Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Zaidman | 4401 | 99.62% | 6 | 75.00% |
Greg Kroah-Hartman | 12 | 0.27% | 1 | 12.50% |
Dan Carpenter | 5 | 0.11% | 1 | 12.50% |
Total | 4418 | 8 |
// SPDX-License-Identifier: GPL-2.0-only /* * hid-ft260.c - FTDI FT260 USB HID to I2C host bridge * * Copyright (c) 2021, Michael Zaidman <michaelz@xsightlabs.com> * * Data Sheet: * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT260.pdf */ #include "hid-ids.h" #include <linux/hidraw.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/usb.h> #ifdef DEBUG static int ft260_debug = 1; #else static int ft260_debug; #endif module_param_named(debug, ft260_debug, int, 0600); MODULE_PARM_DESC(debug, "Toggle FT260 debugging messages"); #define ft260_dbg(format, arg...) \ do { \ if (ft260_debug) \ pr_info("%s: " format, __func__, ##arg); \ } while (0) #define FT260_REPORT_MAX_LENGTH (64) #define FT260_I2C_DATA_REPORT_ID(len) (FT260_I2C_REPORT_MIN + (len - 1) / 4) /* * The input report format assigns 62 bytes for the data payload, but ft260 * returns 60 and 2 in two separate transactions. To minimize transfer time * in reading chunks mode, set the maximum read payload length to 60 bytes. */ #define FT260_RD_DATA_MAX (60) #define FT260_WR_DATA_MAX (60) /* * Device interface configuration. * The FT260 has 2 interfaces that are controlled by DCNF0 and DCNF1 pins. * First implementes USB HID to I2C bridge function and * second - USB HID to UART bridge function. */ enum { FT260_MODE_ALL = 0x00, FT260_MODE_I2C = 0x01, FT260_MODE_UART = 0x02, FT260_MODE_BOTH = 0x03, }; /* Control pipe */ enum { FT260_GET_RQST_TYPE = 0xA1, FT260_GET_REPORT = 0x01, FT260_SET_RQST_TYPE = 0x21, FT260_SET_REPORT = 0x09, FT260_FEATURE = 0x03, }; /* Report IDs / Feature In */ enum { FT260_CHIP_VERSION = 0xA0, FT260_SYSTEM_SETTINGS = 0xA1, FT260_I2C_STATUS = 0xC0, FT260_I2C_READ_REQ = 0xC2, FT260_I2C_REPORT_MIN = 0xD0, FT260_I2C_REPORT_MAX = 0xDE, FT260_GPIO = 0xB0, FT260_UART_INTERRUPT_STATUS = 0xB1, FT260_UART_STATUS = 0xE0, FT260_UART_RI_DCD_STATUS = 0xE1, FT260_UART_REPORT = 0xF0, }; /* Feature Out */ enum { FT260_SET_CLOCK = 0x01, FT260_SET_I2C_MODE = 0x02, FT260_SET_UART_MODE = 0x03, FT260_ENABLE_INTERRUPT = 0x05, FT260_SELECT_GPIO2_FUNC = 0x06, FT260_ENABLE_UART_DCD_RI = 0x07, FT260_SELECT_GPIOA_FUNC = 0x08, FT260_SELECT_GPIOG_FUNC = 0x09, FT260_SET_INTERRUPT_TRIGGER = 0x0A, FT260_SET_SUSPEND_OUT_POLAR = 0x0B, FT260_ENABLE_UART_RI_WAKEUP = 0x0C, FT260_SET_UART_RI_WAKEUP_CFG = 0x0D, FT260_SET_I2C_RESET = 0x20, FT260_SET_I2C_CLOCK_SPEED = 0x22, FT260_SET_UART_RESET = 0x40, FT260_SET_UART_CONFIG = 0x41, FT260_SET_UART_BAUD_RATE = 0x42, FT260_SET_UART_DATA_BIT = 0x43, FT260_SET_UART_PARITY = 0x44, FT260_SET_UART_STOP_BIT = 0x45, FT260_SET_UART_BREAKING = 0x46, FT260_SET_UART_XON_XOFF = 0x49, }; /* Response codes in I2C status report */ enum { FT260_I2C_STATUS_SUCCESS = 0x00, FT260_I2C_STATUS_CTRL_BUSY = 0x01, FT260_I2C_STATUS_ERROR = 0x02, FT260_I2C_STATUS_ADDR_NO_ACK = 0x04, FT260_I2C_STATUS_DATA_NO_ACK = 0x08, FT260_I2C_STATUS_ARBITR_LOST = 0x10, FT260_I2C_STATUS_CTRL_IDLE = 0x20, FT260_I2C_STATUS_BUS_BUSY = 0x40, }; /* I2C Conditions flags */ enum { FT260_FLAG_NONE = 0x00, FT260_FLAG_START = 0x02, FT260_FLAG_START_REPEATED = 0x03, FT260_FLAG_STOP = 0x04, FT260_FLAG_START_STOP = 0x06, FT260_FLAG_START_STOP_REPEATED = 0x07, }; #define FT260_SET_REQUEST_VALUE(report_id) ((FT260_FEATURE << 8) | report_id) /* Feature In reports */ struct ft260_get_chip_version_report { u8 report; /* FT260_CHIP_VERSION */ u8 chip_code[4]; /* FTDI chip identification code */ u8 reserved[8]; } __packed; struct ft260_get_system_status_report { u8 report; /* FT260_SYSTEM_SETTINGS */ u8 chip_mode; /* DCNF0 and DCNF1 status, bits 0-1 */ u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */ u8 suspend_status; /* 0 - not suspended, 1 - suspended */ u8 pwren_status; /* 0 - FT260 is not ready, 1 - ready */ u8 i2c_enable; /* 0 - disabled, 1 - enabled */ u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */ /* 3 - XON_XOFF, 4 - No flow control */ u8 hid_over_i2c_en; /* 0 - disabled, 1 - enabled */ u8 gpio2_function; /* 0 - GPIO, 1 - SUSPOUT, */ /* 2 - PWREN, 4 - TX_LED */ u8 gpioA_function; /* 0 - GPIO, 3 - TX_ACTIVE, 4 - TX_LED */ u8 gpioG_function; /* 0 - GPIO, 2 - PWREN, */ /* 5 - RX_LED, 6 - BCD_DET */ u8 suspend_out_pol; /* 0 - active-high, 1 - active-low */ u8 enable_wakeup_int; /* 0 - disabled, 1 - enabled */ u8 intr_cond; /* Interrupt trigger conditions */ u8 power_saving_en; /* 0 - disabled, 1 - enabled */ u8 reserved[10]; } __packed; struct ft260_get_i2c_status_report { u8 report; /* FT260_I2C_STATUS */ u8 bus_status; /* I2C bus status */ __le16 clock; /* I2C bus clock in range 60-3400 KHz */ u8 reserved; } __packed; /* Feature Out reports */ struct ft260_set_system_clock_report { u8 report; /* FT260_SYSTEM_SETTINGS */ u8 request; /* FT260_SET_CLOCK */ u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */ } __packed; struct ft260_set_i2c_mode_report { u8 report; /* FT260_SYSTEM_SETTINGS */ u8 request; /* FT260_SET_I2C_MODE */ u8 i2c_enable; /* 0 - disabled, 1 - enabled */ } __packed; struct ft260_set_uart_mode_report { u8 report; /* FT260_SYSTEM_SETTINGS */ u8 request; /* FT260_SET_UART_MODE */ u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */ /* 3 - XON_XOFF, 4 - No flow control */ } __packed; struct ft260_set_i2c_reset_report { u8 report; /* FT260_SYSTEM_SETTINGS */ u8 request; /* FT260_SET_I2C_RESET */ } __packed; struct ft260_set_i2c_speed_report { u8 report; /* FT260_SYSTEM_SETTINGS */ u8 request; /* FT260_SET_I2C_CLOCK_SPEED */ __le16 clock; /* I2C bus clock in range 60-3400 KHz */ } __packed; /* Data transfer reports */ struct ft260_i2c_write_request_report { u8 report; /* FT260_I2C_REPORT */ u8 address; /* 7-bit I2C address */ u8 flag; /* I2C transaction condition */ u8 length; /* data payload length */ u8 data[FT260_WR_DATA_MAX]; /* data payload */ } __packed; struct ft260_i2c_read_request_report { u8 report; /* FT260_I2C_READ_REQ */ u8 address; /* 7-bit I2C address */ u8 flag; /* I2C transaction condition */ __le16 length; /* data payload length */ } __packed; struct ft260_i2c_input_report { u8 report; /* FT260_I2C_REPORT */ u8 length; /* data payload length */ u8 data[2]; /* data payload */ } __packed; static const struct hid_device_id ft260_devices[] = { { HID_USB_DEVICE(USB_VENDOR_ID_FUTURE_TECHNOLOGY, USB_DEVICE_ID_FT260) }, { /* END OF LIST */ } }; MODULE_DEVICE_TABLE(hid, ft260_devices); struct ft260_device { struct i2c_adapter adap; struct hid_device *hdev; struct completion wait; struct mutex lock; u8 write_buf[FT260_REPORT_MAX_LENGTH]; u8 *read_buf; u16 read_idx; u16 read_len; u16 clock; }; static int ft260_hid_feature_report_get(struct hid_device *hdev, unsigned char report_id, u8 *data, size_t len) { u8 *buf; int ret; buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; ret = hid_hw_raw_request(hdev, report_id, buf, len, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (likely(ret == len)) memcpy(data, buf, len); else if (ret >= 0) ret = -EIO; kfree(buf); return ret; } static int ft260_hid_feature_report_set(struct hid_device *hdev, u8 *data, size_t len) { u8 *buf; int ret; buf = kmemdup(data, len, GFP_KERNEL); if (!buf) return -ENOMEM; buf[0] = FT260_SYSTEM_SETTINGS; ret = hid_hw_raw_request(hdev, buf[0], buf, len, HID_FEATURE_REPORT, HID_REQ_SET_REPORT); kfree(buf); return ret; } static int ft260_i2c_reset(struct hid_device *hdev) { struct ft260_set_i2c_reset_report report; int ret; report.request = FT260_SET_I2C_RESET; ret = ft260_hid_feature_report_set(hdev, (u8 *)&report, sizeof(report)); if (ret < 0) { hid_err(hdev, "failed to reset I2C controller: %d\n", ret); return ret; } ft260_dbg("done\n"); return ret; } static int ft260_xfer_status(struct ft260_device *dev) { struct hid_device *hdev = dev->hdev; struct ft260_get_i2c_status_report report; int ret; ret = ft260_hid_feature_report_get(hdev, FT260_I2C_STATUS, (u8 *)&report, sizeof(report)); if (unlikely(ret < 0)) { hid_err(hdev, "failed to retrieve status: %d\n", ret); return ret; } dev->clock = le16_to_cpu(report.clock); ft260_dbg("bus_status %#02x, clock %u\n", report.bus_status, dev->clock); if (report.bus_status & FT260_I2C_STATUS_CTRL_BUSY) return -EAGAIN; if (report.bus_status & FT260_I2C_STATUS_BUS_BUSY) return -EBUSY; if (report.bus_status & FT260_I2C_STATUS_ERROR) return -EIO; ret = -EIO; if (report.bus_status & FT260_I2C_STATUS_ADDR_NO_ACK) ft260_dbg("unacknowledged address\n"); if (report.bus_status & FT260_I2C_STATUS_DATA_NO_ACK) ft260_dbg("unacknowledged data\n"); if (report.bus_status & FT260_I2C_STATUS_ARBITR_LOST) ft260_dbg("arbitration loss\n"); if (report.bus_status & FT260_I2C_STATUS_CTRL_IDLE) ret = 0; return ret; } static int ft260_hid_output_report(struct hid_device *hdev, u8 *data, size_t len) { u8 *buf; int ret; buf = kmemdup(data, len, GFP_KERNEL); if (!buf) return -ENOMEM; ret = hid_hw_output_report(hdev, buf, len); kfree(buf); return ret; } static int ft260_hid_output_report_check_status(struct ft260_device *dev, u8 *data, int len) { int ret, usec, try = 3; struct hid_device *hdev = dev->hdev; ret = ft260_hid_output_report(hdev, data, len); if (ret < 0) { hid_err(hdev, "%s: failed to start transfer, ret %d\n", __func__, ret); ft260_i2c_reset(hdev); return ret; } /* transfer time = 1 / clock(KHz) * 10 bits * bytes */ usec = 10000 / dev->clock * len; usleep_range(usec, usec + 100); ft260_dbg("wait %d usec, len %d\n", usec, len); do { ret = ft260_xfer_status(dev); if (ret != -EAGAIN) break; } while (--try); if (ret == 0 || ret == -EBUSY) return 0; ft260_i2c_reset(hdev); return -EIO; } static int ft260_i2c_write(struct ft260_device *dev, u8 addr, u8 *data, int data_len, u8 flag) { int len, ret, idx = 0; struct hid_device *hdev = dev->hdev; struct ft260_i2c_write_request_report *rep = (struct ft260_i2c_write_request_report *)dev->write_buf; do { if (data_len <= FT260_WR_DATA_MAX) len = data_len; else len = FT260_WR_DATA_MAX; rep->report = FT260_I2C_DATA_REPORT_ID(len); rep->address = addr; rep->length = len; rep->flag = flag; memcpy(rep->data, &data[idx], len); ft260_dbg("rep %#02x addr %#02x off %d len %d d[0] %#02x\n", rep->report, addr, idx, len, data[0]); ret = ft260_hid_output_report_check_status(dev, (u8 *)rep, len + 4); if (ret < 0) { hid_err(hdev, "%s: failed to start transfer, ret %d\n", __func__, ret); return ret; } data_len -= len; idx += len; } while (data_len > 0); return 0; } static int ft260_smbus_write(struct ft260_device *dev, u8 addr, u8 cmd, u8 *data, u8 data_len, u8 flag) { int ret = 0; int len = 4; struct ft260_i2c_write_request_report *rep = (struct ft260_i2c_write_request_report *)dev->write_buf; if (data_len >= sizeof(rep->data)) return -EINVAL; rep->address = addr; rep->data[0] = cmd; rep->length = data_len + 1; rep->flag = flag; len += rep->length; rep->report = FT260_I2C_DATA_REPORT_ID(len); if (data_len > 0) memcpy(&rep->data[1], data, data_len); ft260_dbg("rep %#02x addr %#02x cmd %#02x datlen %d replen %d\n", rep->report, addr, cmd, rep->length, len); ret = ft260_hid_output_report_check_status(dev, (u8 *)rep, len); return ret; } static int ft260_i2c_read(struct ft260_device *dev, u8 addr, u8 *data, u16 len, u8 flag) { struct ft260_i2c_read_request_report rep; struct hid_device *hdev = dev->hdev; int timeout; int ret; if (len > FT260_RD_DATA_MAX) { hid_err(hdev, "%s: unsupported rd len: %d\n", __func__, len); return -EINVAL; } dev->read_idx = 0; dev->read_buf = data; dev->read_len = len; rep.report = FT260_I2C_READ_REQ; rep.length = cpu_to_le16(len); rep.address = addr; rep.flag = flag; ft260_dbg("rep %#02x addr %#02x len %d\n", rep.report, rep.address, rep.length); reinit_completion(&dev->wait); ret = ft260_hid_output_report(hdev, (u8 *)&rep, sizeof(rep)); if (ret < 0) { hid_err(hdev, "%s: failed to start transaction, ret %d\n", __func__, ret); return ret; } timeout = msecs_to_jiffies(5000); if (!wait_for_completion_timeout(&dev->wait, timeout)) { ft260_i2c_reset(hdev); return -ETIMEDOUT; } ret = ft260_xfer_status(dev); if (ret == 0) return 0; ft260_i2c_reset(hdev); return -EIO; } /* * A random read operation is implemented as a dummy write operation, followed * by a current address read operation. The dummy write operation is used to * load the target byte address into the current byte address counter, from * which the subsequent current address read operation then reads. */ static int ft260_i2c_write_read(struct ft260_device *dev, struct i2c_msg *msgs) { int len, ret; u16 left_len = msgs[1].len; u8 *read_buf = msgs[1].buf; u8 addr = msgs[0].addr; u16 read_off = 0; struct hid_device *hdev = dev->hdev; if (msgs[0].len > 2) { hid_err(hdev, "%s: unsupported wr len: %d\n", __func__, msgs[0].len); return -EOPNOTSUPP; } memcpy(&read_off, msgs[0].buf, msgs[0].len); do { if (left_len <= FT260_RD_DATA_MAX) len = left_len; else len = FT260_RD_DATA_MAX; ft260_dbg("read_off %#x left_len %d len %d\n", read_off, left_len, len); ret = ft260_i2c_write(dev, addr, (u8 *)&read_off, msgs[0].len, FT260_FLAG_START); if (ret < 0) return ret; ret = ft260_i2c_read(dev, addr, read_buf, len, FT260_FLAG_START_STOP); if (ret < 0) return ret; left_len -= len; read_buf += len; read_off += len; } while (left_len > 0); return 0; } static int ft260_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) { int ret; struct ft260_device *dev = i2c_get_adapdata(adapter); struct hid_device *hdev = dev->hdev; mutex_lock(&dev->lock); ret = hid_hw_power(hdev, PM_HINT_FULLON); if (ret < 0) { hid_err(hdev, "failed to enter FULLON power mode: %d\n", ret); mutex_unlock(&dev->lock); return ret; } if (num == 1) { if (msgs->flags & I2C_M_RD) ret = ft260_i2c_read(dev, msgs->addr, msgs->buf, msgs->len, FT260_FLAG_START_STOP); else ret = ft260_i2c_write(dev, msgs->addr, msgs->buf, msgs->len, FT260_FLAG_START_STOP); if (ret < 0) goto i2c_exit; } else { /* Combined write then read message */ ret = ft260_i2c_write_read(dev, msgs); if (ret < 0) goto i2c_exit; } ret = num; i2c_exit: hid_hw_power(hdev, PM_HINT_NORMAL); mutex_unlock(&dev->lock); return ret; } static int ft260_smbus_xfer(struct i2c_adapter *adapter, u16 addr, u16 flags, char read_write, u8 cmd, int size, union i2c_smbus_data *data) { int ret; struct ft260_device *dev = i2c_get_adapdata(adapter); struct hid_device *hdev = dev->hdev; ft260_dbg("smbus size %d\n", size); mutex_lock(&dev->lock); ret = hid_hw_power(hdev, PM_HINT_FULLON); if (ret < 0) { hid_err(hdev, "power management error: %d\n", ret); mutex_unlock(&dev->lock); return ret; } switch (size) { case I2C_SMBUS_QUICK: if (read_write == I2C_SMBUS_READ) ret = ft260_i2c_read(dev, addr, &data->byte, 0, FT260_FLAG_START_STOP); else ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, FT260_FLAG_START_STOP); break; case I2C_SMBUS_BYTE: if (read_write == I2C_SMBUS_READ) ret = ft260_i2c_read(dev, addr, &data->byte, 1, FT260_FLAG_START_STOP); else ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, FT260_FLAG_START_STOP); break; case I2C_SMBUS_BYTE_DATA: if (read_write == I2C_SMBUS_READ) { ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, FT260_FLAG_START); if (ret) goto smbus_exit; ret = ft260_i2c_read(dev, addr, &data->byte, 1, FT260_FLAG_START_STOP_REPEATED); } else { ret = ft260_smbus_write(dev, addr, cmd, &data->byte, 1, FT260_FLAG_START_STOP); } break; case I2C_SMBUS_WORD_DATA: if (read_write == I2C_SMBUS_READ) { ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, FT260_FLAG_START); if (ret) goto smbus_exit; ret = ft260_i2c_read(dev, addr, (u8 *)&data->word, 2, FT260_FLAG_START_STOP_REPEATED); } else { ret = ft260_smbus_write(dev, addr, cmd, (u8 *)&data->word, 2, FT260_FLAG_START_STOP); } break; case I2C_SMBUS_BLOCK_DATA: if (read_write == I2C_SMBUS_READ) { ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, FT260_FLAG_START); if (ret) goto smbus_exit; ret = ft260_i2c_read(dev, addr, data->block, data->block[0] + 1, FT260_FLAG_START_STOP_REPEATED); } else { ret = ft260_smbus_write(dev, addr, cmd, data->block, data->block[0] + 1, FT260_FLAG_START_STOP); } break; case I2C_SMBUS_I2C_BLOCK_DATA: if (read_write == I2C_SMBUS_READ) { ret = ft260_smbus_write(dev, addr, cmd, NULL, 0, FT260_FLAG_START); if (ret) goto smbus_exit; ret = ft260_i2c_read(dev, addr, data->block + 1, data->block[0], FT260_FLAG_START_STOP_REPEATED); } else { ret = ft260_smbus_write(dev, addr, cmd, data->block + 1, data->block[0], FT260_FLAG_START_STOP); } break; default: hid_err(hdev, "unsupported smbus transaction size %d\n", size); ret = -EOPNOTSUPP; } smbus_exit: hid_hw_power(hdev, PM_HINT_NORMAL); mutex_unlock(&dev->lock); return ret; } static u32 ft260_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_I2C_BLOCK; } static const struct i2c_adapter_quirks ft260_i2c_quirks = { .flags = I2C_AQ_COMB_WRITE_THEN_READ, .max_comb_1st_msg_len = 2, }; static const struct i2c_algorithm ft260_i2c_algo = { .master_xfer = ft260_i2c_xfer, .smbus_xfer = ft260_smbus_xfer, .functionality = ft260_functionality, }; static int ft260_get_system_config(struct hid_device *hdev, struct ft260_get_system_status_report *cfg) { int ret; int len = sizeof(struct ft260_get_system_status_report); ret = ft260_hid_feature_report_get(hdev, FT260_SYSTEM_SETTINGS, (u8 *)cfg, len); if (ret < 0) { hid_err(hdev, "failed to retrieve system status\n"); return ret; } return 0; } static int ft260_is_interface_enabled(struct hid_device *hdev) { struct ft260_get_system_status_report cfg; struct usb_interface *usbif = to_usb_interface(hdev->dev.parent); int interface = usbif->cur_altsetting->desc.bInterfaceNumber; int ret; ret = ft260_get_system_config(hdev, &cfg); if (ret < 0) return ret; ft260_dbg("interface: 0x%02x\n", interface); ft260_dbg("chip mode: 0x%02x\n", cfg.chip_mode); ft260_dbg("clock_ctl: 0x%02x\n", cfg.clock_ctl); ft260_dbg("i2c_enable: 0x%02x\n", cfg.i2c_enable); ft260_dbg("uart_mode: 0x%02x\n", cfg.uart_mode); switch (cfg.chip_mode) { case FT260_MODE_ALL: case FT260_MODE_BOTH: if (interface == 1) hid_info(hdev, "uart interface is not supported\n"); else ret = 1; break; case FT260_MODE_UART: hid_info(hdev, "uart interface is not supported\n"); break; case FT260_MODE_I2C: ret = 1; break; } return ret; } static int ft260_byte_show(struct hid_device *hdev, int id, u8 *cfg, int len, u8 *field, u8 *buf) { int ret; ret = ft260_hid_feature_report_get(hdev, id, cfg, len); if (ret < 0) return ret; return scnprintf(buf, PAGE_SIZE, "%d\n", *field); } static int ft260_word_show(struct hid_device *hdev, int id, u8 *cfg, int len, u16 *field, u8 *buf) { int ret; ret = ft260_hid_feature_report_get(hdev, id, cfg, len); if (ret < 0) return ret; return scnprintf(buf, PAGE_SIZE, "%d\n", le16_to_cpu(*field)); } #define FT260_ATTR_SHOW(name, reptype, id, type, func) \ static ssize_t name##_show(struct device *kdev, \ struct device_attribute *attr, char *buf) \ { \ struct reptype rep; \ struct hid_device *hdev = to_hid_device(kdev); \ type *field = &rep.name; \ int len = sizeof(rep); \ \ return func(hdev, id, (u8 *)&rep, len, field, buf); \ } #define FT260_SSTAT_ATTR_SHOW(name) \ FT260_ATTR_SHOW(name, ft260_get_system_status_report, \ FT260_SYSTEM_SETTINGS, u8, ft260_byte_show) #define FT260_I2CST_ATTR_SHOW(name) \ FT260_ATTR_SHOW(name, ft260_get_i2c_status_report, \ FT260_I2C_STATUS, u16, ft260_word_show) #define FT260_ATTR_STORE(name, reptype, id, req, type, func) \ static ssize_t name##_store(struct device *kdev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct reptype rep; \ struct hid_device *hdev = to_hid_device(kdev); \ type name; \ int ret; \ \ if (!func(buf, 10, &name)) { \ rep.name = name; \ rep.report = id; \ rep.request = req; \ ret = ft260_hid_feature_report_set(hdev, (u8 *)&rep, \ sizeof(rep)); \ if (!ret) \ ret = count; \ } else { \ ret = -EINVAL; \ } \ return ret; \ } #define FT260_BYTE_ATTR_STORE(name, reptype, req) \ FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \ u8, kstrtou8) #define FT260_WORD_ATTR_STORE(name, reptype, req) \ FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \ u16, kstrtou16) FT260_SSTAT_ATTR_SHOW(chip_mode); static DEVICE_ATTR_RO(chip_mode); FT260_SSTAT_ATTR_SHOW(pwren_status); static DEVICE_ATTR_RO(pwren_status); FT260_SSTAT_ATTR_SHOW(suspend_status); static DEVICE_ATTR_RO(suspend_status); FT260_SSTAT_ATTR_SHOW(hid_over_i2c_en); static DEVICE_ATTR_RO(hid_over_i2c_en); FT260_SSTAT_ATTR_SHOW(power_saving_en); static DEVICE_ATTR_RO(power_saving_en); FT260_SSTAT_ATTR_SHOW(i2c_enable); FT260_BYTE_ATTR_STORE(i2c_enable, ft260_set_i2c_mode_report, FT260_SET_I2C_MODE); static DEVICE_ATTR_RW(i2c_enable); FT260_SSTAT_ATTR_SHOW(uart_mode); FT260_BYTE_ATTR_STORE(uart_mode, ft260_set_uart_mode_report, FT260_SET_UART_MODE); static DEVICE_ATTR_RW(uart_mode); FT260_SSTAT_ATTR_SHOW(clock_ctl); FT260_BYTE_ATTR_STORE(clock_ctl, ft260_set_system_clock_report, FT260_SET_CLOCK); static DEVICE_ATTR_RW(clock_ctl); FT260_I2CST_ATTR_SHOW(clock); FT260_WORD_ATTR_STORE(clock, ft260_set_i2c_speed_report, FT260_SET_I2C_CLOCK_SPEED); static DEVICE_ATTR_RW(clock); static ssize_t i2c_reset_store(struct device *kdev, struct device_attribute *attr, const char *buf, size_t count) { struct hid_device *hdev = to_hid_device(kdev); int ret = ft260_i2c_reset(hdev); if (ret) return ret; return count; } static DEVICE_ATTR_WO(i2c_reset); static const struct attribute_group ft260_attr_group = { .attrs = (struct attribute *[]) { &dev_attr_chip_mode.attr, &dev_attr_pwren_status.attr, &dev_attr_suspend_status.attr, &dev_attr_hid_over_i2c_en.attr, &dev_attr_power_saving_en.attr, &dev_attr_i2c_enable.attr, &dev_attr_uart_mode.attr, &dev_attr_clock_ctl.attr, &dev_attr_i2c_reset.attr, &dev_attr_clock.attr, NULL } }; static int ft260_probe(struct hid_device *hdev, const struct hid_device_id *id) { struct ft260_device *dev; struct ft260_get_chip_version_report version; int ret; if (!hid_is_usb(hdev)) return -EINVAL; dev = devm_kzalloc(&hdev->dev, sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; ret = hid_parse(hdev); if (ret) { hid_err(hdev, "failed to parse HID\n"); return ret; } ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); if (ret) { hid_err(hdev, "failed to start HID HW\n"); return ret; } ret = hid_hw_open(hdev); if (ret) { hid_err(hdev, "failed to open HID HW\n"); goto err_hid_stop; } ret = ft260_hid_feature_report_get(hdev, FT260_CHIP_VERSION, (u8 *)&version, sizeof(version)); if (ret < 0) { hid_err(hdev, "failed to retrieve chip version\n"); goto err_hid_close; } hid_info(hdev, "chip code: %02x%02x %02x%02x\n", version.chip_code[0], version.chip_code[1], version.chip_code[2], version.chip_code[3]); ret = ft260_is_interface_enabled(hdev); if (ret <= 0) goto err_hid_close; hid_set_drvdata(hdev, dev); dev->hdev = hdev; dev->adap.owner = THIS_MODULE; dev->adap.class = I2C_CLASS_HWMON; dev->adap.algo = &ft260_i2c_algo; dev->adap.quirks = &ft260_i2c_quirks; dev->adap.dev.parent = &hdev->dev; snprintf(dev->adap.name, sizeof(dev->adap.name), "FT260 usb-i2c bridge on hidraw%d", ((struct hidraw *)hdev->hidraw)->minor); mutex_init(&dev->lock); init_completion(&dev->wait); ret = ft260_xfer_status(dev); if (ret) ft260_i2c_reset(hdev); i2c_set_adapdata(&dev->adap, dev); ret = i2c_add_adapter(&dev->adap); if (ret) { hid_err(hdev, "failed to add i2c adapter\n"); goto err_hid_close; } ret = sysfs_create_group(&hdev->dev.kobj, &ft260_attr_group); if (ret < 0) { hid_err(hdev, "failed to create sysfs attrs\n"); goto err_i2c_free; } return 0; err_i2c_free: i2c_del_adapter(&dev->adap); err_hid_close: hid_hw_close(hdev); err_hid_stop: hid_hw_stop(hdev); return ret; } static void ft260_remove(struct hid_device *hdev) { struct ft260_device *dev = hid_get_drvdata(hdev); if (!dev) return; sysfs_remove_group(&hdev->dev.kobj, &ft260_attr_group); i2c_del_adapter(&dev->adap); hid_hw_close(hdev); hid_hw_stop(hdev); } static int ft260_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size) { struct ft260_device *dev = hid_get_drvdata(hdev); struct ft260_i2c_input_report *xfer = (void *)data; if (xfer->report >= FT260_I2C_REPORT_MIN && xfer->report <= FT260_I2C_REPORT_MAX) { ft260_dbg("i2c resp: rep %#02x len %d\n", xfer->report, xfer->length); memcpy(&dev->read_buf[dev->read_idx], &xfer->data, xfer->length); dev->read_idx += xfer->length; if (dev->read_idx == dev->read_len) complete(&dev->wait); } else { hid_err(hdev, "unknown report: %#02x\n", xfer->report); return 0; } return 1; } static struct hid_driver ft260_driver = { .name = "ft260", .id_table = ft260_devices, .probe = ft260_probe, .remove = ft260_remove, .raw_event = ft260_raw_event, }; module_hid_driver(ft260_driver); MODULE_DESCRIPTION("FTDI FT260 USB HID to I2C host bridge"); MODULE_AUTHOR("Michael Zaidman <michael.zaidman@gmail.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1