Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dipen Patel | 3704 | 100.00% | 1 | 100.00% |
Total | 3704 | 1 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2021-2022 NVIDIA Corporation * * Author: Dipen Patel <dipenp@nvidia.com> */ #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/stat.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/hte.h> #include <linux/uaccess.h> #include <linux/gpio/driver.h> #include <linux/gpio/consumer.h> #define HTE_SUSPEND 0 /* HTE source clock TSC is 31.25MHz */ #define HTE_TS_CLK_RATE_HZ 31250000ULL #define HTE_CLK_RATE_NS 32 #define HTE_TS_NS_SHIFT __builtin_ctz(HTE_CLK_RATE_NS) #define NV_AON_SLICE_INVALID -1 #define NV_LINES_IN_SLICE 32 /* AON HTE line map For slice 1 */ #define NV_AON_HTE_SLICE1_IRQ_GPIO_28 12 #define NV_AON_HTE_SLICE1_IRQ_GPIO_29 13 /* AON HTE line map For slice 2 */ #define NV_AON_HTE_SLICE2_IRQ_GPIO_0 0 #define NV_AON_HTE_SLICE2_IRQ_GPIO_1 1 #define NV_AON_HTE_SLICE2_IRQ_GPIO_2 2 #define NV_AON_HTE_SLICE2_IRQ_GPIO_3 3 #define NV_AON_HTE_SLICE2_IRQ_GPIO_4 4 #define NV_AON_HTE_SLICE2_IRQ_GPIO_5 5 #define NV_AON_HTE_SLICE2_IRQ_GPIO_6 6 #define NV_AON_HTE_SLICE2_IRQ_GPIO_7 7 #define NV_AON_HTE_SLICE2_IRQ_GPIO_8 8 #define NV_AON_HTE_SLICE2_IRQ_GPIO_9 9 #define NV_AON_HTE_SLICE2_IRQ_GPIO_10 10 #define NV_AON_HTE_SLICE2_IRQ_GPIO_11 11 #define NV_AON_HTE_SLICE2_IRQ_GPIO_12 12 #define NV_AON_HTE_SLICE2_IRQ_GPIO_13 13 #define NV_AON_HTE_SLICE2_IRQ_GPIO_14 14 #define NV_AON_HTE_SLICE2_IRQ_GPIO_15 15 #define NV_AON_HTE_SLICE2_IRQ_GPIO_16 16 #define NV_AON_HTE_SLICE2_IRQ_GPIO_17 17 #define NV_AON_HTE_SLICE2_IRQ_GPIO_18 18 #define NV_AON_HTE_SLICE2_IRQ_GPIO_19 19 #define NV_AON_HTE_SLICE2_IRQ_GPIO_20 20 #define NV_AON_HTE_SLICE2_IRQ_GPIO_21 21 #define NV_AON_HTE_SLICE2_IRQ_GPIO_22 22 #define NV_AON_HTE_SLICE2_IRQ_GPIO_23 23 #define NV_AON_HTE_SLICE2_IRQ_GPIO_24 24 #define NV_AON_HTE_SLICE2_IRQ_GPIO_25 25 #define NV_AON_HTE_SLICE2_IRQ_GPIO_26 26 #define NV_AON_HTE_SLICE2_IRQ_GPIO_27 27 #define HTE_TECTRL 0x0 #define HTE_TETSCH 0x4 #define HTE_TETSCL 0x8 #define HTE_TESRC 0xC #define HTE_TECCV 0x10 #define HTE_TEPCV 0x14 #define HTE_TECMD 0x1C #define HTE_TESTATUS 0x20 #define HTE_SLICE0_TETEN 0x40 #define HTE_SLICE1_TETEN 0x60 #define HTE_SLICE_SIZE (HTE_SLICE1_TETEN - HTE_SLICE0_TETEN) #define HTE_TECTRL_ENABLE_ENABLE 0x1 #define HTE_TECTRL_OCCU_SHIFT 0x8 #define HTE_TECTRL_INTR_SHIFT 0x1 #define HTE_TECTRL_INTR_ENABLE 0x1 #define HTE_TESRC_SLICE_SHIFT 16 #define HTE_TESRC_SLICE_DEFAULT_MASK 0xFF #define HTE_TECMD_CMD_POP 0x1 #define HTE_TESTATUS_OCCUPANCY_SHIFT 8 #define HTE_TESTATUS_OCCUPANCY_MASK 0xFF enum tegra_hte_type { HTE_TEGRA_TYPE_GPIO = 1U << 0, HTE_TEGRA_TYPE_LIC = 1U << 1, }; struct hte_slices { u32 r_val; unsigned long flags; /* to prevent lines mapped to same slice updating its register */ spinlock_t s_lock; }; struct tegra_hte_line_mapped { int slice; u32 bit_index; }; struct tegra_hte_line_data { unsigned long flags; void *data; }; struct tegra_hte_data { enum tegra_hte_type type; u32 map_sz; u32 sec_map_sz; const struct tegra_hte_line_mapped *map; const struct tegra_hte_line_mapped *sec_map; }; struct tegra_hte_soc { int hte_irq; u32 itr_thrshld; u32 conf_rval; struct hte_slices *sl; const struct tegra_hte_data *prov_data; struct tegra_hte_line_data *line_data; struct hte_chip *chip; struct gpio_chip *c; void __iomem *regs; }; static const struct tegra_hte_line_mapped tegra194_aon_gpio_map[] = { /* gpio, slice, bit_index */ /* AA port */ [0] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_11}, [1] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_10}, [2] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_9}, [3] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_8}, [4] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_7}, [5] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_6}, [6] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_5}, [7] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_4}, /* BB port */ [8] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_3}, [9] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_2}, [10] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_1}, [11] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_0}, /* CC port */ [12] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_22}, [13] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_21}, [14] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_20}, [15] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_19}, [16] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_18}, [17] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_17}, [18] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_16}, [19] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_15}, /* DD port */ [20] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_14}, [21] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_13}, [22] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_12}, /* EE port */ [23] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_29}, [24] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_28}, [25] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_27}, [26] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_26}, [27] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_25}, [28] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_24}, [29] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_23}, }; static const struct tegra_hte_line_mapped tegra194_aon_gpio_sec_map[] = { /* gpio, slice, bit_index */ /* AA port */ [0] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_11}, [1] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_10}, [2] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_9}, [3] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_8}, [4] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_7}, [5] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_6}, [6] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_5}, [7] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_4}, /* BB port */ [8] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_3}, [9] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_2}, [10] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_1}, [11] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_0}, [12] = {NV_AON_SLICE_INVALID, 0}, [13] = {NV_AON_SLICE_INVALID, 0}, [14] = {NV_AON_SLICE_INVALID, 0}, [15] = {NV_AON_SLICE_INVALID, 0}, /* CC port */ [16] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_22}, [17] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_21}, [18] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_20}, [19] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_19}, [20] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_18}, [21] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_17}, [22] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_16}, [23] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_15}, /* DD port */ [24] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_14}, [25] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_13}, [26] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_12}, [27] = {NV_AON_SLICE_INVALID, 0}, [28] = {NV_AON_SLICE_INVALID, 0}, [29] = {NV_AON_SLICE_INVALID, 0}, [30] = {NV_AON_SLICE_INVALID, 0}, [31] = {NV_AON_SLICE_INVALID, 0}, /* EE port */ [32] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_29}, [33] = {1, NV_AON_HTE_SLICE1_IRQ_GPIO_28}, [34] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_27}, [35] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_26}, [36] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_25}, [37] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_24}, [38] = {2, NV_AON_HTE_SLICE2_IRQ_GPIO_23}, [39] = {NV_AON_SLICE_INVALID, 0}, }; static const struct tegra_hte_data aon_hte = { .map_sz = ARRAY_SIZE(tegra194_aon_gpio_map), .map = tegra194_aon_gpio_map, .sec_map_sz = ARRAY_SIZE(tegra194_aon_gpio_sec_map), .sec_map = tegra194_aon_gpio_sec_map, .type = HTE_TEGRA_TYPE_GPIO, }; static const struct tegra_hte_data lic_hte = { .map_sz = 0, .map = NULL, .type = HTE_TEGRA_TYPE_LIC, }; static inline u32 tegra_hte_readl(struct tegra_hte_soc *hte, u32 reg) { return readl(hte->regs + reg); } static inline void tegra_hte_writel(struct tegra_hte_soc *hte, u32 reg, u32 val) { writel(val, hte->regs + reg); } static int tegra_hte_map_to_line_id(u32 eid, const struct tegra_hte_line_mapped *m, u32 map_sz, u32 *mapped) { if (m) { if (eid > map_sz) return -EINVAL; if (m[eid].slice == NV_AON_SLICE_INVALID) return -EINVAL; *mapped = (m[eid].slice << 5) + m[eid].bit_index; } else { *mapped = eid; } return 0; } static int tegra_hte_line_xlate(struct hte_chip *gc, const struct of_phandle_args *args, struct hte_ts_desc *desc, u32 *xlated_id) { int ret = 0; u32 line_id; struct tegra_hte_soc *gs; const struct tegra_hte_line_mapped *map = NULL; u32 map_sz = 0; if (!gc || !desc || !xlated_id) return -EINVAL; if (args) { if (gc->of_hte_n_cells < 1) return -EINVAL; if (args->args_count != gc->of_hte_n_cells) return -EINVAL; desc->attr.line_id = args->args[0]; } gs = gc->data; if (!gs || !gs->prov_data) return -EINVAL; /* * * There are two paths GPIO consumers can take as follows: * 1) The consumer (gpiolib-cdev for example) which uses GPIO global * number which gets assigned run time. * 2) The consumer passing GPIO from the DT which is assigned * statically for example by using TEGRA194_AON_GPIO gpio DT binding. * * The code below addresses both the consumer use cases and maps into * HTE/GTE namespace. */ if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO && !args) { line_id = desc->attr.line_id - gs->c->base; map = gs->prov_data->map; map_sz = gs->prov_data->map_sz; } else if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO && args) { line_id = desc->attr.line_id; map = gs->prov_data->sec_map; map_sz = gs->prov_data->sec_map_sz; } else { line_id = desc->attr.line_id; } ret = tegra_hte_map_to_line_id(line_id, map, map_sz, xlated_id); if (ret < 0) { dev_err(gc->dev, "line_id:%u mapping failed\n", desc->attr.line_id); return ret; } if (*xlated_id > gc->nlines) return -EINVAL; dev_dbg(gc->dev, "requested id:%u, xlated id:%u\n", desc->attr.line_id, *xlated_id); return 0; } static int tegra_hte_line_xlate_plat(struct hte_chip *gc, struct hte_ts_desc *desc, u32 *xlated_id) { return tegra_hte_line_xlate(gc, NULL, desc, xlated_id); } static int tegra_hte_en_dis_common(struct hte_chip *chip, u32 line_id, bool en) { u32 slice, sl_bit_shift, line_bit, val, reg; struct tegra_hte_soc *gs; sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE); if (!chip) return -EINVAL; gs = chip->data; if (line_id > chip->nlines) { dev_err(chip->dev, "line id: %u is not supported by this controller\n", line_id); return -EINVAL; } slice = line_id >> sl_bit_shift; line_bit = line_id & (HTE_SLICE_SIZE - 1); reg = (slice << sl_bit_shift) + HTE_SLICE0_TETEN; spin_lock(&gs->sl[slice].s_lock); if (test_bit(HTE_SUSPEND, &gs->sl[slice].flags)) { spin_unlock(&gs->sl[slice].s_lock); dev_dbg(chip->dev, "device suspended"); return -EBUSY; } val = tegra_hte_readl(gs, reg); if (en) val = val | (1 << line_bit); else val = val & (~(1 << line_bit)); tegra_hte_writel(gs, reg, val); spin_unlock(&gs->sl[slice].s_lock); dev_dbg(chip->dev, "line: %u, slice %u, line_bit %u, reg:0x%x\n", line_id, slice, line_bit, reg); return 0; } static int tegra_hte_enable(struct hte_chip *chip, u32 line_id) { if (!chip) return -EINVAL; return tegra_hte_en_dis_common(chip, line_id, true); } static int tegra_hte_disable(struct hte_chip *chip, u32 line_id) { if (!chip) return -EINVAL; return tegra_hte_en_dis_common(chip, line_id, false); } static int tegra_hte_request(struct hte_chip *chip, struct hte_ts_desc *desc, u32 line_id) { int ret; struct tegra_hte_soc *gs; struct hte_line_attr *attr; if (!chip || !chip->data || !desc) return -EINVAL; gs = chip->data; attr = &desc->attr; if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) { if (!attr->line_data) return -EINVAL; ret = gpiod_enable_hw_timestamp_ns(attr->line_data, attr->edge_flags); if (ret) return ret; gs->line_data[line_id].data = attr->line_data; gs->line_data[line_id].flags = attr->edge_flags; } return tegra_hte_en_dis_common(chip, line_id, true); } static int tegra_hte_release(struct hte_chip *chip, struct hte_ts_desc *desc, u32 line_id) { struct tegra_hte_soc *gs; struct hte_line_attr *attr; int ret; if (!chip || !chip->data || !desc) return -EINVAL; gs = chip->data; attr = &desc->attr; if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) { ret = gpiod_disable_hw_timestamp_ns(attr->line_data, gs->line_data[line_id].flags); if (ret) return ret; gs->line_data[line_id].data = NULL; gs->line_data[line_id].flags = 0; } return tegra_hte_en_dis_common(chip, line_id, false); } static int tegra_hte_clk_src_info(struct hte_chip *chip, struct hte_clk_info *ci) { (void)chip; if (!ci) return -EINVAL; ci->hz = HTE_TS_CLK_RATE_HZ; ci->type = CLOCK_MONOTONIC; return 0; } static int tegra_hte_get_level(struct tegra_hte_soc *gs, u32 line_id) { struct gpio_desc *desc; if (gs->prov_data->type == HTE_TEGRA_TYPE_GPIO) { desc = gs->line_data[line_id].data; if (desc) return gpiod_get_raw_value(desc); } return -1; } static void tegra_hte_read_fifo(struct tegra_hte_soc *gs) { u32 tsh, tsl, src, pv, cv, acv, slice, bit_index, line_id; u64 tsc; struct hte_ts_data el; while ((tegra_hte_readl(gs, HTE_TESTATUS) >> HTE_TESTATUS_OCCUPANCY_SHIFT) & HTE_TESTATUS_OCCUPANCY_MASK) { tsh = tegra_hte_readl(gs, HTE_TETSCH); tsl = tegra_hte_readl(gs, HTE_TETSCL); tsc = (((u64)tsh << 32) | tsl); src = tegra_hte_readl(gs, HTE_TESRC); slice = (src >> HTE_TESRC_SLICE_SHIFT) & HTE_TESRC_SLICE_DEFAULT_MASK; pv = tegra_hte_readl(gs, HTE_TEPCV); cv = tegra_hte_readl(gs, HTE_TECCV); acv = pv ^ cv; while (acv) { bit_index = __builtin_ctz(acv); line_id = bit_index + (slice << 5); el.tsc = tsc << HTE_TS_NS_SHIFT; el.raw_level = tegra_hte_get_level(gs, line_id); hte_push_ts_ns(gs->chip, line_id, &el); acv &= ~BIT(bit_index); } tegra_hte_writel(gs, HTE_TECMD, HTE_TECMD_CMD_POP); } } static irqreturn_t tegra_hte_isr(int irq, void *dev_id) { struct tegra_hte_soc *gs = dev_id; (void)irq; tegra_hte_read_fifo(gs); return IRQ_HANDLED; } static bool tegra_hte_match_from_linedata(const struct hte_chip *chip, const struct hte_ts_desc *hdesc) { struct tegra_hte_soc *hte_dev = chip->data; if (!hte_dev || (hte_dev->prov_data->type != HTE_TEGRA_TYPE_GPIO)) return false; return hte_dev->c == gpiod_to_chip(hdesc->attr.line_data); } static const struct of_device_id tegra_hte_of_match[] = { { .compatible = "nvidia,tegra194-gte-lic", .data = &lic_hte}, { .compatible = "nvidia,tegra194-gte-aon", .data = &aon_hte}, { } }; MODULE_DEVICE_TABLE(of, tegra_hte_of_match); static const struct hte_ops g_ops = { .request = tegra_hte_request, .release = tegra_hte_release, .enable = tegra_hte_enable, .disable = tegra_hte_disable, .get_clk_src_info = tegra_hte_clk_src_info, }; static void tegra_gte_disable(void *data) { struct platform_device *pdev = data; struct tegra_hte_soc *gs = dev_get_drvdata(&pdev->dev); tegra_hte_writel(gs, HTE_TECTRL, 0); } static int tegra_get_gpiochip_from_name(struct gpio_chip *chip, void *data) { return !strcmp(chip->label, data); } static int tegra_hte_probe(struct platform_device *pdev) { int ret; u32 i, slices, val = 0; u32 nlines; struct device *dev; struct tegra_hte_soc *hte_dev; struct hte_chip *gc; dev = &pdev->dev; ret = of_property_read_u32(dev->of_node, "nvidia,slices", &slices); if (ret != 0) { dev_err(dev, "Could not read slices\n"); return -EINVAL; } nlines = slices << 5; hte_dev = devm_kzalloc(dev, sizeof(*hte_dev), GFP_KERNEL); if (!hte_dev) return -ENOMEM; gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); if (!gc) return -ENOMEM; dev_set_drvdata(&pdev->dev, hte_dev); hte_dev->prov_data = of_device_get_match_data(&pdev->dev); hte_dev->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hte_dev->regs)) return PTR_ERR(hte_dev->regs); ret = of_property_read_u32(dev->of_node, "nvidia,int-threshold", &hte_dev->itr_thrshld); if (ret != 0) hte_dev->itr_thrshld = 1; hte_dev->sl = devm_kcalloc(dev, slices, sizeof(*hte_dev->sl), GFP_KERNEL); if (!hte_dev->sl) return -ENOMEM; ret = platform_get_irq(pdev, 0); if (ret < 0) { dev_err_probe(dev, ret, "failed to get irq\n"); return ret; } hte_dev->hte_irq = ret; ret = devm_request_irq(dev, hte_dev->hte_irq, tegra_hte_isr, 0, dev_name(dev), hte_dev); if (ret < 0) { dev_err(dev, "request irq failed.\n"); return ret; } gc->nlines = nlines; gc->ops = &g_ops; gc->dev = dev; gc->data = hte_dev; gc->xlate_of = tegra_hte_line_xlate; gc->xlate_plat = tegra_hte_line_xlate_plat; gc->of_hte_n_cells = 1; if (hte_dev->prov_data && hte_dev->prov_data->type == HTE_TEGRA_TYPE_GPIO) { hte_dev->line_data = devm_kcalloc(dev, nlines, sizeof(*hte_dev->line_data), GFP_KERNEL); if (!hte_dev->line_data) return -ENOMEM; gc->match_from_linedata = tegra_hte_match_from_linedata; hte_dev->c = gpiochip_find("tegra194-gpio-aon", tegra_get_gpiochip_from_name); if (!hte_dev->c) return dev_err_probe(dev, -EPROBE_DEFER, "wait for gpio controller\n"); } hte_dev->chip = gc; ret = devm_hte_register_chip(hte_dev->chip); if (ret) { dev_err(gc->dev, "hte chip register failed"); return ret; } for (i = 0; i < slices; i++) { hte_dev->sl[i].flags = 0; spin_lock_init(&hte_dev->sl[i].s_lock); } val = HTE_TECTRL_ENABLE_ENABLE | (HTE_TECTRL_INTR_ENABLE << HTE_TECTRL_INTR_SHIFT) | (hte_dev->itr_thrshld << HTE_TECTRL_OCCU_SHIFT); tegra_hte_writel(hte_dev, HTE_TECTRL, val); ret = devm_add_action_or_reset(&pdev->dev, tegra_gte_disable, pdev); if (ret) return ret; dev_dbg(gc->dev, "lines: %d, slices:%d", gc->nlines, slices); return 0; } static int __maybe_unused tegra_hte_resume_early(struct device *dev) { u32 i; struct tegra_hte_soc *gs = dev_get_drvdata(dev); u32 slices = gs->chip->nlines / NV_LINES_IN_SLICE; u32 sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE); tegra_hte_writel(gs, HTE_TECTRL, gs->conf_rval); for (i = 0; i < slices; i++) { spin_lock(&gs->sl[i].s_lock); tegra_hte_writel(gs, ((i << sl_bit_shift) + HTE_SLICE0_TETEN), gs->sl[i].r_val); clear_bit(HTE_SUSPEND, &gs->sl[i].flags); spin_unlock(&gs->sl[i].s_lock); } return 0; } static int __maybe_unused tegra_hte_suspend_late(struct device *dev) { u32 i; struct tegra_hte_soc *gs = dev_get_drvdata(dev); u32 slices = gs->chip->nlines / NV_LINES_IN_SLICE; u32 sl_bit_shift = __builtin_ctz(HTE_SLICE_SIZE); gs->conf_rval = tegra_hte_readl(gs, HTE_TECTRL); for (i = 0; i < slices; i++) { spin_lock(&gs->sl[i].s_lock); gs->sl[i].r_val = tegra_hte_readl(gs, ((i << sl_bit_shift) + HTE_SLICE0_TETEN)); set_bit(HTE_SUSPEND, &gs->sl[i].flags); spin_unlock(&gs->sl[i].s_lock); } return 0; } static const struct dev_pm_ops tegra_hte_pm = { SET_LATE_SYSTEM_SLEEP_PM_OPS(tegra_hte_suspend_late, tegra_hte_resume_early) }; static struct platform_driver tegra_hte_driver = { .probe = tegra_hte_probe, .driver = { .name = "tegra_hte", .pm = &tegra_hte_pm, .of_match_table = tegra_hte_of_match, }, }; module_platform_driver(tegra_hte_driver); MODULE_AUTHOR("Dipen Patel <dipenp@nvidia.com>"); MODULE_DESCRIPTION("NVIDIA Tegra HTE (Hardware Timestamping Engine) driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1