770_enable_spread_spectrum(rdev, true); if (pi->thermal_protection) rv770_enable_thermal_protection(rdev, true); rv770_program_mpll_timing_parameters(rdev); rv770_setup_bsp(rdev); rv770_program_git(rdev); rv770_program_tp(rdev); rv770_program_tpp(rdev); rv770_program_sstp(rdev); rv770_program_engine_speed_parameters(rdev); rv770_enable_display_gap(rdev); rv770_program_vc(rdev); if (pi->dynamic_pcie_gen2) rv770_enable_dynamic_pcie_gen2(rdev, true); ret = rv770_upload_firmware(rdev); if (ret) { DRM_ERROR("rv770_upload_firmware failed\n"); return ret; } ret = rv770_init_smc_table(rdev, boot_ps); if (ret) { DRM_ERROR("rv770_init_smc_table failed\n"); return ret; } rv770_program_response_times(rdev); r7xx_start_smc(rdev); if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) rv730_start_dpm(rdev); else rv770_start_dpm(rdev); if (pi->gfx_clock_gating) rv770_gfx_clock_gating_enable(rdev, true); if (pi->mg_clock_gating) rv770_mg_clock_gating_enable(rdev, true); rv770_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true); return 0; } int rv770_dpm_late_enable(struct radeon_device *rdev) { int ret; if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { PPSMC_Result result; ret = rv770_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); if (ret) return ret; rdev->irq.dpm_thermal = true; radeon_irq_set(rdev); result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_EnableThermalInterrupt); if (result != PPSMC_Result_OK) DRM_DEBUG_KMS("Could not enable thermal interrupts.\n"); } return 0; } void rv770_dpm_disable(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (!rv770_dpm_enabled(rdev)) return; rv770_clear_vc(rdev); if (pi->thermal_protection) rv770_enable_thermal_protection(rdev, false); rv770_enable_spread_spectrum(rdev, false); if (pi->dynamic_pcie_gen2) rv770_enable_dynamic_pcie_gen2(rdev, false); if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { rdev->irq.dpm_thermal = false; radeon_irq_set(rdev); } if (pi->gfx_clock_gating) rv770_gfx_clock_gating_enable(rdev, false); if (pi->mg_clock_gating) rv770_mg_clock_gating_enable(rdev, false); if ((rdev->family == CHIP_RV730) || (rdev->family == CHIP_RV710)) rv730_stop_dpm(rdev); else rv770_stop_dpm(rdev); r7xx_stop_smc(rdev); rv770_reset_smio_status(rdev); } int rv770_dpm_set_power_state(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct radeon_ps *new_ps = rdev->pm.dpm.requested_ps; struct radeon_ps *old_ps = rdev->pm.dpm.current_ps; int ret; ret = rv770_restrict_performance_levels_before_switch(rdev); if (ret) { DRM_ERROR("rv770_restrict_performance_levels_before_switch failed\n"); return ret; } rv770_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps); ret = rv770_halt_smc(rdev); if (ret) { DRM_ERROR("rv770_halt_smc failed\n"); return ret; } ret = rv770_upload_sw_state(rdev, new_ps); if (ret) { DRM_ERROR("rv770_upload_sw_state failed\n"); return ret; } r7xx_program_memory_timing_parameters(rdev, new_ps); if (pi->dcodt) rv770_program_dcodt_before_state_switch(rdev, new_ps, old_ps); ret = rv770_resume_smc(rdev); if (ret) { DRM_ERROR("rv770_resume_smc failed\n"); return ret; } ret = rv770_set_sw_state(rdev); if (ret) { DRM_ERROR("rv770_set_sw_state failed\n"); return ret; } if (pi->dcodt) rv770_program_dcodt_after_state_switch(rdev, new_ps, old_ps); rv770_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps); return 0; } #if 0 void rv770_dpm_reset_asic(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; rv770_restrict_performance_levels_before_switch(rdev); if (pi->dcodt) rv770_program_dcodt_before_state_switch(rdev, boot_ps, boot_ps); rv770_set_boot_state(rdev); if (pi->dcodt) rv770_program_dcodt_after_state_switch(rdev, boot_ps, boot_ps); } #endif void rv770_dpm_setup_asic(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); r7xx_read_clock_registers(rdev); rv770_read_voltage_smio_registers(rdev); rv770_get_memory_type(rdev); if (pi->dcodt) rv770_get_mclk_odt_threshold(rdev); rv770_get_pcie_gen2_status(rdev); rv770_enable_acpi_pm(rdev); if (radeon_aspm != 0) { if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s) rv770_enable_l0s(rdev); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1) rv770_enable_l1(rdev); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1) rv770_enable_pll_sleep_in_l1(rdev); } } void rv770_dpm_display_configuration_changed(struct radeon_device *rdev) { rv770_program_display_gap(rdev); } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void rv7xx_parse_pplib_non_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else { rps->vclk = 0; rps->dclk = 0; } if (r600_is_uvd_state(rps->class, rps->class2)) { if ((rps->vclk == 0) || (rps->dclk == 0)) { rps->vclk = RV770_DEFAULT_VCLK_FREQ; rps->dclk = RV770_DEFAULT_DCLK_FREQ; } } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) rdev->pm.dpm.boot_ps = rps; if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) rdev->pm.dpm.uvd_ps = rps; } static void rv7xx_parse_pplib_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, int index, union pplib_clock_info *clock_info) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct rv7xx_ps *ps = rv770_get_ps(rps); u32 sclk, mclk; struct rv7xx_pl *pl; switch (index) { case 0: pl = &ps->low; break; case 1: pl = &ps->medium; break; case 2: default: pl = &ps->high; break; } if (rdev->family >= CHIP_CEDAR) { sclk = le16_to_cpu(clock_info->evergreen.usEngineClockLow); sclk |= clock_info->evergreen.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->evergreen.usMemoryClockLow); mclk |= clock_info->evergreen.ucMemoryClockHigh << 16; pl->vddc = le16_to_cpu(clock_info->evergreen.usVDDC); pl->vddci = le16_to_cpu(clock_info->evergreen.usVDDCI); pl->flags = le32_to_cpu(clock_info->evergreen.ulFlags); } else { sclk = le16_to_cpu(clock_info->r600.usEngineClockLow); sclk |= clock_info->r600.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow); mclk |= clock_info->r600.ucMemoryClockHigh << 16; pl->vddc = le16_to_cpu(clock_info->r600.usVDDC); pl->flags = le32_to_cpu(clock_info->r600.ulFlags); } pl->mclk = mclk; pl->sclk = sclk; /* patch up vddc if necessary */ if (pl->vddc == 0xff01) { if (pi->max_vddc) pl->vddc = pi->max_vddc; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) { pi->acpi_vddc = pl->vddc; if (rdev->family >= CHIP_CEDAR) eg_pi->acpi_vddci = pl->vddci; if (ps->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) pi->acpi_pcie_gen2 = true; else pi->acpi_pcie_gen2 = false; } if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) { if (rdev->family >= CHIP_BARTS) { eg_pi->ulv.supported = true; eg_pi->ulv.pl = pl; } } if (pi->min_vddc_in_table > pl->vddc) pi->min_vddc_in_table = pl->vddc; if (pi->max_vddc_in_table < pl->vddc) pi->max_vddc_in_table = pl->vddc; /* patch up boot state */ if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { u16 vddc, vddci, mvdd; radeon_atombios_get_default_voltages(rdev, &vddc, &vddci, &mvdd); pl->mclk = rdev->clock.default_mclk; pl->sclk = rdev->clock.default_sclk; pl->vddc = vddc; pl->vddci = vddci; } if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk = pl->sclk; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk = pl->mclk; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc = pl->vddc; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci = pl->vddci; } } int rv7xx_parse_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j; union pplib_clock_info *clock_info; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; struct rv7xx_ps *ps; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); rdev->pm.dpm.ps = kcalloc(power_info->pplib.ucNumStates, sizeof(struct radeon_ps), GFP_KERNEL); if (!rdev->pm.dpm.ps) return -ENOMEM; for (i = 0; i < power_info->pplib.ucNumStates; i++) { power_state = (union pplib_power_state *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset) + i * power_info->pplib.ucStateEntrySize); non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) + (power_state->v1.ucNonClockStateIndex * power_info->pplib.ucNonClockSize)); if (power_info->pplib.ucStateEntrySize - 1) { u8 *idx; ps = kzalloc(sizeof(struct rv7xx_ps), GFP_KERNEL); if (ps == NULL) { kfree(rdev->pm.dpm.ps); return -ENOMEM; } rdev->pm.dpm.ps[i].ps_priv = ps; rv7xx_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], non_clock_info, power_info->pplib.ucNonClockSize); idx = (u8 *)&power_state->v1.ucClockStateIndices[0]; for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) { clock_info = (union pplib_clock_info *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) + (idx[j] * power_info->pplib.ucClockInfoSize)); rv7xx_parse_pplib_clock_info(rdev, &rdev->pm.dpm.ps[i], j, clock_info); } } } rdev->pm.dpm.num_ps = power_info->pplib.ucNumStates; return 0; } void rv770_get_engine_memory_ss(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct radeon_atom_ss ss; pi->sclk_ss = radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_ENGINE_SS, 0); pi->mclk_ss = radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_MEMORY_SS, 0); if (pi->sclk_ss || pi->mclk_ss) pi->dynamic_ss = true; else pi->dynamic_ss = false; } int rv770_dpm_init(struct radeon_device *rdev) { struct rv7xx_power_info *pi; struct atom_clock_dividers dividers; int ret; pi = kzalloc(sizeof(struct rv7xx_power_info), GFP_KERNEL); if (pi == NULL) return -ENOMEM; rdev->pm.dpm.priv = pi; rv770_get_max_vddc(rdev); pi->acpi_vddc = 0; pi->min_vddc_in_table = 0; pi->max_vddc_in_table = 0; ret = r600_get_platform_caps(rdev); if (ret) return ret; ret = rv7xx_parse_power_table(rdev); if (ret) return ret; if (rdev->pm.dpm.voltage_response_time == 0) rdev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT; if (rdev->pm.dpm.backbias_response_time == 0) rdev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, 0, false, ÷rs); if (ret) pi->ref_div = dividers.ref_div + 1; else pi->ref_div = R600_REFERENCEDIVIDER_DFLT; pi->mclk_strobe_mode_threshold = 30000; pi->mclk_edc_enable_threshold = 30000; pi->rlp = RV770_RLP_DFLT; pi->rmp = RV770_RMP_DFLT; pi->lhp = RV770_LHP_DFLT; pi->lmp = RV770_LMP_DFLT; pi->voltage_control = radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, 0); pi->mvdd_control = radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_MVDDC, 0); rv770_get_engine_memory_ss(rdev); pi->asi = RV770_ASI_DFLT; pi->pasi = RV770_HASI_DFLT; pi->vrc = RV770_VRC_DFLT; pi->power_gating = false; pi->gfx_clock_gating = true; pi->mg_clock_gating = true; pi->mgcgtssm = true; pi->dynamic_pcie_gen2 = true; if (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE) pi->thermal_protection = true; else pi->thermal_protection = false; pi->display_gap = true; if (rdev->flags & RADEON_IS_MOBILITY) pi->dcodt = true; else pi->dcodt = false; pi->ulps = true; pi->mclk_stutter_mode_threshold = 0; pi->sram_end = SMC_RAM_END; pi->state_table_start = RV770_SMC_TABLE_ADDRESS; pi->soft_regs_start = RV770_SMC_SOFT_REGISTERS_START; return 0; } void rv770_dpm_print_power_state(struct radeon_device *rdev, struct radeon_ps *rps) { struct rv7xx_ps *ps = rv770_get_ps(rps); struct rv7xx_pl *pl; r600_dpm_print_class_info(rps->class, rps->class2); r600_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); if (rdev->family >= CHIP_CEDAR) { pl = &ps->low; printk("\t\tpower level 0 sclk: %u mclk: %u vddc: %u vddci: %u\n", pl->sclk, pl->mclk, pl->vddc, pl->vddci); pl = &ps->medium; printk("\t\tpower level 1 sclk: %u mclk: %u vddc: %u vddci: %u\n", pl->sclk, pl->mclk, pl->vddc, pl->vddci); pl = &ps->high; printk("\t\tpower level 2 sclk: %u mclk: %u vddc: %u vddci: %u\n", pl->sclk, pl->mclk, pl->vddc, pl->vddci); } else { pl = &ps->low; printk("\t\tpower level 0 sclk: %u mclk: %u vddc: %u\n", pl->sclk, pl->mclk, pl->vddc); pl = &ps->medium; printk("\t\tpower level 1 sclk: %u mclk: %u vddc: %u\n", pl->sclk, pl->mclk, pl->vddc); pl = &ps->high; printk("\t\tpower level 2 sclk: %u mclk: %u vddc: %u\n", pl->sclk, pl->mclk, pl->vddc); } r600_dpm_print_ps_status(rdev, rps); } void rv770_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev, struct seq_file *m) { struct radeon_ps *rps = rdev->pm.dpm.current_ps; struct rv7xx_ps *ps = rv770_get_ps(rps); struct rv7xx_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK) >> CURRENT_PROFILE_INDEX_SHIFT; if (current_index > 2) { seq_printf(m, "invalid dpm profile %d\n", current_index); } else { if (current_index == 0) pl = &ps->low; else if (current_index == 1) pl = &ps->medium; else /* current_index == 2 */ pl = &ps->high; seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); if (rdev->family >= CHIP_CEDAR) { seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u vddci: %u\n", current_index, pl->sclk, pl->mclk, pl->vddc, pl->vddci); } else { seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u\n", current_index, pl->sclk, pl->mclk, pl->vddc); } } } u32 rv770_dpm_get_current_sclk(struct radeon_device *rdev) { struct radeon_ps *rps = rdev->pm.dpm.current_ps; struct rv7xx_ps *ps = rv770_get_ps(rps); struct rv7xx_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK) >> CURRENT_PROFILE_INDEX_SHIFT; if (current_index > 2) { return 0; } else { if (current_index == 0) pl = &ps->low; else if (current_index == 1) pl = &ps->medium; else /* current_index == 2 */ pl = &ps->high; return pl->sclk; } } u32 rv770_dpm_get_current_mclk(struct radeon_device *rdev) { struct radeon_ps *rps = rdev->pm.dpm.current_ps; struct rv7xx_ps *ps = rv770_get_ps(rps); struct rv7xx_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK) >> CURRENT_PROFILE_INDEX_SHIFT; if (current_index > 2) { return 0; } else { if (current_index == 0) pl = &ps->low; else if (current_index == 1) pl = &ps->medium; else /* current_index == 2 */ pl = &ps->high; return pl->mclk; } } void rv770_dpm_fini(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->pm.dpm.num_ps; i++) { kfree(rdev->pm.dpm.ps[i].ps_priv); } kfree(rdev->pm.dpm.ps); kfree(rdev->pm.dpm.priv); } u32 rv770_dpm_get_sclk(struct radeon_device *rdev, bool low) { struct rv7xx_ps *requested_state = rv770_get_ps(rdev->pm.dpm.requested_ps); if (low) return requested_state->low.sclk; else return requested_state->high.sclk; } u32 rv770_dpm_get_mclk(struct radeon_device *rdev, bool low) { struct rv7xx_ps *requested_state = rv770_get_ps(rdev->pm.dpm.requested_ps); if (low) return requested_state->low.mclk; else return requested_state->high.mclk; } bool rv770_dpm_vblank_too_short(struct radeon_device *rdev) { u32 vblank_time = r600_dpm_get_vblank_time(rdev); u32 switch_limit = 200; /* 300 */ /* RV770 */ /* mclk switching doesn't seem to work reliably on desktop RV770s */ if ((rdev->family == CHIP_RV770) && !(rdev->flags & RADEON_IS_MOBILITY)) switch_limit = 0xffffffff; /* disable mclk switching */ if (vblank_time < switch_limit) return true; else return false; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1