Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jakob Bornecrantz | 1746 | 62.25% | 4 | 10.26% |
Thomas Hellstrom | 699 | 24.92% | 18 | 46.15% |
Zack Rusin | 306 | 10.91% | 8 | 20.51% |
Colin Ian King | 19 | 0.68% | 1 | 2.56% |
Dan Carpenter | 13 | 0.46% | 2 | 5.13% |
Christian König | 10 | 0.36% | 1 | 2.56% |
Sinclair Yeh | 4 | 0.14% | 1 | 2.56% |
Nirmoy Das | 3 | 0.11% | 1 | 2.56% |
Sam Ravnborg | 3 | 0.11% | 1 | 2.56% |
Dirk Hohndel | 1 | 0.04% | 1 | 2.56% |
Lee Jones | 1 | 0.04% | 1 | 2.56% |
Total | 2805 | 39 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2020 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <linux/sched/signal.h> #include <drm/ttm/ttm_placement.h> #include "vmwgfx_drv.h" #include "vmwgfx_devcaps.h" bool vmw_supports_3d(struct vmw_private *dev_priv) { uint32_t fifo_min, hwversion; const struct vmw_fifo_state *fifo = dev_priv->fifo; if (!(dev_priv->capabilities & SVGA_CAP_3D)) return false; if (dev_priv->capabilities & SVGA_CAP_GBOBJECTS) { uint32_t result; if (!dev_priv->has_mob) return false; result = vmw_devcap_get(dev_priv, SVGA3D_DEVCAP_3D); return (result != 0); } if (!(dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO)) return false; BUG_ON(vmw_is_svga_v3(dev_priv)); fifo_min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); if (fifo_min <= SVGA_FIFO_3D_HWVERSION * sizeof(unsigned int)) return false; hwversion = vmw_fifo_mem_read(dev_priv, ((fifo->capabilities & SVGA_FIFO_CAP_3D_HWVERSION_REVISED) ? SVGA_FIFO_3D_HWVERSION_REVISED : SVGA_FIFO_3D_HWVERSION)); if (hwversion == 0) return false; if (hwversion < SVGA3D_HWVERSION_WS8_B1) return false; /* Legacy Display Unit does not support surfaces */ if (dev_priv->active_display_unit == vmw_du_legacy) return false; return true; } bool vmw_fifo_have_pitchlock(struct vmw_private *dev_priv) { uint32_t caps; if (!(dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO)) return false; caps = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CAPABILITIES); if (caps & SVGA_FIFO_CAP_PITCHLOCK) return true; return false; } struct vmw_fifo_state *vmw_fifo_create(struct vmw_private *dev_priv) { struct vmw_fifo_state *fifo; uint32_t max; uint32_t min; if (!dev_priv->fifo_mem) return NULL; fifo = kzalloc(sizeof(*fifo), GFP_KERNEL); if (!fifo) return ERR_PTR(-ENOMEM); fifo->static_buffer_size = VMWGFX_FIFO_STATIC_SIZE; fifo->static_buffer = vmalloc(fifo->static_buffer_size); if (unlikely(fifo->static_buffer == NULL)) { kfree(fifo); return ERR_PTR(-ENOMEM); } fifo->dynamic_buffer = NULL; fifo->reserved_size = 0; fifo->using_bounce_buffer = false; mutex_init(&fifo->fifo_mutex); init_rwsem(&fifo->rwsem); min = 4; if (dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO) min = vmw_read(dev_priv, SVGA_REG_MEM_REGS); min <<= 2; if (min < PAGE_SIZE) min = PAGE_SIZE; vmw_fifo_mem_write(dev_priv, SVGA_FIFO_MIN, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_MAX, dev_priv->fifo_mem_size); wmb(); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_NEXT_CMD, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_STOP, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_BUSY, 0); mb(); vmw_write(dev_priv, SVGA_REG_CONFIG_DONE, 1); max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); fifo->capabilities = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CAPABILITIES); drm_info(&dev_priv->drm, "Fifo max 0x%08x min 0x%08x cap 0x%08x\n", (unsigned int) max, (unsigned int) min, (unsigned int) fifo->capabilities); if (unlikely(min >= max)) { drm_warn(&dev_priv->drm, "FIFO memory is not usable. Driver failed to initialize."); return ERR_PTR(-ENXIO); } return fifo; } void vmw_fifo_ping_host(struct vmw_private *dev_priv, uint32_t reason) { u32 *fifo_mem = dev_priv->fifo_mem; if (fifo_mem && cmpxchg(fifo_mem + SVGA_FIFO_BUSY, 0, 1) == 0) vmw_write(dev_priv, SVGA_REG_SYNC, reason); } void vmw_fifo_destroy(struct vmw_private *dev_priv) { struct vmw_fifo_state *fifo = dev_priv->fifo; if (!fifo) return; if (likely(fifo->static_buffer != NULL)) { vfree(fifo->static_buffer); fifo->static_buffer = NULL; } if (likely(fifo->dynamic_buffer != NULL)) { vfree(fifo->dynamic_buffer); fifo->dynamic_buffer = NULL; } kfree(fifo); dev_priv->fifo = NULL; } static bool vmw_fifo_is_full(struct vmw_private *dev_priv, uint32_t bytes) { uint32_t max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); uint32_t next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); uint32_t min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); uint32_t stop = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_STOP); return ((max - next_cmd) + (stop - min) <= bytes); } static int vmw_fifo_wait_noirq(struct vmw_private *dev_priv, uint32_t bytes, bool interruptible, unsigned long timeout) { int ret = 0; unsigned long end_jiffies = jiffies + timeout; DEFINE_WAIT(__wait); DRM_INFO("Fifo wait noirq.\n"); for (;;) { prepare_to_wait(&dev_priv->fifo_queue, &__wait, (interruptible) ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (!vmw_fifo_is_full(dev_priv, bytes)) break; if (time_after_eq(jiffies, end_jiffies)) { ret = -EBUSY; DRM_ERROR("SVGA device lockup.\n"); break; } schedule_timeout(1); if (interruptible && signal_pending(current)) { ret = -ERESTARTSYS; break; } } finish_wait(&dev_priv->fifo_queue, &__wait); wake_up_all(&dev_priv->fifo_queue); DRM_INFO("Fifo noirq exit.\n"); return ret; } static int vmw_fifo_wait(struct vmw_private *dev_priv, uint32_t bytes, bool interruptible, unsigned long timeout) { long ret = 1L; if (likely(!vmw_fifo_is_full(dev_priv, bytes))) return 0; vmw_fifo_ping_host(dev_priv, SVGA_SYNC_FIFOFULL); if (!(dev_priv->capabilities & SVGA_CAP_IRQMASK)) return vmw_fifo_wait_noirq(dev_priv, bytes, interruptible, timeout); vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_FIFO_PROGRESS, &dev_priv->fifo_queue_waiters); if (interruptible) ret = wait_event_interruptible_timeout (dev_priv->fifo_queue, !vmw_fifo_is_full(dev_priv, bytes), timeout); else ret = wait_event_timeout (dev_priv->fifo_queue, !vmw_fifo_is_full(dev_priv, bytes), timeout); if (unlikely(ret == 0)) ret = -EBUSY; else if (likely(ret > 0)) ret = 0; vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_FIFO_PROGRESS, &dev_priv->fifo_queue_waiters); return ret; } /* * Reserve @bytes number of bytes in the fifo. * * This function will return NULL (error) on two conditions: * If it timeouts waiting for fifo space, or if @bytes is larger than the * available fifo space. * * Returns: * Pointer to the fifo, or null on error (possible hardware hang). */ static void *vmw_local_fifo_reserve(struct vmw_private *dev_priv, uint32_t bytes) { struct vmw_fifo_state *fifo_state = dev_priv->fifo; u32 *fifo_mem = dev_priv->fifo_mem; uint32_t max; uint32_t min; uint32_t next_cmd; uint32_t reserveable = fifo_state->capabilities & SVGA_FIFO_CAP_RESERVE; int ret; mutex_lock(&fifo_state->fifo_mutex); max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); if (unlikely(bytes >= (max - min))) goto out_err; BUG_ON(fifo_state->reserved_size != 0); BUG_ON(fifo_state->dynamic_buffer != NULL); fifo_state->reserved_size = bytes; while (1) { uint32_t stop = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_STOP); bool need_bounce = false; bool reserve_in_place = false; if (next_cmd >= stop) { if (likely((next_cmd + bytes < max || (next_cmd + bytes == max && stop > min)))) reserve_in_place = true; else if (vmw_fifo_is_full(dev_priv, bytes)) { ret = vmw_fifo_wait(dev_priv, bytes, false, 3 * HZ); if (unlikely(ret != 0)) goto out_err; } else need_bounce = true; } else { if (likely((next_cmd + bytes < stop))) reserve_in_place = true; else { ret = vmw_fifo_wait(dev_priv, bytes, false, 3 * HZ); if (unlikely(ret != 0)) goto out_err; } } if (reserve_in_place) { if (reserveable || bytes <= sizeof(uint32_t)) { fifo_state->using_bounce_buffer = false; if (reserveable) vmw_fifo_mem_write(dev_priv, SVGA_FIFO_RESERVED, bytes); return (void __force *) (fifo_mem + (next_cmd >> 2)); } else { need_bounce = true; } } if (need_bounce) { fifo_state->using_bounce_buffer = true; if (bytes < fifo_state->static_buffer_size) return fifo_state->static_buffer; else { fifo_state->dynamic_buffer = vmalloc(bytes); if (!fifo_state->dynamic_buffer) goto out_err; return fifo_state->dynamic_buffer; } } } out_err: fifo_state->reserved_size = 0; mutex_unlock(&fifo_state->fifo_mutex); return NULL; } void *vmw_cmd_ctx_reserve(struct vmw_private *dev_priv, uint32_t bytes, int ctx_id) { void *ret; if (dev_priv->cman) ret = vmw_cmdbuf_reserve(dev_priv->cman, bytes, ctx_id, false, NULL); else if (ctx_id == SVGA3D_INVALID_ID) ret = vmw_local_fifo_reserve(dev_priv, bytes); else { WARN(1, "Command buffer has not been allocated.\n"); ret = NULL; } if (IS_ERR_OR_NULL(ret)) return NULL; return ret; } static void vmw_fifo_res_copy(struct vmw_fifo_state *fifo_state, struct vmw_private *vmw, uint32_t next_cmd, uint32_t max, uint32_t min, uint32_t bytes) { u32 *fifo_mem = vmw->fifo_mem; uint32_t chunk_size = max - next_cmd; uint32_t rest; uint32_t *buffer = (fifo_state->dynamic_buffer != NULL) ? fifo_state->dynamic_buffer : fifo_state->static_buffer; if (bytes < chunk_size) chunk_size = bytes; vmw_fifo_mem_write(vmw, SVGA_FIFO_RESERVED, bytes); mb(); memcpy(fifo_mem + (next_cmd >> 2), buffer, chunk_size); rest = bytes - chunk_size; if (rest) memcpy(fifo_mem + (min >> 2), buffer + (chunk_size >> 2), rest); } static void vmw_fifo_slow_copy(struct vmw_fifo_state *fifo_state, struct vmw_private *vmw, uint32_t next_cmd, uint32_t max, uint32_t min, uint32_t bytes) { uint32_t *buffer = (fifo_state->dynamic_buffer != NULL) ? fifo_state->dynamic_buffer : fifo_state->static_buffer; while (bytes > 0) { vmw_fifo_mem_write(vmw, (next_cmd >> 2), *buffer++); next_cmd += sizeof(uint32_t); if (unlikely(next_cmd == max)) next_cmd = min; mb(); vmw_fifo_mem_write(vmw, SVGA_FIFO_NEXT_CMD, next_cmd); mb(); bytes -= sizeof(uint32_t); } } static void vmw_local_fifo_commit(struct vmw_private *dev_priv, uint32_t bytes) { struct vmw_fifo_state *fifo_state = dev_priv->fifo; uint32_t next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); uint32_t max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); uint32_t min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); bool reserveable = fifo_state->capabilities & SVGA_FIFO_CAP_RESERVE; BUG_ON((bytes & 3) != 0); BUG_ON(bytes > fifo_state->reserved_size); fifo_state->reserved_size = 0; if (fifo_state->using_bounce_buffer) { if (reserveable) vmw_fifo_res_copy(fifo_state, dev_priv, next_cmd, max, min, bytes); else vmw_fifo_slow_copy(fifo_state, dev_priv, next_cmd, max, min, bytes); if (fifo_state->dynamic_buffer) { vfree(fifo_state->dynamic_buffer); fifo_state->dynamic_buffer = NULL; } } down_write(&fifo_state->rwsem); if (fifo_state->using_bounce_buffer || reserveable) { next_cmd += bytes; if (next_cmd >= max) next_cmd -= max - min; mb(); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_NEXT_CMD, next_cmd); } if (reserveable) vmw_fifo_mem_write(dev_priv, SVGA_FIFO_RESERVED, 0); mb(); up_write(&fifo_state->rwsem); vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); mutex_unlock(&fifo_state->fifo_mutex); } void vmw_cmd_commit(struct vmw_private *dev_priv, uint32_t bytes) { if (dev_priv->cman) vmw_cmdbuf_commit(dev_priv->cman, bytes, NULL, false); else vmw_local_fifo_commit(dev_priv, bytes); } /** * vmw_cmd_commit_flush - Commit fifo space and flush any buffered commands. * * @dev_priv: Pointer to device private structure. * @bytes: Number of bytes to commit. */ void vmw_cmd_commit_flush(struct vmw_private *dev_priv, uint32_t bytes) { if (dev_priv->cman) vmw_cmdbuf_commit(dev_priv->cman, bytes, NULL, true); else vmw_local_fifo_commit(dev_priv, bytes); } /** * vmw_cmd_flush - Flush any buffered commands and make sure command processing * starts. * * @dev_priv: Pointer to device private structure. * @interruptible: Whether to wait interruptible if function needs to sleep. */ int vmw_cmd_flush(struct vmw_private *dev_priv, bool interruptible) { might_sleep(); if (dev_priv->cman) return vmw_cmdbuf_cur_flush(dev_priv->cman, interruptible); else return 0; } int vmw_cmd_send_fence(struct vmw_private *dev_priv, uint32_t *seqno) { struct svga_fifo_cmd_fence *cmd_fence; u32 *fm; int ret = 0; uint32_t bytes = sizeof(u32) + sizeof(*cmd_fence); fm = VMW_CMD_RESERVE(dev_priv, bytes); if (unlikely(fm == NULL)) { *seqno = atomic_read(&dev_priv->marker_seq); ret = -ENOMEM; (void)vmw_fallback_wait(dev_priv, false, true, *seqno, false, 3*HZ); goto out_err; } do { *seqno = atomic_add_return(1, &dev_priv->marker_seq); } while (*seqno == 0); if (!vmw_has_fences(dev_priv)) { /* * Don't request hardware to send a fence. The * waiting code in vmwgfx_irq.c will emulate this. */ vmw_cmd_commit(dev_priv, 0); return 0; } *fm++ = SVGA_CMD_FENCE; cmd_fence = (struct svga_fifo_cmd_fence *) fm; cmd_fence->fence = *seqno; vmw_cmd_commit_flush(dev_priv, bytes); vmw_update_seqno(dev_priv); out_err: return ret; } /** * vmw_cmd_emit_dummy_legacy_query - emits a dummy query to the fifo using * legacy query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * See the vmw_cmd_emit_dummy_query documentation. */ static int vmw_cmd_emit_dummy_legacy_query(struct vmw_private *dev_priv, uint32_t cid) { /* * A query wait without a preceding query end will * actually finish all queries for this cid * without writing to the query result structure. */ struct ttm_buffer_object *bo = &dev_priv->dummy_query_bo->base; struct { SVGA3dCmdHeader header; SVGA3dCmdWaitForQuery body; } *cmd; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_WAIT_FOR_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = cid; cmd->body.type = SVGA3D_QUERYTYPE_OCCLUSION; if (bo->resource->mem_type == TTM_PL_VRAM) { cmd->body.guestResult.gmrId = SVGA_GMR_FRAMEBUFFER; cmd->body.guestResult.offset = bo->resource->start << PAGE_SHIFT; } else { cmd->body.guestResult.gmrId = bo->resource->start; cmd->body.guestResult.offset = 0; } vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } /** * vmw_cmd_emit_dummy_gb_query - emits a dummy query to the fifo using * guest-backed resource query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * See the vmw_cmd_emit_dummy_query documentation. */ static int vmw_cmd_emit_dummy_gb_query(struct vmw_private *dev_priv, uint32_t cid) { /* * A query wait without a preceding query end will * actually finish all queries for this cid * without writing to the query result structure. */ struct ttm_buffer_object *bo = &dev_priv->dummy_query_bo->base; struct { SVGA3dCmdHeader header; SVGA3dCmdWaitForGBQuery body; } *cmd; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_WAIT_FOR_GB_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = cid; cmd->body.type = SVGA3D_QUERYTYPE_OCCLUSION; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); cmd->body.mobid = bo->resource->start; cmd->body.offset = 0; vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } /** * vmw_cmd_emit_dummy_query - emits a dummy query to the fifo using * appropriate resource query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * This function is used to emit a dummy occlusion query with * no primitives rendered between query begin and query end. * It's used to provide a query barrier, in order to know that when * this query is finished, all preceding queries are also finished. * * A Query results structure should have been initialized at the start * of the dev_priv->dummy_query_bo buffer object. And that buffer object * must also be either reserved or pinned when this function is called. * * Returns -ENOMEM on failure to reserve fifo space. */ int vmw_cmd_emit_dummy_query(struct vmw_private *dev_priv, uint32_t cid) { if (dev_priv->has_mob) return vmw_cmd_emit_dummy_gb_query(dev_priv, cid); return vmw_cmd_emit_dummy_legacy_query(dev_priv, cid); } /** * vmw_cmd_supported - returns true if the given device supports * command queues. * * @vmw: The device private structure. * * Returns true if we can issue commands. */ bool vmw_cmd_supported(struct vmw_private *vmw) { bool has_cmdbufs = (vmw->capabilities & (SVGA_CAP_COMMAND_BUFFERS | SVGA_CAP_CMD_BUFFERS_2)) != 0; if (vmw_is_svga_v3(vmw)) return (has_cmdbufs && (vmw->capabilities & SVGA_CAP_GBOBJECTS) != 0); /* * We have FIFO cmd's */ return has_cmdbufs || vmw->fifo_mem != NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1